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Abstract
This paper addresses a modified Newton (MNT) algorithm for the source localization
problem utilizing time difference of arrival. As the improvement of the Newton (NT)
method, the proposed algorithm can guarantee convergence stability in the case of bad
initial values by using the Tikhonov (TI) regularization theory. Moreover, a two-stage
MNT algorithm is proposed for the source localization with sensor position errors.
Theoretical analysis is provided to illustrate that the two-stage MNT algorithm has
less computational load and faster convergence speed compared with the MNT algo-
rithm. Simulation results show the superior location accuracy and better convergence
performance of the proposed MNT and two-stage MNT algorithms in comparison
with relative methods.

Keywords Source localization · Time difference of arrival (TDOA) · Modified
Newton method (MNT) · Tikhonov (TI) regularization theory · Two-stage MNT
method · Sensor position errors

1 Introduction

Time difference of arrival (TDOA)-based source localization is a key technology
in many fields such as navigation, surveillance, wireless sensor networks and wire-
less communications [8, 15, 19]. The source localization is not a simple problem for
the high nonlinearity of TDOA equations related to the unknown emitting source.
Researchers have developed the closed-form algorithms to linearize the nonlinear
localization problem, which can be categorized into the linear least squares (LS) [7],
two-step weighted least squares (WLS) [3], constrained total least squares (CTLS)
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[22], constrained weighted least squares (CWLS) [5], and multidimensional scaling
(MDS) analysis [18]. The closed-form algorithms can only attain the CRLB in a mild
noise environment, and the bias of the location result becomes significant in large noise
levels. Due to the drawback, researchers have improved the closed form to reduce the
bias in [1, 11]. Another method to handle the nonlinearity is to use iteration through
linearization. Foy [6] and Chernoguz [4] provide such a solution using Gauss–Newton
implementation of the maximum likelihood estimator (MLE) under Gaussian noise.
Such a technique requires carefully chosen initial guesses that are near the actual
solution. Convergence is not guaranteed, and one could end up with a local minimum
solution. Moreover, some researchers combine the closed-form algorithm and the iter-
ative method. Weng et al. [20] and Yu et al. [23] use the closed-form solution as the
initial value and then improve the location accuracy by the iterative methods.

Beside the problem mentioned above, most of the localization algorithms assume
the sensor positions are precisely known. However, the location of the receiver is not
entirely known in practical application, the existence of the sensor position error will
have a greater adverse effect on the TDOA location accuracy, and even the CRLB
will rise with the sensor error. Although some closed-form algorithms take the sensor
error into account to reduce the estimation error, such as the work [12, 13, 16], these
algorithms still have the threshold effect and can only be used in slight noise environ-
ment. What’s more, semidefinite programming (SDP) algorithm [17, 21] is proposed
to relax the non-convex localization problem. This algorithm is heavily dependent
on the tightness of relaxation that transforms the non-convex optimization problem
into a convex one. Moreover, the iterative method is also employed to refine the SDP
solutions in order to obtain better estimation accuracy approaching the CRLB.

This paper mainly studies the solution to the convergence problem in iterative algo-
rithms. First, the objective function is determined based on the maximum likelihood
estimator and the Newton method is used to solve the TDOA equations. It is known
that the Newton method is based on the quadratic approximation of the Taylor series,
which ignores the terms higher than second order of Taylor-series expansion. How-
ever, due to the high nonlinearity of the TDOA localization, a bad initial value which
may cause the contribution of the higher terms significant to the solution can still
lead the iteration to diverge. Then, a modified Newton algorithm (MNT) is proposed
for the stable convergence problem. In the MNT algorithm, we present the Tikhonov
(TI) method in regularization theory to modify the ill-posed Hessian matrix caused
by the bad initial value into a well-conditioned one. In addition, an L-curve method
is developed to determine the significant loading parameter, which makes the pro-
posed algorithm converge quickly on the desired solution. The theory of the MNT
algorithm can also be used to propose the modified Taylor-series (MTS) algorithm
instead of the TSmethod. The proposedMNT andMTS algorithms exhibit robustness
to the convergent problem and better capability to distinguish and remove the local
minimums from the global solutions compared with the TS and NT methods. Last, a
two-stage Newton algorithm is proposed for the source localization in the presence of
sensor errors, which reduces the large calculations of the high-dimensional Hessian
matrix inversion caused by the sensor position errors and improves the convergence
speed. Simulation results demonstrate that the proposed MNT and two-stage MNT
algorithms have better convergence performance compared with the NT method and
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more precise location accuracy comparedwith the closed-form algorithms atmoderate
and large noises.

2 Problem Formulation

Consider a three-dimensional (3-D) scenario where M passive sensors collaborate to
determine an unknown emitting source. The source location is x = [x, y, z]T , and the
positions of the sensor are located at si = [xi , yi , zi ]T , i = 1, 2, . . . , M . The distance
between the source and the ith sensor is

ri = ‖x − si‖2 (1)

where symbol ‖ · ‖2 denotes the 2-norm. Without loss of generality, the first sensor is
chosen as the reference and the TDOA measurement can be expressed as

ti1 = di1
c

= 1

c
(ri − r1 + ni1) (2)

where c is the known signal propagation speed, ni1/c is the TDOA measurement
noise, and di1 is often referred to as range difference of arrival (RDOA). The RDOA
measurements can be formed as

d = [d21, d31, . . . , dM1]T = Gr + nt (3)

where

G =

⎡
⎢⎢⎢⎣

−1 1 0 · · · · · · 0
−1 0 1 0 · · · 0
...

...
. . .

. . .
...

...

−1 0 · · · · · · 0 1

⎤
⎥⎥⎥⎦

(M−1)×M

(4)

r= [r1, r2, · · · , rM ]T (5)

nt = [n21, n31, · · · , nM1]T (6)

where nt denotes the RDOA measurement noise vector that is satisfied to be zero
mean Gaussian with covariance matrix E(ntnTt ) = Qt . Based on the ML estimator,
the objective is to find x to minimize the following cost function:

f (x) = 1

2
(Gr − d)TQ−1

t (Gr − d) (7)
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3 ProposedMNT andMTSMethods

The Newton method is a classical iterative algorithm which improves the source loca-
tion at each iteration using the quadratic approximation of the Taylor series. Denoting
k = 1, 2, . . . , K as the iterative index, the next point xk+1, we have

xk+1 = xk + �xk = xk − [∇2 f (xk)]−1∇ f (xk) (8)

where ∇ f (x) and ∇2 f (x) denote the gradient and Hessian, respectively. From (7),
they can be formed as

∇ f (x) = ∂ f

∂x
=

(
G

∂r
∂x

)T

Q−1
t (Gr − d) (9)

∇2 f (x) = ∂ f

∂x∂xT
=

(
G

∂r
∂x

)T

Q−1
t G

∂r
∂xT

+ ∂

∂xT

(
G

∂r
∂x

)T

Q−1
t (Gr − d) (10)

where

∂rT

∂x
=

(
∂r
∂xT

)T

=
[
x − s1
r1

,
x − s2
r2

, . . . ,
x − sM
rM

]

3×M
(11)

(
G

∂r
∂x

)T

= ∂rT

∂x
GT =

[
x − s2
r2

− x − s1
r1

, . . . ,
x − sM
rM

− x − s1
r1

]

3×(M−1)
(12)

G
∂r
∂xT

=

⎡
⎢⎢⎣

(x−s2)T
r2

− (x−s1)T
r1

...
(x−sM )T

rM
− (x−s1)T

r1

⎤
⎥⎥⎦

(M−1)×3

(13)

∂

∂xT

(
G

∂r
∂x

)T

Q−1
t (Gr − d) = (Gr − d)TQ−1

t ⊗ I3 · ∂

∂xT

[
vec

(
G

∂r
∂x

)T
]

(14)

∂

∂xT

[
vec

(
G

∂r
∂x

)T
]

=

⎡
⎢⎢⎢⎣

r2·I3
r22

− (x−s2)·(x−s2)T

r32
− r1·I3

r21
+ (x−s1)·(x−s1)T

r31
...

rM ·I3
r2M

− (x−sM )·(x−sM )T

r3M
− r1·I3

r21
+ (x−s1)·(x−s1)T

r31

⎤
⎥⎥⎥⎦

(M−1)×3

(15)

Notice that the Hessian matrix ∇2 f (x) from (10) is well conditioned when the initial
value is close to the source, and then the iteration can converge on the desired solution.
Due to the high nonlinearity of the TDOA localization, the Newton’s method has a
critical problem that it cannot guarantee the convergence stability. When the initial
value usually provided by the closed-form solution deteriorates at large noise levels,
the contribution of the higher terms in the Taylor-series expansion becomes significant
to the solution, which may cause the Hessian matrix ill-posed and lead the Newton’s
method to diverge. The reason for the ill-posed Hessian matrix problem follows two
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criteria[2, 9]: (i) The eigenvalues of the Hessian decay gradually to zero and (ii) the
condition number (the ratio of the largest to the smallest nonzero eigenvalues) is large.

In order to improve the convergence stability of Newton’s method, we first analyze
the influence of the ill-posed Hessian matrix on convergence. Setting b = −∇ f (x)
and A = ∇2 f (x) from (9) and (10), the SVD of A is decomposition of the form

A = U�VT =
n∑

i=1

σiuivTi (16)

where U = (u1, . . . ,un) and V = (v1, . . . , vn) are matrices with orthonormal
columns UTU = VTV=In and � = diag(σ1, . . . , σn). The σi , ui , and vi are the
singular value and their corresponding left and right singular vectors of A, respec-
tively. From (8), we can obtain

�x=A−1b=
n∑

i=1

uTi b

σi
vi (17)

Since the Fourier coefficients
∣∣uTi b

∣∣ corresponding to the smaller eigenvalues σi do
not decay as fast as the eigenvalues, the solution �x is dominated by the terms in the
sum corresponding to the smallest σi . As a consequence, the solution �x has sign
changes frequently and thus appears completely random.

For the Newton’s method in the source localization, it is necessary to avoid the
appearance of ill-posed matrices, which needs to dampen or filter out the contributions
to the solution corresponding to the small singular values. Here, a TI technique is
introduced to modify the Hessian matrix which transforms (17) into solving the form
of

min ‖A�x − b‖22 + λ2‖�x‖22 (18)

Then, the regularized solution �xreg can be given as

�xreg=
n∑

i=1

σ 2
i

σ 2
i + λ2

uTi b

σi
vi (19)

where fi = σ 2
i

σ 2
i +λ2

means the filter factor.

Remark 1 For the source localization, it is known that the first term in (10) has a greater
contribution than the second term, which easily satisfies the two ill-posed criteria with
a bad initial value. By using the TI technique, the smallest singular value becomes
σmin + λ2/σmin which drives farther away from zero than the original value σmin,
and the condition number changes into (σmax+λ2/σmax)/(σmin+λ2/σmin) which
becomes smaller and more reasonable than the original value σmax/σmin. Hence,
comparedwith theNTalgorithm, the proposed algorithm reduces the conditionnumber
to ensure stable convergence in the ill-posed condition.
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Here the parameter λ denotes the regularization parameter, and it is an important
quantity which controls the properties of the regularized solution. By introducing the
parameter λ, the condition number of the Hessian matrix modified by the TI tech-
nique decreases and the regularized solution �xreg becomes more proper. This paper
exploits an L-curve method to determine the loading parameters, which is based on
a log–log plot of corresponding residual norm ‖A�x − b‖2 as abscissa and regular-
ized norm ‖�x‖2 as ordinate, where the expressions of the norm are formulated as

‖A�x − b‖22 =
n∑

i=1
((1 − fi )uTi b)2 and ‖�x‖22 =

n∑
i=1

( fi
uTi b
σi

)2. Then, it is found that

this curve has a particular “L” shape and that the optimal loading parameter corre-
sponds to a point on the curve near the “corner” of the L-shaped region [10, 14]. For
the localization problem, the L-curve can be defined by a smooth, computable for-
mula. Thus, the loading parameter is found by locating the inflexion with the highest
curvature κ = ρ′θ ′′−ρ′′θ ′

[(ρ′)2+(θ ′)2] 32
, where ρ = ‖A�x − b‖2 and θ = ‖�x‖2, and the (·)′

denotes differentiation with respect to the loading parameter λ.

Remark 2 To analyze the behavior of the L-curve, we denote �x̄ as the exact solution
corresponding to the exact b̄ in (17), and then the error is defined as �xreg − �x̄ =
n∑

i=1
fi

uTi (b−b̄)

σi
vi +

n∑
i=1

( fi − 1)
uTi b̄
σi

vi . Here, the first term is the perturbation error due

to the perturbation e = b − b̄, and the second term is the regularization error caused
by regularization of the unperturbed component b. Furthermore, the horizontal part of
the L-curve corresponding to solutions dominated by the regularization error is very
sensitive to changes in λ, while the ‖�x̄‖2 changes a little with λ. In contrast, the verti-
cal part of the L-curve corresponding to solutions dominated by the perturbation error
varies dramatically with λ, while simultaneously, the residual norm does not change
much. In this way, the L-curve clearly displays the trade-off between minimizing the
residual norm and the side constraint.

One should note that ignoring the second term of (10), the NT method falls into the
TS method, so the regularization theory can also be used to modify the TS method.
Without the second term of (10), using (8), (9), (10), and (19), the MTS method can
be proposed to improve the convergent capability compared with the TS method.

Remark 3 Compared with the TS method, the NT method gives superior performance
of location accuracy since the second term of (10) provides a more precise Hessian
matrix. However, the Hessian matrix may be negative definite with a bad initial value
in large noises, which causes the iteration to diverge. Ignoring the second term of
(10), the TS method has better convergent capability since the first term of (10) is
positive definite, but the solution of the TS method may be easily trapped in the local
minimum. The proposed methods inherit the character of the TS and NT methods.
Compared with the MTS method, the MNT method has better location accuracy but
slower convergence speed.

Remark 4 We judge whether the iteration is stable and convergent by observing the
objective function value. The iteration is considered to be divergent when the objective
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function value f (xk+1) > f (xk). Due to the nonlinear source location problem,
sometimes although the iteration is convergent, the solution may be trapped into the
local minimum, which causes the accuracy of location estimate to become worse.
Notice that the iterative methods just take a few times to converge on the global
solution, but the local minimum solution requires more times to converge. Thus, the
threshold of iterative time should be set to remove the local minimums. If the threshold
we set is high, there will still be some local minimum values in the solutions. On the
other hand, several global solutions will be missed with the low threshold. With the
regularization theory, the MTS and MNT methods actually slow the downtrend of
the objective function. When the solution is local minimum, the proposed methods
need more times to converge than the TS and NT methods, which can easily reach the
threshold. And the proposed methods can still converge on the global minimum in a
few times. Therefore, the proposed methods have better capability to recognize the
local minimum compared with the TS and NT methods.

4 Two-StageModified NewtonMethod in the Presence of Sensor
Position Errors

4.1 The Two-StageMNT Algorithm in the Sensor Position Errors

In practice, it is difficult to obtain the exact estimates of sensor positions. With inac-
curate sensor positions, the objective function parameterized on the unknown vector
θ = [xT , s̃T ]T changes into

f (θ) = 1

2
(Gr − d)TQ−1

t (Gr − d) + 1

2
(s − s̃)TQ−1

s (s − s̃) (20)

The gradient ∇ f (θk) and the Hessian ∇2 f (θk) can be formed as

∇ f (θk) =
⎡
⎣

∂ f
∂x
∂ f
∂ s̃

⎤
⎦ =

⎡
⎣

(
G ∂r

∂x

)T
Q−1

t (Gr − d)
(
G ∂r

∂ s̃

)T
Q−1

t (Gr − d) − Q−1
s (s − s̃)

⎤
⎦ (21)

∇2 f (θk) =
⎡
⎣

∂ f
∂x∂xT

∂ f
∂x∂ s̃T

∂ f
∂ s̃∂xT

∂ f
∂ s̃∂ s̃T

⎤
⎦ (22)

where

∂ f

∂x∂ s̃T
=

(
G

∂r
∂x

)T

Q−1
t G

∂r
∂ s̃T

+ ∂

∂ s̃T

(
G

∂r
∂x

)T

Q−1
t (Gr − d) (23)

∂ f

∂ s̃∂xT
= (

∂ f

∂x∂ s̃T
)T (24)

∂ f

∂ s̃∂ s̃T
=

(
G

∂r
∂ s̃

)T

Q−1
t G

∂r
∂ s̃T

+Q−1
s + ∂

∂ s̃T

(
G

∂r
∂ s̃

)T

Q−1
t (Gr − d) (25)
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Then, the next point θk+1 is

θk+1 = θk − ∇2 f (θk)
−1∇ f (θk) (26)

Notice that this approach requires not only the estimate of the source location, but
also the estimate of the sensor positions. Therefore, the �θ contains both the change
in the positions of source and that in the sensors, and the first three elements of �θ

imply the source location change that is of interest.
Here, we present the two-stageMNT algorithm. First, the solution x is solved using

(8) by the regularization method with (19), and this approach ensures the solution
converges on a point closed to the source quickly. Second, the sensor position errors
are considered to pursue more precise accuracy using (26). Before introducing the
advantages of the algorithm, we first prove two theorems.

Theorem 1 The existence of ∇2 f (θ)−1 depends on whether X is invertible. Since the
sensor position errors are only considered in the second stage, and the initial value of
the source is improved in the first stage, the terms ∂

∂xT
(G ∂r

∂x )
TQ−1

t (Gr − d) in (10),
∂

∂ s̃T
(G ∂r

∂x )TQ−1
t (Gr−d) in (23), and ∂

∂ s̃T
(G ∂r

∂ s̃ )
TQ−1

t (Gr−d) in (25) can be ignored

in the proposed algorithm; then, the Hessian ∇2 f (θ) in (22) can be written as

∇2 f (θ) =
[
X Y
YT Z

]
(27)

where X =
(
G

∂r
∂x

)T

Q−1
t G

∂r
∂xT

(28)

Y =
(
G

∂r
∂x

)T

Q−1
t G

∂r
∂ s̃T

(29)

Z =
(
G

∂r
∂ s̃

)T

Q−1
t G

∂r
∂ s̃T

+ Q - 1
s (30)

Assuming the Hessian ∇2 f (θ) is invertible, the ∇2 f (θ)−1 becomes

∇2 f (θ)−1 =
[
X−1 + X−1Y(Z − YTX−1Y)−1YTX−1 −X−1Y(Z − YTX−1Y)−1

(Z − YTX−1Y)−1YTX−1 (Z − YTX−1Y)−1

]

(31)

From (31),we see that the existence of ∇2 f (θ)−1 needs thematrixX and Z−YTX−1Y
to be invertible. It is known that Z−YTX−1Y is positive definite in [12]. Therefore, the
existence of ∇2 f (θ)−1 only depends on whether X is invertible. It is noteworthy that
X denotes the main contribution of Hessian matrix in the case of no sensor position
errors, and thus the MNT algorithm is addressed to ensure X to be well conditioned.

Theorem 2 Sensor position errors slow the downtrend of the objective function,which
takes lots of iterative times to find correct solution from the initial value. The change
�θ in (26) is
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�θ = −
[
X−1 + X−1Y(Z − YTX−1Y)−1YTX−1 −X−1Y(Z − YTX−1Y)−1

(Z − YTX−1Y)−1YTX−1 (Z − YTX−1Y)−1

]

×
[ (

G ∂r
∂x

)T
Q−1

t (Gr − d)(
G ∂r

∂ s̃

)T
Q−1

t (Gr − d) − Q−1
s (s − s̃)

]
(32)

The change �x denotes the first three elements of �θ , using the estimation sensor
positions as initial guess of the true sensor positions, and we have

�x = [X−1 + X−1Y(Z − YTX−1Y)−1YTX−1]
(
G

∂r
∂x

)T

Q−1
t (d − Gr)

−[X−1Y(Z − YTX−1Y)−1]
(
G

∂r
∂ s̃

)T

Q−1
t (d − Gr) (33)

Let φ = (Z − YTX−1Y)−1, then (33) is rewritten as

�x =
[
X−1

(
G

∂r
∂x

)T

+X−1Y · φ · YTX−1
(
G

∂r
∂x

)T

− X−1Y · φ ·
(
G

∂r
∂ s̃

)T
]
Q−1

t (d − Gr)

(34)

Notice that the first term in [·] of (34) is the �x in the case of no sensor position
errors and the other term in [·] of (34) implies �x that is affected by the sensor
position errors. Utilizing some conclusions in [12], we haveQ−1

t = LLT by Cholesky
decomposition. Let α = LT (G ∂r

∂ s̃T
), β = LT (G ∂r

∂xT
), the formula in the [·] of (34)

can be expressed as

(βTβ)−1βTL−1 + (βTβ)−1βTα · φ · [αTβ(βTβ)−1βTL−1 − αTL−1]
= (βTβ)−1βT [I + α · φ · αT (β(βTβ)−1βT − I)]L−1; (35)

rewrite (35) as

(βTβ)−1βT [I − α · φ · αT (I − β(βTβ)−1βT )]L−1 (36)

It is worth noticing that α · φ · αT (I − β(βTβ)−1βT ) is positive definite since I −
β(βTβ)−1βT is a projection matrix, which predicates that the affection of �x that is
brought by the sensor errors decreases the downtrend of the objective function in the
iterations.

Since pursuing the inverse of the Hessian ∇2 f (θ) is computationally intensive
especially when the number of sensors M is large, the little change �x leads to slow
convergence rate and huge computation, but these sensor position errors have to be
considered for a more accurate solution of the source. Therefore, the first stage is
to increase the change of �x in each iteration, and then the location will be solved
by the second stage in considering the sensor position errors. The proposed two-stage
MNT algorithm can reduce the degree of Hessian matrix and improve the convergence
speed, which makes the algorithm feasible and efficient.
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4.2 Supplement and Analysis

In summary, the procedure and analysis of the two-stage MNT algorithm with the
sensor position errors are given here.

4.2.1 First-Stage Processing

• Input the initial x0 and the tolerance ε. Set k= 0.
• Compute the gradient ∇ f (xk) and the Hessian ∇2 f (xk) using (9) and (10).
• Compute�xk by themodifiedNewtonmethod using (19), and set xk+1 = xk+�xk .
• If ‖�xk‖ < ε, then do output x1 = xk+1, and go to the second stage;
Otherwise, set k= k+1 and repeat.

4.2.2 Second-Stage Processing

• Input the initial x1. Set l= 0.
• Compute the gradient ∇ f (θ l) and the Hessian ∇2 f (θ l) using (21) and (22).
• Compute �θ l and set xl+1 = xl + �xl using (26), where �xl is the first three
elements of �θ l .

• If ‖�xl‖ < ε, then do output x = xl+1, and stop;
Otherwise, set l= l+1 and repeat.

The covariance matrix of the estimated vector θ can be obtained by using the
perturbation approach. In the presence of sensor noises, we have

�θ = −∇2 f (θ)−1∇ f (θ) (37)

The ∇ f (θ) and ∇2 f (θ) can be rewritten as

∇ f (θ) = PTQ−1w (38)

∇2 f (θ) = PTQ−1P (39)

where P =
[
G ∂r

∂xT
G ∂r

∂ s̃T
∂ s̃

∂xT
∂ s̃
∂ s̃T

]
(40)

Q =
[
Qt

Qs

]
(41)

w =
[
Gr − d
s − s̃

]
(42)

Since E{w} ≈ 0M−1+3M and E{wwT } =Q, the covariance matrix is given by

cov(θ ) = E{�θ�θT } =(PTQ−1P)−1PTQ−1

· E(wwT )Q−1P(PTQ−1P)−1 = (PTQ−1P)−1 (43)
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The MNT method needs to calculate the inverse of the Hessian matrix in each iter-
ation, which is computationally intensive when the Hessian is extended with respect
to inaccurate sensor positions. Utilizing the MNT algorithm of (26) directly, the com-
plexity of the MNT method is approximately O(N (3M + 3)3) (M is the number of
sensors, N is the iteration times), where N may be quite large for the reason of the
slow downtrend of objective function. However, the complexity of the two-stageMNT
algorithm is approximately O(L1(3M + 3)3 + L2 · 33), where L1 and L2 denote the
iterative times with and without considering the sensor position errors, respectively.
The total L(L = L1 + L2) is much less than N . This approach makes the algorithm
feasible. It is acknowledged that the MNT algorithm is computationally intensive
compared with the closed-form algorithm since it is an iterative method. However,
sometimes we have to pursue more precise accuracy of the source location, especially
in the case of moderate and large noises, and the MNT algorithm is fit to be applied
to this condition.

5 Simulations

5.1 Experiment 1: MNT andMTS Algorithms for Source Localization

Five sensors are used in the simulation to find the source location, with the positions
as (300, 100, 150), (400, 150, 100), (300, 500, 200), (350, 200, 100), (− 100, −
100, − 100) m. The near-field source or the far-field source is located at (280, 325,
275) or (2800, 3250, 2750) m. The estimation accuracy in terms of root-mean-square

error (RMSE) is defined as RMSE =
√
E{∥∥x − x̂

∥∥2
2}. The RDOA measurements are

obtained by adding the real values of zero mean Gaussian noise and covariance matrix
Qt = σ 2

t Θ , where σ 2
t is the RDOA noise power and Θ is equal to 1 in the diagonal

elements and 0.5 otherwise. In practice, the initial value can be chosen from the
solution of the closed-form algorithms. In this simulation, the famous two-step WLS
algorithm is used to pursue the solution as the initial value. The threshold of iterative
time is set to be 10. The statistical results come from 5000 independent simulations.

Figures 1 and 2 depict the convergent probability of the TS, NT, MTS and MNT in
the near-field and far-field source. From Fig. 1, we can see the TS and NT methods
may easily diverge in the iterations as σ 2

t increases. The proposed methods MTS and
MNT have better capability to make the iteration convergence. The improvement in
the probability can attain about 10 percent at large noise. In Fig. 2, all the TS, MTS,
andMNTmethods are robust tomake the iteration convergence except theNTmethod.
Although the TSmethod has high convergent probability, the solutions contain several
local minimums in the simulations.

Figures 3 and 4 show the accuracy of location estimate of the proposed methods
in terms of RMSE, compared with the two-step WLS algorithm, the MDS algorithm,
the TS, NT methods, and the CRLB in the near-field and far-field source. In Fig. 3, all
the algorithms can attain the CRLB in small noises. When σ 2

t increases, the threshold
effect resulting from the nonlinear nature of the two-step WLS and MDS algorithms
occurs at some large noise level. The RMSE of the TS, NT methods also deviates
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Fig. 1 Comparisons of the probability of the convergence of the proposed methods MTS, MNTwith the TS,
NT methods for near-field source located at (280, 325, 275) m
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Fig. 2 Comparisons of the probability of the convergence of the proposed methods MTS, MNTwith the TS,
NT methods for far-field source located at (2800, 3250, 2750) m

further from the CRLB caused by the local minimums. The proposed method MNT
performs better compared with the other methods in large noises. Notice that the MTS
method has worse precise accuracy than the MDS algorithm; the reason is that a few
local minimums still exist in the MTS solutions since the threshold of iterative time
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Fig. 3 Comparison of RMSE of the proposed methods MTS, MNT with the two-step WLS algorithm, the
MDS algorithm, the TS, NT methods and the CRLB for near-field source located at (280, 325, 275) m
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Fig. 4 Comparison of RMSE of the proposed methods MTS, MNT with the two-step WLS algorithm, the
MDS algorithm, the TS, NT methods and the CRLB for far-field source located at (2800, 3250, 2750) m

set in the simulations is not too strict. In Fig. 4, we can see that the proposed MTS and
MNT methods have the same results. The reason is that the second term of (10) in the
iterations is quite small in far-field scenario when the solution is the global minimum.
They are lower than the other algorithms and even the CRLB at large noises. This is
because they have become biased estimators in sufficient noise conditions.
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Fig. 5 Impact of the initial value chosen comparing MNT method with NT method for near-field source
located at (280, 325, 275) m

Figures 5 and 6 depict the impact of the initial value comparing the NTmethod and
theMNTmethod in the near-field and far-field source. Good initial values are provided
in Figs. 5a and 6awhile poor initial values are given in Figs. 5b and 6b. As clearly seen,
the NT method and the MNT method both can find the precise source location with
good initial values. For theworse initial values, theNTmethoddiverges in the iterations
while theMNTmethod is still robust to make the iteration convergence and pursue the
true location. It is acknowledged that with better initial value, theMNT algorithmmay
have a little worse performance than the NT method in the convergence speed. The
reason is that the modified Hessian matrix slows the downtrend of the function. Based
on the simulation result, we can give the conclusion that the proposed MNT algorithm
exhibits much better iterative stability with some acceptable loss of the convergence
speed, which fits to low SNR environment.

5.2 Experiment 2: Two-StageMNT Algorithm for Source Localization with Sensor
Position Error

In the presence of sensor position errors, the true positions of the sensor are also
generated by adding zero mean Gaussian noise with covariance matrix Qs =
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Fig. 6 Impact of the initial value chosen comparing MNT method with NT method for far-field source
located at (2800, 3250, 2750) m

σ 2
s diag[5,5,5,2,2,2,2,2,2,1,1,1,3,3,3], where σ 2

s denotes the sensor position error
power. It is worth noting that the TDOA noises and the sensor position noises are
uncorrelated.

The RMSEs of the proposed two-stage MNT, two-step WLS methods, and CRLB
are shown inFigs. 7 and 8 for the near-field and far-field source in the presence of sensor
position errors. In this experiment,wefixσ 2

t = 1with the near-field source orσ 2
t = 0.1

with the far-field source and vary σ 2
s . It is seen that the two-stage MNT method gives

better performance compared with the two-step WLS method. As σ 2
s increases, the

estimation accuracy of the two-stage MNT method has a smaller deviation from the
CRLB than the two-step WLS method.

From Fig. 9, we can observe the convergence speed of the MNT method and the
two-stage MNT method with the sensor position errors. In this simulation, set σ 2

t = 1
and σ 2

s = 10. Figure 9a, b shows the change of the RMSE and the objective function
f in an iterative way, and some head values of the function f are cut for better vision
in Fig. 9b. Under the same tolerance, it is obvious that the downtrend of RMSE and
objective function is very slow when the MNT method is directly used for the sensor
position uncertainty condition. Using the two-stage MNT algorithm, the solution has
fast convergence speed with the same initial value, which reduces huge computation.
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Fig. 7 Comparison of RMSE of the proposed two-stage MNT method with the two-step WLS method and
the CRLB for near-field source located at (280, 325, 275) m with sensor position errors
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Fig. 8 Comparison of RMSE of the proposed two-stage MNT method with the two-step WLS method and
the CRLB for far-field source located at (2800, 3250, 2750) m with sensor position errors

6 Conclusion

In this paper, we present the MNT method for the TDOA source localization and
the two-stage MNT method for source localization with sensor position errors. The
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Fig. 9 Comparison of the convergence speed of the MNT and the two-stage MNT methods

regularization theory is introduced in the proposed methods to solve the instability of
the convergence problem of the iterative methods. Compared with the NTmethod, the
proposedmethods have superior capability ofmaking the iteration stably convergewith
bad initial values. Compared with the closed-form algorithms, the proposed methods
give much better location accuracy in large noises.
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