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Abstract
Recently, neural network-based deep learning methods have been popularly applied
to computer vision, speech signal processing and other pattern recognition areas.
Remarkable success has been demonstrated by using the deep learning approaches.
The purpose of this article is to provide a comprehensive survey for the neural network-
based deep learning approaches on acoustic event detection. Different deep learning-
based acoustic event detection approaches are investigated with an emphasis on both
strongly labeled and weakly labeled acoustic event detection systems. This paper also
discusses how deep learning methods benefit the acoustic event detection task and the
potential issues that need to be addressed for prospective real-world scenarios.
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1 Introduction

Acoustic event detection (AED), which determines both the types and the happening
times (beginning and end times) of different acoustic events, enables automatic systems
to obtain a better understanding of what is happening in an acoustic scene. It has been
applied to many applications including security [12,73,80], life assistance [36,61] and
human–computer interaction [78,94]. Due to the important and indispensable role of
AED, there has been an increasing research activity in this area [29,59,62,85]. Various
evaluation campaigns including CLEAR [75], DCASE 2013 [26], DCASE 2016 [83]
and DCASE 2017 [4] were organized to address the challenges in and to promote
research on AED.

TheAED task is typically treated as a frame-based classification or regression prob-
lemwith each frame corresponding to an acoustic event type and its continuous-valued
localizations. Frame-wise classification of acoustic events is applied over sliding time
windows with statistical models to represent the acoustic features. A straightforward
idea is to use conventional machine learning algorithms, such as GMMs [93] to model
the means and variances of the acoustic features for each event type. During testing,
the likelihoods from GMMs are summed across time and the type with the highest
probability is chosen as the final detected result. Other statistical machine learning
algorithms such as hidden Markov models (HMMs) [72,90], support vector machines
(SVMs) [57,79] and nonnegative matrix factorization (NMF) [19,40] are also applied
to perform the classification task. The non-speech sounds were also detected using the
fuzzy integral (FI) [77], which have shown comparable results to the high performing
SVM feature-level fusion in [77]. In [62], the authors proposed a technique for the
joint detection and localization of non-overlapping acoustic events using random for-
est (RF). Multivariable random forest regressors are learned for each event category
to map each frame to continuously estimate the onset and offset time of the events.
Heittola et al. [30] proposed two iterative approaches based on the expectation maxi-
mum (EM) algorithm [91] to select the most likely stream to contain the target sound:
one by always selecting the most likely stream and the other by gradually eliminating
the most unlikely streams from the training data.

Although some improvements have been made using the aforementioned learning
algorithms, these conventional machine learning techniques show a limited power
when the AED task becomes more challenging if the acoustic events are polyphonic
or strongly labeled annotations (both the presence and the localizations of the acoustic
events are given in the training process) are not available. Inspired by the successful
applications of deep learning techniques in computer vision, speech signal and natural
language processing, the AED task is also popularly performed using different neural
network-based deep learning approaches.

Neural network-based deep learning algorithms are originated in the 1940s leading
to the first wave of artificial intelligence (AI) algorithms with the creation of the
single-layer perceptron (SLP) and the multilayer perceptron (MLP) [66,67]. In [32],
a new layer-wise greedy learning-based training method was proposed for the deep
neural network (DNN). Hidden layers in a network are pretrained one layer at a time
using the unsupervised learning approach, and this considerably helps to accelerate
subsequent supervised learning through the back-propagation algorithm [23,46]. A
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convolutional neural network (CNN)-based approach achieved a new error record of
0.39% on the handwriting digits database MNIST in [64], which marks a significant
progress in performance since the classical prototype LeNet-5 [47]. In [33], the authors
proposed the auto-encoders (AEs) to pretrain the feed-forward neural network (FNN).
Afterward, variations of AEs including the de-noising auto-encoder (DAE) [81,82],
the sparse auto-encoder (SAE) [50] and the variational auto-encoder (VAE) [38] which
was proposed to enhance the ability of feature learning and representation. However,
theVAE introduces potentially restrictive assumptions about the approximate posterior
distribution making the generated data blurry [37]. Generative adversarial networks
(GANs) were proposed to offer a distinct approach by focusing on the game-theoretic
formulation while training the generative model [27] and to produce high-quality
images [18,65]. GANs [31,58,65,71] have been popularly adopted to generate training
data in [6,55,92].

The aforementioned neural network-based deep learning approaches have shown
their superior performances in AED tasks. In [9], the DNN was used to perform
the polyphonic acoustic event detection task. The deep neural network-based system
outperformed the conventional learningmethodusingnonnegativematrix factorization
at the preprocessing stage and HMM as a classifier. The recurrent neural network
(RNN) was applied to the AED system in [49,60] to capture the context information
deep in time. In [60], the authors presented a technique based on the bidirectional long
short-term memory (BLSTM). The multi-label BLSTM was trained to map acoustic
features of multiple classes to binary activity indicators of each event class. In [34],
the authors presented a polyphonic AED system with a multi-model system. In that
work, one DNNwas used to detect acoustic event of “car” and five bidirectional gated
recurrent units–recurrent neural networks (BGRU-RNN) were used to detect other
acoustic events. The CNN [48] was used to extract the high-level features that are
invariant to local spectral and temporal variations in [35]. Authors in [4,59] combined
the RNN and CNN by adopting the convolutional recurrent neural network (CRNN)
to model the audio features and achieved the state-of-the-art performance.

Tables 1 and 2 comprehensively list the recent works with conventional machine
learning- and neural network-based deep learning approaches applied to the AED.

Table 1 Some conventional machine learning approaches applied to the acoustic event detection

References Feature Modeling Metric performance

Phan et al. [62] Super-frame vector Random forest Error rate 0.3979

Xia et al. [85] Super-frame vector Random forest Error rate 0.2490

Zhuang et al. [93] Learned features using UBM GMM F-score 6.0%

Vuegen et al. [84] MFCC GMM F-score 48.0%

Schröder et al. [72] Gabor filter bank HMM F-score 73.0%

Diment et al. [21] MFCC HMM F-score 61.6%

Nogueira et al. [57] MFCC SVM F-score 32.5%

Komatsu et al. [40] Event-wise aggregated activation NMF F-score 60.0%

Gemmeke et al. [25] Mel-magnitude spectrograms NMF F-score 31.9%

In this table, different acoustic features, modeling approaches, metrics and performances are shown
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Table 2 Neural network-based deep learning approaches in acoustic event detection

References Feature Modeling Metric performance

Cakir et al. [9] Mel-band energy DNN Accuracy 63.8%

Dai Wei et al. [14] MFCC DNN F-score 3.6%

Laffitte et al. [44] MFCC DNN Error rate 6.2%

Kong et al. [41] Mel-band energy DNN F-score 36.3%

Xia et al. [86] Mel-band energy DNN F-score 57.3%

Xia et al. [87] Mel-band energy DNN F-score 32.7%

Takahashi et al. [68] Mel-band energy CNN Model accuracy 92.8%

Chou et al. [11] Mel-spectrogram CNN F-score 32.8%

Su et al. [76] Mel-spectrogram CNN Clip accuracy 51.73%

Jeong et al. [35] Mel-spectrogram CNN F-score 67%

Meyer et al. [51] TF representation CNN Accuracy 85.1%

Xia et al. [88] Mel-band energy CNN F-score 45.3%

Lu et al. [49] MFCC+Pitch+LMS Bi-GRU Error rate 0.79

Parascandolo et al. [60] Raw audio BLSTM F-score 65.5%

Kim et al. [39] Multi-channel features GRU F-score 50.3%

Cakir et al. [8] Mel-band energy CRNN ROC curve 88.5%

Adavanne et al. [4] Binaural features CRNN F-score 42.9%

Adavanne et al. [5] Mel-band energy CRNN F-score 43.3%

Adavanne et al. [2] Spatial features CRNN Error rate 0.43

Cakir et al. [10] TF representation CRNN F-score 61.0%

In this table, different acoustic features, scoring strategies, modeling approaches, metrics and performances
are shown

In Tables 1 and 2, different evaluation datasets and metrics were adopted. In order
to highlight the advantages of the deep learning approaches over the conventional
machine learning techniques, Table 3 lists selected top systems based on the unified
evaluation databases in DCASE Challenges from the years 2013 to 2017. The first
block in Table 3 shows the system performances using the conventional machine learn-
ing approaches. It is worth noting that the deep learning approaches were not applied
to the AED system in 2013. The second block shows that the neural network-based
deep learning approaches outperformed the conventionalmachine learning techniques.
The detection performance was pushed further with improved error rates using the
deep learning approaches in 2017. The number of deep learning-based systems also
increased dramatically from 0 in 2013 to 33 in 2017, which dominated the 36 sub-
mitted systems. To show the computational load of different training approaches,
Table 4 shows the detailed information of some typical neural network structures and
the corresponding detection error rates when the Mel-band energy is adopted as the
acoustic feature. The aforementioned trend motivated us to write this survey of neural
network-based deep learning approaches applied to the acoustic event detection task.

The purpose of this paper is to provide a comprehensive survey for the neural
network-based deep learning approaches on the acoustic event detection task. Two
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Table 3 Selected top systems using conventional machine learning and deep learning approaches on the
DCASE Challenge evaluation databases from the years 2013 to 2017

References Feature Modeling F-score (%) Error rate

Vuegen et al. [84] MFCC GMM 24.6 1.76

Niessen et al. [56] MFCC+ZCR+LPC RF 33.5 1.58

Gemmeke et al. [25] Mel-spectrogram NMF 13.2 1.56

Schröder et al. [72] Gabor filter HMM 41.5 1.51

Gorin et al. [28] Mel-band energy CNN 41.1 0.97

Elizalde et al. [22] MFCC RF 33.6 0.96

Kong et al. [41] MFCC DNN 36.3 0.95

Lai et al. [43] MFCC Fusion 34.5 0.92

Zoehrer et al. [43] spectrogram GRNN 39.6 0.90

Adavanne et al. [1] Mel-band energy RNN 47.8 0.80

Heittola et al. [53] Mel-band energy DNN 42.8 0.94

Lu et al. [49] MFCC RNN 39.6 0.83

Meyer et al. [35] Mel-band energy CNN 40.8 0.81

Adavanne et al. [4] Mel-band energy CRNN 41.7 0.79

A higher F-score and a lower error rate correspond to a better system. The systems are sorted based on the
error rate

Table 4 Some typical neural network structures and the corresponding detection error rates in acoustic
event detection

Reference Neural network structure Size Error rate

Gorin et al. [28] Convolution layer 80 filters (6 × 60) 0.97

Convolutional layer 80 filters (1 × 3)

Feed-forward layer 1024 hidden units

Feed-forward layer 1024 hidden units

Heittola et al. [53] Feed-forward layer 50 hidden units 0.94

Feed-forward layer 50 hidden units

Adavanne et al. [1] Recurrent layer (LSTM) 32 hidden units 0.80

Recurrent layer (LSTM) 32 hidden units

Meyer et al. [35] 6 convolution layers 64 filters (1 × 3) 0.81

Adavanne et al. [4] 3 convolution layers 128 filters (3 × 3) 0.79

2 recurrent layers 32 hidden units)

types of acoustic event detection, namely the strongly and the weakly labeled acoustic
event detection, are surveyed in this paper. Our survey is different to that of [15] by
including works on the important weakly labeled acoustic event detection problem
(where only the presence of acoustic events is given in the training process) which is
one of the new tasks for the DCASE Challenge 2017.

This survey is organized as follows. Some common acoustic event databases and
evaluation metrics are introduced in Sect. 2. In Sect. 3, the strongly labeled acoustic
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event detection is first introduced. Afterward, applications of some state-of-art deep
learning approaches on the strongly labeled acoustic event detection are elaborated.
In Sect. 4, we introduce the weakly labeled acoustic event detection task and the
recent advances in that area. The reasons why neural network-based deep learning
approaches benefit the AED task and the issues to be studied further are given in
Sect. 5. We conclude the paper in Sect. 6.

2 Metrics and Databases in Acoustic Event Detection

2.1 EvaluationMetrics

There are two ways of evaluation in the system performance, namely the segment-
based and event-based statics [54] when the system output and the ground truth label
are compared in fixed length intervals or at event instance level.

– Segment-based metric For segment-based metric, the predicted active acoustic
events are determined in a fixed short time interval with the true positive (tp), false
positive ( f p), false negative ( f n) and true negative (tn) defined, respectively. The
true positive means that the acoustic event exists in both the system output and
the ground truth label simultaneously. The false positive denotes that the system
determines the acoustic event as active, while the true label for the acoustic event is
inactive. The false negativemeans the system fails to detect the acoustic eventwhen
the reference indicates the acoustic event to be active. The true negative means the
system and the ground truth both determine the acoustic event as inactive.

– Event-based metrics For event-based evaluation metric, the system output and the
ground true label are compared event by event. Similarly, the true positive, false
positive, false negative and true negative are defined. All these mentioned statics
are calculated based on the fact whether the system output which has a temporal
position overlaps with the temporal position in the ground true label. A tolerance
with respect to the ground true label is usually allowed.

The F-score and the error rate (ER) are commonly adopted as the final evaluation
metrics when the segment-based and event-based statics are available.

– F-score
Based on the segment-based and event-based statics, the segment-based and event-
based F-score can be calculated as:

F = 2 × P × R

P + R
(1)

where the P and R denote the precision and recall accuracy, respectively. The P
and R are expressed as:

P = tp

tp + f p

R = tp

tp + f n

(2)
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Table 5 Some commonly adopted acoustic event detection databases

Reference Name Event classes Event count

Adavanne et al. [4] TUT Sound Events 2017 6 729

Beltrán et al. [7] Sound Events 20 1367

Cotton et al. [13] FBK-IRST isolated database 16 576

Gemmeke et al. [24] AudioSet 632 2, 084, 320

Piczak et al. [63] ESC-50 50 2000

Salamon et al. [69] Urban-sound 10 3075

Salamon et al. [70] Urban-sed 10 50, 000

Xia et al. [85] UPC-TALP isolated database 14 1026

– Error rate
The error rate measures the number of prediction errors regarding the insertions
(I ), the deletions (D) and the substitutions (S). The errors are calculated segment
by segment. In a segment seg, the number of insertions I (seg) is the number of
incorrect system outputs, the number of deletions D(seg) is the number of ground
truth events that are not correctly identified, and the number of substitutions S(seg)
means the number of acoustic events for which some other acoustic events are the
outputs rather than the correct acoustic events. The error rate can be calculated
as:

ER =
∑seg=S

seg=1 I (seg) + ∑seg=S
seg=1 D(seg) + ∑seg=S

seg=1 S(seg)

N (seg)
(3)

where seg denotes the segth segment, N (seg) is the number acoustic events anno-
tated as active in the segment seg, and the I (seg), D(seg) and S(seg) can be
expressed as:

I (seg) = max(0, f p(seg) − f n(seg))

D(seg) = max(0, f n(seg) − f p(seg))

S(seg) = min( f n(seg), f p(seg))

(4)

2.2 Datasets

In this part, several commonly used acoustic event detection databases are listed in
Table 5. In Table 5, the number of acoustic event classes, the acoustic event segments
and the corresponding references are shown. A detailed description of the acoustic
event detection databases can be referred in.1

1 http://www.cs.tut.fi/~heittolt/datasets.

http://www.cs.tut.fi/~heittolt/datasets
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Fig. 1 The flowchart of the
DNN-based strongly labeled
acoustic event detection system
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3 Strongly Labeled Acoustic Event Detection

For strongly labeled acoustic event detection, the acoustic event types and the event
localizations are annotated in the training set. The task is to detect the acoustic event
types and the happening times given an audio stream during testing.

The inputs of the AED system are the acoustic featuresXt and the acoustic features
of each frame are associated with one output label vector, which can be written in
binary format as:

yt = {yt,1, yt,2, . . . , tt,e, . . . , tt,E } (5)

where yt,e is equal to 1 when the eth event type is active at time index t . Otherwise,
yt,e is set to 0. The E is the total number of acoustic event types of interest.

The training space Ωstrong for the strongly labeled AED system training can be
expressed as:

Ωstrong = {Xt , yt } (6)

Figure 1 shows the general flowchart of the DNN-based strongly labeled AED
system. As shown in Fig. 1, each frame corresponds to one input feature vector Xt and
one output training label yt . The neural network classifier is trained in a supervised
way and outputs the continuous probabilities representing the probability that each
frame belongs to the event classes of interest. The binary cross-entropy function [17]
is adopted as the training criteria, which can be expressed as:

L = −q × log(p) − (1 − q) × log(1 − p) (7)

where q is the target probability from the training database and p is the estimated
probability that the current frame belongs to a certain event type. The q is equal to 1 if
the training vector corresponds to the ground truth label and p is the sigmoidal output
of the deep neural network.

During testing, with the trained acousticmodel and the given test audio stream, each
time index t will correspond to E output probability predictions, which are expressed
as:

ŷt = {ŷt,1, ŷt,2, . . . , ŷt,e, . . . , ŷt,E } (8)
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Fig. 2 The training process of
the CNN-based strongly labeled
acoustic event detection system
(Figure extracted from [88])
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where ŷt,e represents the probability that the current frame t belongs to the eth event
type. Afterward, a global threshold τ , which is empirically set, is applied to ŷt . Event
classes with a higher probability than the global threshold are detected as the final
active acoustic events.

3.1 CNN in Strongly Labeled AED

The flowchart in Fig. 1 can be applied to the CNN-based strongly labeled AED when
the DNN classifier is replaced by the CNN classifier in the training process. Figure 2
shows the training process of the CNN-based strongly labeled AED system. The
convolutional neural network model structure includes convolutional layers, max-
pooling layers, a flattening layer and a sigmoid output layer. The convolution operation
performs the high-level feature extraction. The sub-sampling operation is performed,
and max-pooling operations are carried out over the entire sequence length. Typically,
the Relu or the sigmoid activation function is used for the kernels. As there may
be more than one acoustic event happening at the same time index, a sigmoid layer
composed of fully connected neurons is used. The binary cross-entropy is adopted as
the loss function in training.

3.2 RNN in Strongly Labeled AED

The same flowchart in Fig. 3 can be applied to the RNN-based strongly labeled AED
when theDNN-based classifier is replacedwith the RNNclassifier. TheRNNclassifier
is adopted in order to utilize the long context information.
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Fig. 3 Training process for the RNN-based strongly labeled acoustic event detection. The current hidden
layer output depends on both the input and the previous hidden neurons, which effectively utilizes the long
context information

Figure 3 shows the basic concept of the RNN training process. As shown in Fig. 3,
the current hidden layer depends on both the input and the previous hidden neurons.
Multiple RNNhidden units are stacked on top of each other. The hidden state sequence
of the lower layer can be computed as:

hlt = H(hl−1
t , hlt−1) (1 ≤ l ≤ L) (9)

Here, hl becomes the first input layers when l equals to 0. The output of the RNN is
expressed as:

o = Wh,yh
L
T + by (10)

where Wh,y , hLT and by are the weight parameters between the output layer and the
last hidden layer, the last hidden layer output and the bias, respectively. Afterward,
the o is presented to a sigmoid layer to get the predicted probability ŷt .
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Fig. 4 Training process of the
CRNN-based strongly labeled
AED. The extracted acoustic
features of consecutive frames
are fed to the convolutional
layers. Stacked outputs of the
convolutional layers are fed to
the recurrent network,
activations of which act as the
inputs to the feed-forward layers
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3.3 CRNN in Strongly Labeled AED

Figure 4 shows the training process of the CRNN-based strongly labeled AED system.
The testing process is the same as testing process in Fig. 1. From Fig. 4, there are three
function blocks used for the training, namely the convolution layer block, the recurrent
layer block and the feed-forward layer block. The convolution layer block extracts the
high-level features with the acoustic features of consecutive frames as the input. The
stacked features from the convolutional and max-pooling layers are then fed to the
recurrent layer block. The feed-forward layer block with sigmoid activation function
is used for the classification as the output layer, and the cross-entropy is adopted as
the loss function, which is expressed as:

JCE (W, b) = −
∑

t

∑

e

log vL
e,t (11)

Here vL
e,t is the probability estimated from the neural network PNN (e|Xt ), which is

the RNN output in the training process.
During testing, with the trained acoustic neural network model and the given test

audio stream, each time index t will correspond to E output probabilities which is
expressed as:

ŷt = {ŷt,1, ŷt,2, . . . , ŷt,e, . . . , ŷt,E } (12)

where ŷt,e represents the probability that the current frame t belongs to the eth event
type.
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4 Weakly Labeled Acoustic Event Detection

The weakly labeled acoustic event detection research is a recent hot topic area [4,74],
and only the presence of the acoustic events is annotated in each audio segment which
makes the acoustic event detection more challenging. Let R = {Rs : s = 1 → N } be
the audio recording collections and EVs = {EVs1, EVs2, . . . , EVse, . . . , EVsE } be
the corresponding acoustic events presented in the sth audio recording. Here the N and
E denote the number of audio recordings and event types of interest. For each Rs , the
presence of acoustic events EVs is annotated but without annotating the localization
of each event in Rs (weak label for each acoustic event).

The AED system inputs are the acoustic features of one certain audio stream Xs ,
and the training outputs are the recording-wise-based labelEVs rather than the frame-
wise-based labels yt . The training space Ωweak for the strongly labeled AED system
can be expressed as:

Ωweak = {Xs,EVs} (13)

Here s is the audio recording index and Xs is the acoustic feature vector for the sth
audio recording. The EVs are the training output labels represented as binary vectors.

Although the localization of the active acoustic events is not known in the training
set for the weakly labeled AED, the task of the weakly labeled AED is exactly the
same as the strongly labeled acoustic events which is to predict both the types and the
localizations of the active acoustic events in the test audio stream.

Since the happening times of each present acoustic events are not known in the
training set, it is impossible to use the audio segments that contain only the events
of interest to train the acoustic models in a supervised way. In this section, how to
train the acoustic models using the weakly labeled data to perform the acoustic event
detection task will be elaborated.

4.1 Multiple Instance Learning forWeakly Labeled AED

One common technique to perform the weakly labeled AED is to treat the task as a
multiple instance learning problem [20,42], in which labels are known for a collection
of instances.

4.1.1 Multiple Instance Learning

Multiple instance learning is based on bag–label pairs rather than the instance–label
pairs. Here, the “bag” is a collection of instances. Two types of bags, namely the
positive bag and the negative bag, are used in the training process. The positive bags
contain at least one positive instance which belongs to the target class to be classified.
The negative bags are only collections of negative instances.

Let the bag–label pairs be (Bs,Ys), where Bs and Ys denote the sth bag and the
assigned label for this bag. The Bs contain multiple instances as j where j is from 1
to ns and ns is the number of instances in the Bs . The bag Bs can be expressed as:

Bs = {as j : j = 1 → ns} (14)
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Fig. 5 The weakly labeled AED system based on the multiple instance learning

If all the instances in Bs are negative, the label for Bs is -1. The label for Bs is 1 if
there is at least one positive instances in Bs . The label Ys for the Bs can be expressed
as:

Ys = max
1≤ j≤ns

{ys j }

where ys j denotes the actual label for the j th instance in the sth bag.

4.1.2 Multiple Instance Learning for Weakly Labeled AED

Figure 5 shows the general flowchart of the multiple instance learning-based weakly
labeled AED. As shown in Fig. 5, the bag construction, model training and the event
localization constitute the AED system.

– Bag construction
Toperform theweakly labeledAED, each audio recording Rs and the label EVs can
be treated as one bag and the corresponding bag label. The audio recording Rs is
segmented into a number of short sub-segments {Rs,1, Rs,2, . . . , Rs,k, . . . , Rs,K }
where k and K denote the kth audio segment and the total number of instances in
the bag.

– Model training
In the training process, the conventional instance-level-based loss function is
replaced by the multiple instance learning-based loss function due to the fact that
only the bag-level labels are provided in the training set. The multiple instance
learning-based loss function can be expressed as:

Jloss =
s=S∑

s=1

Js,loss (15)
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The Js,loss is the loss of the bag Bs . The Js,loss is computed as:

Js,loss = 1

2

(

max
1≤ j≤ns

os, j − ds

)2

where os, j is the neural network output for the j th instance in the sth bag and the
ds is the manually annotated bag label for the sth bag.
It is worthy noting that the weight parameters are updated after all instances in
bag have been fed forward to the network. The process is then continued until the
overall divergence falls to a desired tolerance or the maximum iteration has been
reached. By training the acoustic models based on the bag–label pairs, the trained
model outputs both the instance-wise probabilities os j for each instance in the
bag and the bag labels if maximal-scoring strategy is applied to the instance-wise
probabilities.

– Event localization
Once the training is complete, the trained models can classify the individual
instances by outputting the instance probability os, j , which means the constructed
system can not only detect the presence of an event in a test recording but also in
individual segments. In order to perform the localization task, the testing recording
RT is first split into K short sub-segments {RT1, RT2, . . . , RTK }. The localiza-
tion of the sub-segment RTk is between (k − 1) × l

′
and (k − 1) × l

′ + l where
l is the length of the segment in seconds and l

′
is the overlapping length with

previous segment. If one acoustic event is detected in RTk , then the localization
of the detected acoustic event is (k − 1) × l

′
and (k − 1) × l

′ + l.

4.2 Variational Deep Learning Approaches inWeakly Labeled AED

Deep learning approaches from the strongly labeled AED can also be applied to the
weakly labeled AED with different scoring or training strategies.

– Scoring Strategy
In [45], the authors used a global-input CNNmodel and the separated-input model
to perform the weakly labeled AED. The global-input CNN model takes the spec-
trogram as the input and the bag labels as the output. The separated-input models
are trained using n-second segmented waveform as the input. All the short sub-
segments that make up the audio recording Rs are assigned with the same label
(bag label). As the global-input CNN model is expected to have better perfor-
mance than the separated-input models by using the correct label, predictions of
the global-input model are spread evenly and then subsequently averaged with the
predictions of other separated-input models. The work of [16] also proposed to use
the sub-segments of each audio recording to train the separated acoustic models.

– Training Strategy
In [89], the authors proposed to a gated convolutional neural network (GCRNN)
in the weakly labeled AED. In that work, in order to get the localization infor-
mation, an additional feed-forward neural network with softmax as the activation
function is introduced. The pooling operation was only applied to the frequency
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domain rather than the time domain to keep the time resolution of the whole audio
spectrogram. Authors in [3] also adopted the same strategy by performing the
max-pooling along the frequency domain to preserve the input time resolution.
During training, the weak labels help with controlling the learning of strong labels
by weighting the loss at the weak and the strong outputs differently.

5 Discussions

The recent advances in neural network-based deep learning for AED are reviewed
in this paper. The introduction of neural network-based deep learning approaches
undoubtedly has boosted the acoustic event detection performance. In this section, we
briefly discuss the key reasons behind the success of the neural network-based deep
learning methods and several potential issues for further consideration in the area of
acoustic event detection.

5.1 Benefits of Deep Learning

Here, we list three main advantages of the neural network-based deep learning in AED
as follows:

– Effective Representations Neural network-based deep learning approaches in
acoustic event detection can learn more comprehensive and informative infor-
mation from the raw data, which greatly benefits the acoustic event detection
when the various event classes and the noise-like characteristic of the acoustic
events challenge the acoustic event detection performance. Intraclass variations
and spectral-temporal properties across classes pose challenges to acoustic event
detection. The deep learning approaches effectively deal with the aforementioned
challenges. The state-of-the-art acoustic event detection system [59] adopted the
CNN to extract the high-level information from the spectrogram informationwith a
subsequent recurrent neural network to utilize the long context information. Due to
the effective learning and representation, the neural network-based deep learning
approaches greatly improve and extend the frontier of the acoustic event detection.

– Powerful Relationship Modeling With the various types of activation functions,
neural networks have the ability to model nonlinear and complicated relationships
between inputs and outputs. This is a great advantage for dealing with natural
signals sampled from real-world scenarios and for predicting unseen data. In the
real-world acoustic event detection, some acoustic events sound similar but are
actually different, such as the “car” and “bus”. The deep learning approaches can
successfully learn the inherent relationship between different event classes rather
than training the acoustic models based on one specific event class as adopted
in the conventional machine learning methods. That is one key reason why the
deep learning approaches are achieving higher detection performance than the
conventional machine learning methods, such as GMM and SVM in the area of
acoustic event detection in recent campaigns [52]

– Flexible Setting ofNetworksNeural network-based deep learning approaches can
be applied to the AED task using a flexible architecture with diverse combinations
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of different neural networks. The deep learning approaches in the strongly labeled
acoustic event detection system where the training process is instance–label pair-
based canbeflexibly transferred to theweakly labeled acoustic event detectionwith
some variations. The works [3,89] applied the CRNN network from the strongly
labeled acoustic event detection to the weakly labeled acoustic event detection
by only pooling the frequency domain and keeping the time resolution fixed thus
performing the detection task when the annotations are weakly labeled. Authors
in [16,45] similarly adopted the CNN structures from the strongly labeled acoustic
event detection to perform the task of weakly labeled acoustic event detection by
splitting the audio recordings into multiple segments with the global-input and
separated-input models trained, respectively.

5.2 Future Issues

Although the neural network-based deep learning approaches have been successfully
applied to the acoustic event detection task, there are still some issues that need to be
resolved in order to further extend the frontier of the acoustic event detection. Here,
we list two main challenges facing the deep learning-based acoustic event detection
as following:

– Weakly Labeled and Imbalanced Training Data A powerful neural network is
always associated with a large amount of training data. However, in the area of
acoustic event detection, the audio recordings can be obtained easily while the
annotation process is always expensive especially when the precise localizations
of the polyphonic acoustic events need to be labeled, which leads to the weakly
labeled data problem. The other problem is the imbalanced training data. For some
acoustic events, such as “break squeaking”, the audio collection process is not as
easy as the collection process of common events such as “people speaking” and
“car”. How to effectively deal with the limited and imbalanced training data using
the neural network-based deep learning approaches are facing the acoustic event
detection.

– Hyper-parameters and Architectures High-performance acoustic models are
associated with good neural network structures and fine-tuning strategies. The
deep learning models are influenced by various aspects, such as network topology,
training method and hyper-parameters. In the area of acoustic event detection, the
large amount of event classes and the uncertainties when different acoustic events
overlap with each other require the deep learning approaches to deal with the
hyper-parameters and the neural network structures in order to avoid the general
traps, such as the over-fitting or local optimum problem.

6 Conclusion

In this paper, the recent neural network-based deep learning approaches on the acoustic
event detection task are reviewed. Two types of acoustic event detection, namely
the strongly labeled acoustic event detection and the weakly labeled acoustic event
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detection, are first introduced with subsequent elaboration on different deep learning
approaches applied to these two acoustic event detection tasks.

Neural network-based deep learning approaches have demonstrated remarkable
success in acoustic event detection task and outperformed other conventional machine
learning techniques. Meanwhile, the advances in the hardware equipments, such
as high-performance GPUs, also accelerate the development of the deep learning
approaches in acoustic event detection task. However, there are still many challenges,
such as the limited training data and the hyper-parameter fine-tuning, facing the deep
learning-based acoustic event detection.
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