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Abstract
In the context of automatic speech recognition (ASR), the power spectrum is generally
warped to theMel-scale during front-end speechparameterization.This ismotivatedby
the fact that humanperception of sound is nonlinear. TheMel-filterbank provides better
resolution for low-frequency contents, while a greater degree of averaging happens in
the high-frequency range. The work presented in this paper aims at studying the role
of linear, Mel and inverse-Mel-filterbanks in the context of ASR. When speech data
are from high-pitched speakers like children, there is a significant amount of relevant
information in the high-frequency region. Hence, down-sampling the information in
that range through Mel-filterbank reduces the recognition performance. On the other
hand, employing inverse-Mel or linear-filterbanks is expected to be more effective in
such cases. The same has been experimentally validated in this work. For that purpose,
an ASR system is developed on adults’ speech and tested using data from adult as well
as child speakers. Significantly improved recognition rates are noted for children’s as
well adult females’ speech when linear or inverse-Mel-filterbank is used. The use of
linear filters results in a relative improvement of 21% over the baseline. To further
boost the performance, vocal-tract length normalization, explicit pitch scaling and
pitch-adaptive spectral estimation are also explored on top of linear filterbank.
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1 Introduction

The task of developing an automatic speech recognition (ASR) system can be bro-
ken down into three major components, namely front-end speech parameterization,
training acoustic models and language modeling. In this paper, the primary focus is
on the first component, i.e., front-end speech parameterization. The basic motivation
for front-end speech parameterization is to derive a compact representation for raw
speech waveform after discarding the irrelevant information. In the context of ASR,
the speaker- and environment-dependent acoustic attributes need to be suppressed.
Consequently, the ASR system becomes speaker and ambiance independent. In addi-
tion to that, since the raw speech data are represented in a compact manner, the overall
complexities of training system parameters as well as network search and decoding
are reduced significantly.

A number of techniques have been proposed over the years for extracting front-
end features from raw speech data. Among those, the one based on Mel-frequency
cepstral coefficients (MFCC) [7] has been the dominant one. During MFCC feature
extraction process, the short-time magnitude/power spectra of the frame of speech
under analysis are warped to the Mel-scale using a filterbank. Mel-scale warping is
motivated by the findings of psychoacoustics that suggest that human perception of
different frequency components is nonlinear. In other words, the use of Mel-filterbank
is to mimic the human perception mechanism. The Mel-filterbank provides better
resolution for low-frequency contents, while a greater degree of averaging happens
in the high-frequency range. As a result, the spectral information present in the high-
frequency region of speech is down-sampled by Mel-scale warping. Since the speaker
characteristics are predominantly reflected in the high-frequency components [21,
40], the use of Mel-filterbank was observed to degrade the performance of automatic
speaker recognition system. Motivated by this fact, the use of linear filterbank was
proposed in [40]. On other hand, Mel-scale warping helps in the case of ASR since
the speaker characteristics get suppressed to a large extent.

In this paper, the relative importance of linear and Mel-filterbanks in the context of
ASR has been studied. For sake of completeness, the role of inverse-Mel-filterbank
is also explored. This study is motivated by the fact that, in the case of children’s
speech, a significant amount of relevant spectral information is present in the higher-
frequency region [3,6,25,30]. Therefore, wide-band speech data (sampled at 16 kHz
rate) are preferred in the case of children’s ASR. As mentioned earlier, the resolution
of Mel-filterbank decreases as the frequency is increased. Hence, down-sampling the
spectra is not beneficial in those cases where the speech data are from high-pitched
child speakers. This is also true in the case of adult females as observed in thiswork.On
the contrary, providing equal resolution to all the frequencies should be the preferred
choice. In other words, using linear filterbank will be more effective when the speech
data are from high-pitched speakers.

In order verify these claims, separate set of front-end features were extracted by
applying Mel, inverse-Mel and linear filterbanks. Next, using each type of feature,
separate ASR systems ware trained on adults’ speech data from both male and female
speakers. The ASR systems were evaluated using two different test sets. The first test
set consisted of speech data from adult male and female speakers, while the second
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one was comprised of data from children. To get better insight, the adults’ speech
test set was further split into two parts based on the gender of the speaker. The use
of Mel-filterbank was noted to be more effective when the test speech data were
from adult male speakers. In those cases when speech data were from adult females or
children, employing linear or inverse-Mel-filterbankwasobserved tobemore effective.
In order to further boost confidence in those observations, linear frequency warping
through vocal-tract length normalization (VTLN) [20] and explicit pitch scaling were
also explored to suppress the ill effects induced by other speaker-dependent acoustic
mismatch factors. In the context of children’s speech recognition, use ofVTLN [31,32]
or explicit pitch scaling is reported to be very effective [1,15,16]. Even after the
inclusion of VTLN and pitch scaling, the use of linear filterbank was noted to be
more effective when the test data were from high-pitched speakers (adult females and
children).

Some of the recent works have shown that pitch-induced acoustic mismatch also
degrades the recognition when children’s speech is transcribed using ASR system
trained on adults’ speech [11,12]. In the case of MFCC features, the pitch-induced
spectral distortions arise due to insufficient smoothing of pitch harmonics despite the
use of low-time liftering [13,38]. In such mismatched scenario, spectral smoothing is
reported to be highly effective [10,37]. Sufficient spectral smoothing can be achieved
by reducing the length of the low-time lifter as shown in [13] or by low-rank fea-
ture projection as explored in [34,36]. However, the recognition rates for the adults’
speech got severely deteriorated due loss of relevant spectral information when cep-
stral truncation or low-rank projection was employed. Recently, a front-end speech
parameterization technique exploiting TANDEM-STRAIGHT-based spectral smooth-
ing was proposed for robust ASR [35]. The resulting front-end features, referred to
as TS-MFCC, were reported to enhance the recognition performance not only for
children’s speech but also for adults’. Motivated by the effectiveness of TS-MFCC in
ASR, the role of employing linear filterbank along with TANDEM-STRAIGHT-based
spectral smoothing has also been studied in this paper. When linear filterbank is used
in place of Mel-filterbank, the recognition performance is observed to improve with
respect to high-pitch speakers.

The rest of this paper is organized as follows: In Sect. 2, motivation for studying
the role of linear and inverse-Mel-filterbank in ASR is discussed. In Sect. 3, the
experimental evaluations demonstrating the effectiveness of linear and inverse-Mel-
filterbanks are presented. The effect of combining pitch-adaptive spectral estimation
based on TANDEM-STRAIGHT and linear filterbank is studied in Sect. 4. Finally,
the paper is concluded in Sect. 5.

2 Motivation for Studying the Role of Filterbanks in ASR

As mentioned earlier, the MFCC features are one of the most dominant front-end
features in the context of ASR [39]. In order to make the following discussion more
complete, we have first briefly described the MFCC feature extraction process once
again. Given the raw speech data, the steps involved in the extraction ofMFCC features
are as follows [7]: Speech signal is first processed through a pre-emphasis filter in order
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Fig. 1 Log-compressed power
spectrum corresponding to the
central portion of a voiced frame
of speech from high-pitched
child speaker. The 40-channel
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to emphasize the higher-frequency components. Next, short-time frames of speech
signal are created using overlapping Hamming windows. Typically, the duration of
the analysis window is 20–30 ms with an overlap of 50%. This is followed by deriving
the frequencydomain representation for eachof the short-time frames.Discrete Fourier
transform (DFT) is used for this purpose. The phase information is discarded from the
resulting short-term spectrum. The magnitude or the power spectrum is then warped
to Mel-scale using a set of nonlinearly spaced filters. The Mel-filterbank is a set of
triangular Mel-weighted filters. Next, logarithmic compression is performed followed
by the application of discrete cosine transform (DCT) to derive a set of de-correlated
cepstral coefficients. Finally, a low-time liftering operation is performed to discard
the higher-order coefficients. In the context of ASR, only the first 13 coefficients are
retained and they are collectively known as MFCC features.

The primary idea behindwarping the linear frequencies toMel-scale is tomimic the
nonlinear behavior of human speech perception mechanism. The frequency resolution
of the Mel-filterbank decreases as one moves toward the high-frequency region [40].
This fact is evident form the spectral plots shown in Fig. 1 (top pane). The short-
time log-compressed power spectrum corresponding to the central portion of a voiced
frame of speech is plotted. The 40-channel Mel-filterbank is superimposed over the
spectrum. The speech data used for this analysis are from a high-pitched child speaker.
It is to note that wide-band speech data are used for all the analyses presented in this
paper. As clearly visible from the plots, the degree of averaging is more in the high-
frequency region. This behavior of Mel-filterbank has an added advantage that the



Circuits, Systems, and Signal Processing (2019) 38:4667–4682 4671

-80

-60

-40

-20

0
Adult Male Adult Male

0

2

4

6

8

Po
w

er
 (

dB
)

-80

-60

-40

-20

0
Adult Female Adult Female

Fr
eq

ue
nc

y 
(k

H
z)

0

2

4

6

8

(a) Frequency (kHz)

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8
-80

-60

-40

-20

0
Child Child

(b) Time (sec)

0.05 0.1 0.15 0.2

0.1 0.2 0.3 0.4

0.2 0.4 0.6
0

2

4

6

8

Fig. 2 a Power spectra for vowel/IY/extracted from the speech data belonging to adult male, adult female
and child speakers, respectively. Short-time frames corresponding to the central portion of the same vowel
were used for this analysis. b The corresponding spectrograms are shown

speaker-dependent acoustic attributes are smoothed out. This, in turn, is beneficial for
ASR task where speaker independence is highly desired.

When dealing with children’s speech or speech from high-pitched speakers like
adult females, the down-sampling of spectral information in high-frequency com-
ponents has a downside. As already stated, there is a significant amount of spectral
information in the higher-frequency region that is important for ASR. Earlier works
have shown that the formant frequencies are scaled up in the case of children’s
speech [9,19,29]. To demonstrate this characteristic of speech, the log-compressed
power spectra corresponding to the central portion of vowel/IY/along with the corre-
sponding spectrograms are plotted in Fig. 2. Scaling up of formant frequencies in the
case speech data from adult female and child is easily noticeable. At the same time,
the power is significantly high even in the 4–8 kHz frequency range. On the other
hand, the power in 4–8 kHz frequency range is very less when the data are from adult
male speaker. The spectral information in the high-frequency region should also be
effectively preserved in order to improve the recognition performance with respect to
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high-pitched speakers. Motivated by these observations and findings of earlier works
on children’s speech, the role of inverse-Mel and linear filterbanks are studied in this
paper.

The relation between linear frequency scale ( f in Hz) andMel-frequency scale (m)
is as follows:

m = 2595 log10

(
1 + f

700

)
. (1)

Generally, each filter in the filterbank is triangular in shape and with a peak response
equal to unity at the center frequency. The frequency response decreases linearly
toward zero when it reaches the center frequencies of the adjacent filters as shown in
Fig. 1 (top pane). The set of M filters can be designed using the following equation:

Hm(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k < f (m − 1)

2(k− f (m−1))
f (m)− f (m−1) , f (m − 1) ≤ k < f (m)

1, k = f (m)

2( f (m+1)−k)
f (m+1)− f (m)

, f (m) < k ≤ f (m + 1)

0, k > f (m + 1)

(2)

with m ranging from 0 to M − 1.
The inverse-Mel-scale is defined as the complement of Mel-scale [4,28]. The

inverse-Mel-filterbank is obtained simply by flipping the original Mel-filterbank
around the mid point, i.e., f = 4 kHz as shown in Fig. 1 (middle pane). Unlike
Mel-filterbank, better resolution is obtained in the higher-frequency region. This is
evident from the log-compressed power spectrum with inverse-Mel-filterbank super-
imposed over itwhich is shown in Fig. 1 (middle pane). The front-end features obtained
by replacing the Mel-filterbank with inverse-Mel-filterbank are referred to as inverse-
MFCC (IMFCC) in the remainder of this paper. The linear filterbank provides equal
resolution to all the frequency components, and the same is evident fromFig. 1 (bottom
pane). The front-end cepstral features obtained by using linear filterbank are called
linear-frequency cepstral coefficients (LFCC) in this work. In the following section,
we present the experimental evaluations demonstrating the relative effectiveness of
MFCC, IMFCC and LFCC features in the context of ASR.

3 Experimental Evaluations

The simulation studies performed for evaluating the relative effectiveness of MFCC,
IMFCC and LFCC features are presented in this section.
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3.1 Experimental Setup

3.1.1 Speech Corpora

The speech data used for training the ASR system were obtained from the British
English speech corpus WSJCAM0 [27]. The train set created from WSJCAM0 con-
sisted of 15.5 h of speech data from 92 adult speakers (both male and female). The
total number of utterances in the train set was 7852 with a total 132,778 words. In
order to evaluate the effectiveness of the explored front-end features, three different
test sets were created. The details of those test sets are as follows:

– AD-Set This test set was derived from the WSJCAM0 corpus and consisted of 0.6
h of speech from 20 adult male as well as female of speakers with a total of 5608
words.

– ADF-Set This test set was derived by splitting AD-Set and consisted of nearly 0.3
h of speech from 10 adult female speakers with a total of 2864 words.

– CH-Set For evaluating recognition performancewith respect to children’s speech, a
test set derived fromPF-STAR [2]BritishEnglish speech databasewas employed.
This test set consisted of 1.1 h of speech data from 60 child speakers with a total
of 5067 words. The age of the child speakers in this test set was in between 4 and
14 years.

The experimental studies reported in this paper were performed on wide-band speech
data (sampled at 16 kHz rate). The PF-STAR database is originally sampled at 22,050
samples per second, so down-sampling was done for consistency.

3.1.2 Front-End Feature Extraction

In order to extract the three kinds of front-end features, speech data were first high-
pass filtered with pre-emphasis factor being 0.97. Short-time frames were then created
using overlapping Hamming windows of length 20 ms with frame shift of 10 ms. For
MFCC, IMFCC as well as LFCC, 40-channel filterbank was used to extract the 13-
dimensional base features. Next, the base features were time-spliced by appending
4 frames to the left and to the right of the current analysis frame to it. The result-
ing 117-dimensional features vectors were then projected to 40 dimensional subspace
using linear discriminant analysis (LDA) and maximum-likelihood linear transfor-
mation (MLLT) to derive the final feature vectors. This was followed by application
of cepstral mean and variance normalization (CMVN) to all the front-end feature
kinds. In addition to CMVN, feature normalization was also performed using feature-
space maximum-likelihood linear regression (fMLLR) for boosting robustness toward
speaker-dependent variations [26].

3.1.3 ASR System Architecture

The ASR systems were developed on the 15.5 h adults’ speech data from the
WSJCAM0 speech corpus. The Kaldi speech recognition toolkit [24] was used for
ASR system development and evaluation. Context-dependent hidden Markov models
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(HMM) were used in this work. Decision tree-based state tying was performed to fix
the maximum number of tied-states (senones) at 2000. Observation densities for the
HMM states were modeled using deep neural networks (DNN) [5,14]. A number of
recent works have shown that acoustic modeling based onDNN-HMM framework can
significantly improve children’s speech recognition [22,23,31–33]. Prior to learning
the DNN parameters, the fMLLR-normalized feature vectors were time-spliced once
more considering a context size of 9 frames. The number of hidden layers in the DNN
was chosen as 8. Each of the hidden layers consisted of 1024 hidden nodes with tanh
nonlinearity. The initial learning rate was selected as 0.015 which was reduced to
0.002 in 20 epochs. Extra 10 epochs were employed after reducing the learning rate.
The minibatch size for neural net training was selected as 512. The initial state-level
alignments employed in DNN training were generated using a Gaussian-mixture-
model-based system.

While decoding adults’ speech test, the standardMIT-Lincoln 5kWall Street Journal
bigram language model (LM) was used. The MIT-Lincoln LM has a perplexity of
95.3 with respect to adults’ test set with no out-of-vocabulary (OOV) words. The
employed lexicon consisted of 5850 words along with the pronunciation variations.
While decoding the children’s speech test, on the other hand, a 1.5 k bigram LM was
used. This bigram LM was trained on the transcripts of speech data in PF-STAR after
excluding the test set. A lexicon consisting of 1969 words including the pronunciation
variations was used. The word error rate (WER) metric was used for evaluating the
recognition performance.

3.2 Baseline System Performance

The baseline WERs for the adults’ and children’s speech test sets obtained by using
MFCC features are presented in Table 1. On comparing theWERs for AD-Set and CH-
Set, a huge difference is noted. One of the factors for the observed difference is that the
Mel-scale warping leads to down-sampling of spectral information in high-frequency
components as discussed earlier. Consequently, the use of IMFCCandLFCC improves
the recognition performance with respect to children’s speech as evident from the
WERs enlisted in Table 1. At the same time, the recognition rates for adults’ speech
are noted to degrade when LFCC features are used. But the loss incurred in the case
of adults’ speech is much less when compared to the gain obtained for children’s

Table 1 WERs for the adults’ and children’s speech test sets with respect to the acoustic models trained on
adults’ speech

Test set WER (in %) for different acoustic features Relative imp. over MFCC
with LFCC ( %)

MFCC IMFCC LFCC

AD-Set 5.87 5.93 6.11 − 4.1

CH-Set 19.37 18.14 16.35 15.6

The WERs are given for the cases when MFCC, IMFCC and LFCC features are used to train DNN-HMM-
based systems
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Table 2 WERs for adults’, adult females’ and children’s speech test sets with respect to acoustic models
trained on adults’ speech

Acoustic feature Test set WER (in %)

Baseline VTLN Pitch scaling

MFCC AD-Set 5.87 5.83 5.81

ADF-Set 6.35 6.11 5.67

CH-Set 19.37 17.00 13.11

IMFCC AD-Set 5.97 5.95 5.93

ADF-Set 6.10 5.93 5.28

CH-Set 18.14 16.56 12.86

LFCC AD-Set 6.11 6.10 6.06

ADF-Set 5.94 5.84 5.23

CH-Set 16.35 14.89 12.19

WERs are given for the cases when MFCC, IMFCC and LFCC features are used to train the DNN-HMM
systems. The WERs are also tabulated for the cases when VTLN and explicit pitch scaling are employed
for reducing the acoustic mismatch

speech. This fact is highlighted by the percentage of relative improvement in the
MFCC obtained by using LFCC features given in the last column of Table 1.

It may be argued that, by including children’s speech data in the train set, the
differences will be reduced as reported in earlier works. In order to demonstrate that by
folding sufficient amount of speech data into training the ill effects of down-sampling,
the spectral information present in high-frequency region cannot be addressed, the
adult test set was split into two parts based on the gender of the speaker. The test
set created by taking speech data only from female speakers (ADF-Set) was then
decoded using the adult data trained acoustic models. The WERs for this study are
given in Table 2. The use of IMFCC and LFCC features is noted to reduce the WER
significantly when compared to MFCC features. A relative improvement of 6.5% is
obtained when LFCC is used instead of MFCC. It is to note that the training set
derived from WSJCAM0 database contains a sufficient amount of speech data from
adult female speakers as well [27]. Despite that, providing higher resolution to high-
frequency components (IMFCC) or equal resolution to all the frequency components
(LFCC) helps when the test speech is from adult female speakers.

It may also be argued that there are several other factors of acoustic mismatch that
lead to degradation in the recognition performance, especially in the case of children’s
speech. In order to counter it, the role of VTLN and pitch scaling is explored to
reduce the acoustic mismatch resulting from upscaling of fundamental and formant
frequencies noted in the case of children’ speech. These studies are presented in the
following subsection.

3.3 Application of VTLN and Pitch Scaling

The vocal organs of children and adult females are smaller when compared to that
of adult males [9,29]. As a consequence, formant frequencies are upscaled when
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the speech data are either from adult females or children. Linear-frequency warping
through VTLN is reported to address the ill effects of upscaling of formants [32,
38]. VTLN was implemented by extracting acoustic features after varying the linear
frequency warping factor from 0.88 to 1.12 in steps of 0.02. The warped feature
vectors were then forced-aligned against the acoustic model under the constraints
of the first-pass hypothesis obtained by decoding the unwarped features. The set of
features that resulted in highest likelihood were chosen to be optimal. The optimally
warped feature vectors were then re-decoded after performing fMLLR-based feature
normalization. The effect of concatenating VTLN and fMLLR on the MFCC, IMFCC
and LFCC features is demonstrated using WERs given in Table 2. Large reductions
in WER are noted by the application of VTLN in the case of children’s speech. The
observed reductions in the case of adult females is not that large. At the same time, the
LFCC features are still noted to be superior to MFCC for both ADF-Set and CH-Set
test sets.

Apart from formant scaling, even the fundamental frequency or pitch is noted
to change due differences in vocal-tract geometry. Consequently, the fundamental
frequency is observed to be higher in the case of children as well as adult female
speakers. Pitch-induced acoustic mismatch severely degrades the ASR performance
as reported in [33,38]. The ill effects of pitch variations can be compensated by explicit
pitch modification as reported in [16]. Motivated by that work, pitch modification was
also explored in order to improve the recognition performance with respect to high-
pitched speakers. The pitch scaling technique reported in [1] was explored for this
purpose. The tunable pitch compensation factor (semitone) was varied from −12 to
12 in steps of 1 to vary the pitch of the speech data being analyzed. The optimal
compensation factor was chosen via a maximum-likelihood grid search described
earlier. The WERs obtained by suitably modifying the pitch are given in Table 2.
Similar to the case of VTLN, large reductions in WER are observed in the case of
children’s speech. Even for adult females, the reductions in WER are significant. The
use of LFCC features is noted to be superior in this case as well. The reduction in
WER is larger in the case of pitch scaling than that obtained with the application
VTLN. Pitch scaling is performed by re-sampling the speech data followed by time-
scalemodification. Re-sampling results in rescaling of the formant frequencies aswell.
Consequently, VTLN is done in a implicit manner when explicit pitch modification is
performed.

3.4 Experiments Employing Filterbank Features

In recent works onASR, the log-compressed outputs of filterbank have been employed
as front-end acoustic feature with DNN-HMM-based system [14]. Motivated by those
studies, we have also explored filterbank outputs as acoustic features. The filter-
bank features obtained by Mel, inverse-Mel and linear filterbanks are referred to as
MFBANK, IMFBANK and LFBANK features, respectively, in this work. The WERs
obtained by using filterbank features are given in Table 3. ReducedWERs are obtained
when inverse-Mel or linear filterbank is used in this case as well.
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Table 3 WERs for adult females’ and children’s speech test sets with respect to acoustic models trained on
adults’ speech

Acoustic feature Test set WER (in %)

Baseline VTLN Pitch scaling

MFBANK ADF-Set 6.20 6.05 5.53

CH-Set 18.29 16.35 12.82

IMFBANK ADF-Set 5.95 5.45 5.31

CH-Set 17.45 16.14 12.52

LFBANK ADF-Set 5.42 5.29 5.04

CH-Set 15.68 14.43 11.98

WERs are given for the cases when MFBANK, IMFBANK and LFBANK features are used to train the
DNN-HMM systems. The WERs are also tabulated for the cases when VTLN and explicit pitch scaling are
employed for reducing the acoustic mismatch

Table 4 WERs for the adults’
and children’s speech test sets
with respect to adult data trained
DNN system demonstrating the
effectiveness of TS-MFCC over
MFCC and LFCC

Test set WER (in %)

MFCC TS-MFCC LFCC

AD-Set 5.87 5.28 6.11

CH-Set 19.37 15.85 16.35

4 Combining Linear Filterbank with Pitch-Adaptive Spectral
Estimation

As highlighted earlier, the conventional approach for extracting front-end acoustic
features does not explicitly depend on pitch-adaptive signal processing. This leads to
insufficient smoothing of the spectra, especially for the high-pitched speakers. Spectral
smoothing is essential in order to reduce the ill effects of pitch harmonics. Kawa-
hara et al. proposed a pitch-adaptive spectral analysis technique which was named as
STRAIGHT [18]. The MFCC features derived using the STRAIGHT-based spectra
were employed for ASR in [8] and were not found to be very effective. This was
mainly due to a smoothing function used after the pitch-adaptive windowing which
led to over-smoothing. Further, legacy STRAIGHT is reported to be computationally
expensive. To alleviate these problems, TANDEM STRAIGHT was introduced for
spectrum estimation [17].

The role of pitch-adaptive estimation via TANDEM STRAIGHT in ASR was stud-
ied in [35]. The resulting front-end features (TS-MFCC) were reported to be better
than the existing MFCC. This fact is re-verified by the WERs given in Tables 4. The
WERs obtained by employing LFCC features are also enlisted for proper contrast. Its
evident from the WERs given in Tables 4 that TS-MFCC features outperform MFCC
aswell as LFCC features for both adults’ and children’s speech test sets. Yet, compared
to MFCC, the WERs obtained by the use of LFCC features are much closer to those
obtained through TS-MFCC.
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Fig. 3 Block diagram outlining the proposed front-end speech parameterization technique

Table 5 WERs for adult, adult females’ and children’s speech tests set with respect to adult data trained
DNN system demonstrating the effect of using linear filterbank in place of Mel-filterbank along with pitch-
adaptive spectrum estimation

Test set WER (in %) % Relative improvement

TS-MFCC TS-LFCC

AD-Set 5.28 5.46 − 3.1

ADF-Set 5.96 5.78 3.2

CH-Set 15.85 13.72 13.44

Motivated by the success of TANDEM-STRAIGHT-based spectral smoothing, the
effect of including linear filterbank instead of Mel-filterbank was explored next. The
overall process of extracting the proposed features employing pitch-adaptive spectral
estimation and linear filterbank is summarized in Fig. 3. The proposed features are,
therefore, referred to as TANDEM-STRAIGHT linear filterbank cepstral coefficients
(TS-LFCC) in this paper. The introduced modifications provide added robustness
toward speaker-dependent acoustic variations. The same is experimentally validated
in the following.

4.1 Experimental Results

The effect of including linear filterbank along with TANDEM-STRAIGHT-based
spectral smoothing is demonstrated by the WERs enlisted in Table 5. Additive reduc-
tions in WER are obtained for adult females’ and children’s speech when linear
filterbank is used instead of Mel-filterbank. On the other hand, a slight degradation
is noted in the case of adults’ speech test set. These results further establish the fact
that the use of linear filterbank is more beneficial when the speech data are from high-
pitched speakers. On comparing theMFFC-based DNN baseline for children’s speech
(19.37%), a relative improvement of 29.17% is obtained when the proposed TS-LFCC
features are used.

4.2 Inclusion of VTLN and Pitch Scaling

The effectiveness of performing VTLN as well as explicit pitch scaling was explored
next. The WERs for those studies are given in Table 6. As noted in the case of
MFCC/LFCC, both VTLN and pitch scaling are highly effective when combined
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Table 6 WERs for adults’, adult females’ and children’s speech test sets with respect to adult data trained
DNN systems demonstrating the effect of combining VTLN or pitch scaling with TS-MFCC and TS-LFCC
features

Acoustic feature Test set WER (in %)

Baseline VTLN Pitch scaling

TS-MFCC AD-Set 5.28 5.31 5.39

ADF-Set 5.96 5.85 5.54

CH-Set 15.85 14.37 11.67

TS-LFCC AD-Set 5.46 5.51 5.45

ADF-Set 5.78 5.66 5.32

CH-Set 13.72 12.87 10.92

Table 7 WERs for adults’, adult females’ and children’s speech test sets with respect to adult data trained
DNN systems demonstrating the effect of combining VTLN or pitch scaling with TS-MFBANK and TS-
LFBANK features

Acoustic feature Test set WER (in %)

Baseline VTLN Pitch scaling

TS-MFBANK AD-Set 5.24 5.29 5.33

ADF-Set 5.73 5.61 5.47

CH-Set 15.15 13.94 11.28

TS-LFBANK AD-Set 5.39 5.47 5.45

ADF-Set 5.64 5.51 5.32

CH-Set 13.28 12.17 10.56

with TS-MFCC or TS-LFCC features. At the same time, the WERs obtained by using
TS-LFCC features are significantly better when the speech data are from high-pitched
speakers.

In this work, the effect of pitch-adaptive spectral smoothing on filterbank features
has also been studied. The resulting features are referred to as TS-MFBANK when
Mel-filterbank is used while TS-LFBANK when linear filterbank is employed . The
WER obtained by employing TS-MFBANK and TS-LFBANK features is given in
Table 7. Compared to the baseline WER obtained by employing MFBANK features
(18.29%, see Table 3), significant reductions in WERs are observed with the appli-
cation of TANDEM-STRAIGHT-based spectral smoothing. Applying pitch scaling
leads to further reductions inWERwhen the speech data are from high-pitched speak-
ers. At the same time, the use of linear filterbank is noted to consistently yield better
recognition performances.

5 Conclusion

In this paper, the role Mel-, inverse-Mel- and linear filterbanks are studied in the con-
text of ASR task. The presented work is motivated by the fact that there is a significant
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amount of relevant spectral information present in the high-frequency region when the
speech data are from adult female and child speakers. Consequently, down-sampling
the spectral information in that range through Mel-filterbank reduces the recogni-
tion performance. The inverse-Mel and linear filterbanks provide better resolution to
the high-frequency components. Therefore, significant improvements are noted when
IMFCC or LFCC features are used when the speech data being transcribed are from
adult female or child speakers. In order to further boost our confidence in the observed
improvements, the role of VTLN and explicit pitch scaling has also been explored.
Even after the application of VTLN or pitch scaling, LFCC features are noted to be
better than MFCC features. In addition to that, the effect of combining pitch-adaptive
spectral estimation with linear filterbank has also been explored. Added improvements
in recognition performance are noted with the inclusion of pitch-adaptive spectral esti-
mation.
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