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Abstract
In this paper, a new adaptive Kalman filter is proposed for a linear Gaussian state-
space model with inaccurate noise statistics based on the variational Bayesian (VB)
approach. Both the prior joint probability density function (PDF) of the one-step
prediction and corresponding prediction error covariance matrix and the joint PDF
of the mean vector and covariance matrix of measurement noise are selected as
Normal-inverse-Wishart (NIW), from which a new NIW-based hierarchical Gaussian
state-space model is constructed. The state vector, the one-step prediction and cor-
responding prediction error covariance matrix, and the mean vector and covariance
matrix of measurement noise are jointly estimated based on the constructed hierar-
chical Gaussian state-space model using the VB approach. Simulation results show
that the proposed filter has better estimation accuracy than existing state-of-the-art
adaptive Kalman filters.
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1 Introduction

Kalman filtering has been extensively applied in many science and engineering disci-
plines, such as target tracking, control, signal processing, communication, navigation
and robotics [16]. The Kalman filter is an optimal state estimator in terms of minimum
mean square error for a linear state-space model with Gaussian state and measurement
noises. A priori knowledge of the noise statistics (mean vectors and covariance matri-
ces of state and measurement noises) are required to implement the Kalman filter. The
performance of the Kalman filter relies heavily on the prior noise statistics, and the
estimation accuracy of the Kalman filter degrades dramatically when the inaccurate
or wrong prior noise statistics are used [13]. However, in a range of practical applica-
tions, the noise statistics may be unknown or even time-varying. For example, in the
strap-down inertial navigation system (SINS)- and global positioning system (GPS)-
based integrated navigation system, the state andmeasurement noises are, respectively,
induced by the measurement errors of inertial measurement units (IMUs) and GPS,
and the biases and observation accuracy of IMUs and GPS may vary with the change
of the environment, which results in unknown and time-varying mean vectors and
covariance matrices of state and measurement noises [3–5,14,19].

To address the filtering problem of a linear Gaussian state-space model with inac-
curate noise statistics, a large number of adaptive Kalman filters (AKFs) have been
proposed based on different methods. The Sage-Husa AKF (SHAKF) has been pro-
posed based on the covariance matching method, in which the noise statistics are
recursively estimated using the maximum a posterior criterion [2,17]. Although the
SHAKF can estimate the mean vectors and covariance matrices of state and mea-
surement noises simultaneously, both the convergence to the right noise covariance
matrices and the positive definiteness of the estimated noise covariance matrices are
not guaranteed by the SHAKF [6]. As a result, the SHAKF is often found to halt
its operation due to filtering divergence or numerical instability. The IAKF has been
proposed based on a maximum likelihood rule, and it estimates the noise covariance
matrices using the innovation sequence that is a white process in the Kalman filtering
framework [14]. In general, a large windows of innovations are required by the IAKF
to achieve reliable and accurate estimations of noise covariance matrices so that the
performance of IAKFmay degrade for rapidly varying noise covariance matrices [11].
Also, the positive definiteness of the estimated noise covariance matrices is not guar-
anteed by the IAKF, which may result in numerical instability. The multiple-model
AKF (MMAKF) has been proposed based on the Bayesian rule, in which the state
and measurement noises are modeled by Gaussian distributions with different noise
statistics, and a bank of Kalman filters are operated using different noise statistics, and
the state estimate of the MMAKF is a weighted sum of the estimates of these Kalman
filters [12]. Unfortunately, in practical applications, a large number of Gaussian dis-
tributions are selected to model the state and measurement noises to guarantee the
performance of the MMAKF, which leads to substantial computational complexities
[18].

Recently, the expectation-maximization-based AKF (EMAKF) and the variational
Bayesian-based AKF (VBAKF) have been proposed to deal with the filtering prob-
lem of a Gaussian state-space model with inaccurate noise covariance matrices, in
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which the prediction error covariancematrix andmeasurement noise covariancematrix
instead of the state and measurement noise covariance matrices are jointly estimated
[6,7]. For the EMAKF, the approximate maximum likelihood estimates of the predic-
tion error covariance matrix and measurement noise covariance matrix are obtained
based on the expectation-maximization (EM) algorithm [7]. On the other hand, for
the VBAKF, the state vector, the prediction error covariance matrix and the measure-
ment noise covariance matrix are jointly inferred using the variational Bayesian (VB)
approach, and the posterior probability density functions (PDFs) of the prediction
error covariance matrix and measurement noise covariance matrix are approximated
by inverse-Wishart (IW) [6]. Although the EMAKF and VBAKF exhibit satisfactory
performance for the case of time-varying and inaccurate noise covariance matrices,
their estimation accuracy degrades for the case of time-varying and inaccurate mean
vectors and covariance matrices of state and measurement noises.

In this paper, a new AKF is proposed for a linear Gaussian state-space model with
inaccurate noise statistics. Both the prior joint PDF of the one-step prediction and
corresponding prediction error covariance matrix and the joint PDF of the mean vector
and covariance matrix of measurement noise are modeled by Normal-inverse-Wishart
(NIW) distributions, from which a new NIW-based hierarchical Gaussian state-space
model is constructed. The state vector, the one-step prediction and corresponding
prediction error covariance matrix, and the mean vector and covariance matrix of
measurement noise are jointly estimated based on the VB approach. The proposed
AKF and existing state-of-the-art AKFs are applied to a problem of target tracking
with inaccurate noise statistics. Simulation results demonstrate that the proposed AKF
has better estimation accuracy than existing state-of-the-art AKFs.

The remainder of this paper is organized as follows. Section 2 gives the notations
that are used in this paper. Section 3 presents the problem formulation. In Sect. 4,
a new NIW-based hierarchical Gaussian state-space model is constructed, based on
which a new AKF is proposed using the VB approach. In Sect. 5, the proposed AKF
and existing state-of-the-art AKFs are compared by a target tracking example, and
simulation results are given. Concluding remarks are given in Sect. 6.

2 Notations

Throughout this paper, we denote zi : j � {zk |i ≤ k ≤ j}; N(μ,Σ) and N(·;μ,Σ)

denote, respectively, the multivariate Gaussian distribution and Gaussian PDF with
mean vector μ and covariance matrix Σ ; NiW(·, ·;μ, γ, δ,Λ) denotes the NIW PDF
withmean vectorμ, priori confidence parameter γ , degrees of freedom (dof) parameter
δ, and scale matrix Λ; IW(·;μ,Σ) denotes the IW PDF with dof parameter μ and
inverse scale matrixΣ ; Ex [·] denotes the expectation operator with respect to the PDF
of random variable x ; log denotes the natural logarithm; In denotes the n× n identity
matrix; 0n×1 denotes n dimensional zero vector; the superscript “−1” denotes the
inverse operation of a matrix; the superscript “T” denotes the transpose operation of
a vector or matrix; and | · | and tr(·) denote the determinant and trace operations of a
matrix, respectively.
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3 Problem Formulation

Consider the following discrete-time linear stochastic system as shown by the state-
space model [8]

xk = Fk−1xk−1 + wk−1, (1)

zk = Hkxk + vk, (2)

where (1) and (2) are, respectively, the state and measurement equations, k is the
discrete-time index, xk ∈ R

n is the state vector, zk ∈ R
m is the measurement vector,

Fk ∈ R
n×n is the state transition matrix, Hk ∈ R

m×n is the observation matrix, and
wk ∈ R

n and vk ∈ R
m are, respectively, the state and measurement noise vectors. The

state and measurement noises are assumed to have stationary Gaussian distributions,
i.e., wk ∼ N(q, Q) and vk ∼ N(r, R), where q and Q are, respectively, the mean
vector and covariance matrix of state noise, and r and R are, respectively, the mean
vector and covariance matrix of measurement noise. The initial state vector x0 is
assumed to have a Gaussian distribution with mean vector x̂0|0 and covariance matrix
P0|0. Moreover, x0, wk and v j are assumed to be mutually uncorrelated for any time
samples j and k.

For the linear Gaussian state-space model formulated in (1)–(2), the Kalman fil-
ter is often employed to estimate unknown state vector xk based on the available
measurement information z1:k , model parameters {Fk−1, Hk}, and noise statistics
{q, Q, r, R}. The recursive Kalman filter is composed of time update and measure-
ment update, which is formulated as follows: [16]
Time update

x̂k|k−1 = Fk−1 x̂k−1|k−1 + q, (3)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q, (4)

Measurement update

K k = Pk|k−1HT
k (Hk Pk|k−1HT

k + R)−1, (5)

x̂k|k = x̂k|k−1 + K k
(
zk − Hk x̂k|k−1 − r

)
, (6)

Pk|k = (In − K kHk) Pk|k−1, (7)

where x̂k|k−1 and Pk|k−1 denote, respectively, the one-step prediction and correspond-
ing prediction error covariance matrix, and K k denotes the Kalman gain, and x̂k|k and
Pk|k are, respectively, the state estimate vector and corresponding estimation error
covariance matrix.

Kalman filter is a minimum mean square error state estimator for a linear Gaussian
state-space model with accurate noise statistics {q, Q, r, R}. The performance of
Kalmanfilter degrades severelywhen inaccuratemean vectors and covariancematrices
of state and measurement noises are used. Unfortunately, accurate noise statistics
may be unavailable in some engineering applications, such as target tracking. For
example, the inaccurate noise statistics may be induced by severe maneuvering when



4384 Circuits, Systems, and Signal Processing (2019) 38:4380–4404

an agile target is tracked. Therefore, there is a great demand for a new AKF suitable
for operation with inaccurate noise statistics. Next, a newAKFwill be proposed based
on NIW distribution using the VB approach.

4 Main Results

4.1 A NewNIW-Based Hierarchical Gaussian State-Space Model

By the fact that themeasurement noise vector vk has aGaussian distributionwithmean
vector r and covariance matrix R and using measurement model (2), the likelihood
PDF is formulated as

p(zk |xk, r, R) = N(zk; Hkxk + r, R). (8)

In the Kalman filtering framework, the one-step prediction PDF is updated as Gaus-
sian, i.e.,

p(xk |x̂k|k−1, Pk|k−1, z1:k−1) = N(xk; x̂k|k−1, Pk|k−1). (9)

To resist the uncertainties of noise statistics, the state vector xk , the one-step pre-
diction x̂k|k−1, the prediction error covariance matrix Pk|k−1, the mean vector r and
covariance matrix R of measurement noise will be jointly inferred. To this end, the
joint conjugate priori distributions for

{
x̂k|k−1, Pk|k−1

}
and {r, R} need to be firstly

selected since the conjugacy can guarantee that the posterior distribution is of the
same functional form as the priori distribution. In Bayesian statistics, a NIW distribu-
tion is usually used as the joint conjugate priori for the mean vector and covariance
matrix of a Gaussian distribution [15]. Since both

{
x̂k|k−1, Pk|k−1

}
and {r, R} are the

mean vectors and covariance matrices of Gaussian PDFs in (8)–(9), their joint prior
distributions p(x̂k|k−1, Pk|k−1|z1:k−1) and p(r, R|z1:k−1) are chosen as NIW PDFs,
i.e.,

p(x̂k|k−1, Pk|k−1|z1:k−1) = NiW(x̂k|k−1, Pk|k−1; uk, αk, ωk,Σk), (10)

p(r, R|z1:k−1) = NiW(r, R;λk, βk, νk,Δk), (11)

where uk , αk , ωk andΣk are, respectively, the mean vector, priori confidence parame-
ter, dof parameter and scale matrix of p(x̂k|k−1, Pk|k−1|z1:k−1), and λk , βk , νk andΔk

are, respectively, themean vector, priori confidence parameter, dof parameter and scale
matrix of p(r, R|z1:k−1), and the NIW PDF NiW(a, A;μ, γ, δ,Λ) can be written as
[1]

NiW(a, A;μ, γ, δ,Λ) = N(a;μ, A/γ )IW(A; δ,Λ). (12)

Utilizing (12) in (10)–(11) gives

p(x̂k|k−1, Pk|k−1|z1:k−1) = N(x̂k|k−1; uk, Pk|k−1/αk) × IW(Pk|k−1;ωk,Σk)

(13)

p(r, R|z1:k−1) = N(r;λk, R/βk)IW(R; νk,Δk). (14)
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Employing (13)–(14), the joint priori PDFs for
{
x̂k|k−1, Pk|k−1

}
and {r, R} can

be rewritten as the following hierarchical Gaussian forms

p(x̂k|k−1|Pk|k−1, z1:k−1) = N(x̂k|k−1; uk, Pk|k−1/αk), (15)

p(Pk|k−1|z1:k−1) = IW(Pk|k−1;ωk,Σk), (16)

p(r|R, z1:k−1) = N(r;λk, R/βk), (17)

p(R|z1:k−1) = IW(R; νk,Δk). (18)

To capture the priori information of
{
x̂k|k−1, Pk|k−1

}
, the mean values of x̂k|k−1

and Pk|k−1 are, respectively, set as the nominal one-step prediction x̂∗
k|k−1 and the

nominal prediction error covariance matrix P∗
k|k−1, i.e.,

uk = x̂∗
k|k−1 = Fk−1 x̂k−1|k−1 + q∗, (19)

Σk

ωk − n − 1
= P∗

k|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q∗, (20)

where q∗ and Q∗ are, respectively, the nominal mean vector and covariance matrix of
state noise. Let

ωk = τ + n + 1. (21)

where τ is a tuning parameter satisfying τ > 0.
Substituting (21) in (20) yields

Σk = τ P∗
k|k−1. (22)

To capture the priori information of {r, R}, the mean value of r is set as the nominal
mean vector r∗, and the dof parameter νk and scale matrix Δk are set as previous
estimates, i.e.,

λk = r∗, νk = ν̂k−1|k−1, Δk = Δ̂k−1|k−1. (23)

where ν̂k−1|k−1 and Δ̂k−1|k−1 denote, respectively, the estimates of the dof parameter
and scale matrix of R at time k − 1, and the initial dof parameter ν0 and scale matrix
Δ0 satisfy

Δ0
ν0−m−1 = R∗ and ν0 > m+1 with R∗ denoting the nominal measurement

noise covariance matrix.
Equations (8)–(9) and (15)–(23) constitute a newNIW-based hierarchical Gaussian

state-space model, whose diagram is illustrated in Fig. 1. Next, the state vec-
tor, the one-step prediction and corresponding prediction error covariance matrix,
and the mean vector and covariance matrix of measurement noise, i.e., Ψ k �
{xk, x̂k|k−1, Pk|k−1, r, R}, will be jointly estimated based on the constructed hier-
archical Gaussian state-space model using the VB approach, from which a new AKF
with inaccurate noise statistics will be proposed.

4.2 Variational Approximations of Posterior PDFs

To infer the state vector, the one-step prediction and corresponding prediction error
covariance matrix, and the mean vector and covariance matrix of measurement noise
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Fig. 1 Diagram of the constructed NIW-based hierarchical Gaussian state-space model

simultaneously, the joint posterior PDF p(Ψ k |z1:k) needs to be calculated since it
provides full description for parameter set Ψ k . Unfortunately, the optimal solution for
the joint posterior PDF is unavailable based on the constructed hierarchical Gaussian
state-space model because the IW PDF has not a closed form. In the paper, the VB
approach is employed to obtain a freeform factored approximate solution for the joint
posterior PDF p(Ψ k |z1:k), i.e., [9,10]

p(Ψ k |z1:k)≈q(xk)q(x̂k|k−1)q(Pk|k−1)q(r)q(R), (24)

where q(·) denotes the approximate posterior PDF.
Based on the VB approach, these approximate posterior PDFs are achieved by

minimizing the Kullback–Leibler divergence (KLD) between approximate posterior
PDF and true posterior PDF, i.e., [9,10]

{
q(xk), q(x̂k|k−1), q(Pk|k−1), q(r), q(R)

} = argmin

KLD
(
q(xk)q(x̂k|k−1)q(Pk|k−1)q(r)q(R)||p(k |z1:k)

)
,

(25)

where KLD (q(x)||p(x)) �
∫
q(x) log q(x)

p(x)
dx denotes the KLD operation between

PDFs q(x) and p(x).
The optimal solution for (25) can be formulated as [9,10]

log q(θ) = E
Ψ

(−θ)
k

[log p(Ψ k, z1:k)] + cθ , (26)

where θ is an arbitrary element ofΨ k , andΨ
(−θ)
k is the set of all elements inΨ k except

for θ , and cθ denotes the constant with respect to variable θ .
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However, an analytical solution for (26) is unavailable since the variational param-
eters are mutually coupled. The fixed-point iteration approach is often employed to
obtain an approximate solution for (26). That is to say, the approximate posterior PDF
q(θ) of an arbitrary element θ is updated as q(i+1)(θ) at the i + 1th iteration by using
the approximate posterior PDFs q(i+1)(γ ) and q(i)(Ψ

(−{θ ,γ })
k ) to calculate the expec-

tation in (26), where γ is composed of the elements that have been updated at the
i + 1th iteration. The iterations converge to a local optimum of Eq. (26).

According to the Bayesian theorem and using the conditional independence prop-
erties of the constructed NIW-based hierarchical Gaussian state-space model, the joint
PDF p(Ψ k, z1:k) can be formulated as

p(Ψ k, z1:k) = p(zk |xk, r, R)p(xk |z1:k−1, x̂k|k−1, Pk|k−1)p(x̂k|k−1|Pk|k−1, z1:k−1)

p(Pk|k−1|z1:k−1)p(r|R, z1:k−1)p(R|z1:k−1)p(z1:k−1). (27)

Substituting (8)–(9) and (15)–(18) in (27) yields

p(Ψ k, z1:k) = N(zk; Hkxk + r, R)N(xk; x̂k|k−1, Pk|k−1)N(x̂k|k−1; uk, Pk|k−1/αk)

IW(Pk|k−1;ωk,Σk)N(r;λk, R/βk)IW(R; νk,Δk)p(z1:k−1). (28)

Let θ = x̂k|k−1 and θ = r and using (28) in (26), q(i+1)(x̂k|k−1) and q(i+1)(r) are
updated as Gaussian PDFs, i.e.,

q(i+1)(x̂k|k−1) = N(x̂k|k−1; û(i+1)
k , Û

(i+1)
k ), (29)

q(i+1)(r) = N(r; λ̂
(i+1)
k , Ω̂

(i+1)
k ), (30)

where the mean vectors û(i+1)
k and λ̂

(i+1)
k and covariance matrices Û

(i+1)
k and Ω̂

(i+1)
k

are given by

û(i+1)
k = αkuk + x̂(i)

k|k
αk + 1

, Û
(i+1)
k = P̄

(i)
k|k−1

αk + 1
, (31)

λ̂
(i+1)
k =

βkλk +
(
zk − Hk x̂

(i)
k|k

)

βk + 1
, Ω̂

(i+1)
k = R̄

(i)
k

βk + 1
, (32)

and themodified prediction error covariancematrix P̄
(i)
k|k−1 andmodifiedmeasurement

noise covariance matrix R̄
(i)
k are formulated as

P̄
(i)
k|k−1 =

{
E(i)[P−1

k|k−1]
}−1

, R̄
(i)
k =

{
E(i)

[
R−1

]}−1
, (33)

where the proofs of (29)–(33) are given in “Appendix A”.
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Let θ = Pk|k−1 and θ = R and exploiting (28) in (26), q(i+1)(Pk|k−1) and
q(i+1)(R) are updated as IW PDFs, i.e.,

q(i+1)(Pk|k−1) = IW(Pk|k−1; ω̂
(i+1)
k , Σ̂

(i+1)
k ), (34)

q(i+1)(R) = IW(R; ν̂
(i+1)
k , Δ̂

(i+1)
k ), (35)

where the dof parameters ω̂
(i+1)
k and ν̂

(i+1)
k and inverse scale matrices Σ̂

(i+1)
k and

Δ̂
(i+1)
k are given by

ω̂
(i+1)
k = ωk + 2, (36)

Σ̂
(i+1)
k = A(i+1)

k + B(i+1)
k + Σk, (37)

ν̂
(i+1)
k = νk + 2, (38)

Δ̂
(i+1)
k = C(i+1)

k + D(i+1)
k + Δk, (39)

and the auxiliary parameters A(i+1)
k , B(i+1)

k , C(i+1)
k and D(i+1)

k are, respectively, given
by

A(i+1)
k = E(i)

[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T]
, (40)

B(i+1)
k = αkE

(i)
[(
x̂k|k−1 − uk

)
(x̂k|k−1 − uk)T

]
, (41)

C(i+1)
k = E(i)

[
(zk − Hkxk − r) (zk − Hkxk − r)T

]
, (42)

D(i+1)
k = βkE

(i)
[
(r − λk) (r − λk)

T
]
, (43)

where the proofs of (34)–(43) are given in “Appendix B”.
Let θ = xk and using (28) in (26), q(i+1)(xk) is updated as a Gaussian PDF, i.e.,

q(i+1)(xk) = N(xk; x̂(i+1)
k|k , P (i+1)

k|k ), (44)

where the mean vector x̂(i+1)
k|k and covariance matrix P (i+1)

k|k are given by

K (i+1)
k = P̄

(i+1)
k|k−1H

T
k (Hk P̄

(i+1)
k|k−1H

T
k + R̄

(i+1)
k )−1, (45)

x̂(i+1)
k|k = û(i+1)

k + K (i+1)
k (zk − λ̂

(i+1)
k − Hk û

(i+1)
k ), (46)

P (i+1)
k|k =

(
In − K (i+1)

k Hk

)
P̄

(i+1)
k|k−1, (47)

where K (i+1)
k denotes the modified Kalman gain, and the proofs of (44)–(47) are given

in “Appendix C”.
After fixed-point iteration N , the approximate posterior PDFs of the state vector,

the one-step prediction and corresponding prediction error covariance matrix, and the
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mean vector and covariance matrix of measurement noise are, respectively, updated
as

q(xk) ≈ N(xk; x̂(N )
k|k , P (N )

k|k ) = N(xk; x̂k|k, Pk|k), (48)

q(x̂k|k−1) ≈ N(x̂k|k−1; û(N )
k , Û

(N )

k ) = N(x̂k|k−1; ûk|k, Ûk|k), (49)

q(Pk|k−1) ≈ IW(Pk|k−1; ω̂
(N )
k , Σ̂

(N )

k ) = IW(Pk|k−1; ω̂k|k, Σ̂k|k), (50)

q(r) ≈ N(r; λ̂
(N )

k , Ω̂
(N )

k ) = N(r; λ̂k|k, Ω̂k|k), (51)

q(R) ≈ IW(R; ν̂
(N )
k , Δ̂

(N )

k ) = IW(R; ν̂k|k, Δ̂k|k). (52)

To update the approximate posterior PDFs, we need to calculate the expectations
in (33) and (40)–(43). Using (29)–(30), (34)–(35) and (44), the required expectations
in (33) and (40)–(43) are calculated as follows

P̄
(i+1)
k|k−1 = Σ̂

(i+1)
k

/ (
ω̂

(i+1)
k − n − 1

)
, (53)

R̄
(i+1)
k = Δ̂

(i+1)
k

/ (
ν̂

(i+1)
k − m − 1

)
, (54)

A(i+1)
k = P (i)

k|k + Û
(i+1)
k +

(
x̂(i)
k|k − û(i+1)

k

) (
x̂(i)
k|k − û(i+1)

k

)T
, (55)

B(i+1)
k = αkÛ

(i+1)
k + αk

(
û(i+1)
k − uk

) (
û(i+1)
k − uk

)T
, (56)

C(i+1)
k = Ω̂

(i+1)
k +

(
zk − Hk x̂

(i)
k|k − λ̂

(i+1)
k

) (
zk − Hk x̂

(i)
k|k − λ̂

(i+1)
k

)T

+Hk P
(i)
k|kH

T
k , (57)

D(i+1)
k = βkΩ̂

(i+1)
k + βk

(
λ̂

(i+1)
k − λk

) (
λ̂

(i+1)
k − λk

)T
, (58)

where the proofs of (55)–(58) are given in “Appendix D”.
The proposed AKF operates recursively by combining the variational approxima-

tions of posterior PDFs in (29)–(32), (34)–(39) and (44)–(52) and the calculations of
expectations in (53)–(58). The implementation pseudo-code for the one-time step of
the proposed AKF is given in Table 1.

4.3 Parameter Selection of the Proposed AKF

To implement the proposed AKF, the nominal mean vectors q∗ and r∗ and covariance
matrices Q∗ and R∗ of state andmeasurement noises, the priori confidence parameters
αk andβk , the tuning parameter τ , and the initial dof parameter ν0 require to be selected
in advance.

Firstly, we derive the specific forms of the modified one-step prediction û(i+1)
k ,

the modified measurement noise mean vector λ̂
(i+1)
k , the modified prediction error
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Table 1 One-time step of the proposed AKF

Inputs: x̂k−1|k−1, Pk−1|k−1, ν̂k−1|k−1, Δ̂k−1|k−1, Fk−1, Hk , zk , q∗, Q∗, r∗, τ , αk , βk , N .

1. Calculate x̂∗
k|k−1, P

∗
k|k−1, uk , Σk , λk and Δk using (19)–(23).

2. Initialization: P̄
(0)
k|k−1 = P∗

k|k−1, R̄
(0)
k = Δ̂k−1|k−1

ν̂k−1|k−1−m−1 , x̂
(0)
k|k = x̂∗

k|k−1, P
(0)
k|k = P∗

k|k−1.

for i = 0 : N − 1

3. Update q(i+1)(x̂k|k−1) and q
(i+1)(r) using (29)–(32).

4. Calculate A(i+1)
k , B(i+1)

k , C(i+1)
k and D(i+1)

k using (55)–(58).

5. Update q(i+1)(Pk|k−1) and q
(i+1)(R) using (34)–(39).

6. Calculate P̄
(i)
k|k−1 and R̄

(i)
k using (53)–(54).

7. Update q(i+1)(xk ) using (44)–(47).

end for

8. x̂k|k = x̂(N )
k|k , Pk|k = P(N )

k|k , ν̂k|k = ν̂
(N )
k , Δ̂k|k = Δ̂

(N )
k .

Outputs: x̂k|k , Pk|k , ν̂k|k , Δ̂k|k .

covariance matrix P̄
(i+1)
k|k−1 and the modified measurement noise covariance matrix

R̄
(i+1)
k at the i + 1th iteration. Substituting (19) and (23) in (31)–(32) gives

û(i+1)
k = αk

(
Fk−1 x̂k−1|k−1 + q∗) + x̂(i)

k|k
αk + 1

, (59)

λ̂
(i+1)
k =

βk r∗ +
(
zk − Hk x̂

(i)
k|k

)

βk + 1
. (60)

Using (36)–(37) and (53) in (33), the modified prediction error covariance matrix

P̄
(i+1)
k|k−1 can be rewritten as

P̄
(i+1)
k|k−1 = A(i+1)

k + B(i+1)
k + Σk

ωk − n + 1
, (61)

where A(i+1)
k and B(i+1)

k are, respectively, given by (55)–(56).
Substituting (20)–(22) in (61) yields

P̄
(i+1)
k|k−1 = τ

(
Fk−1Pk−1|k−1FT

k−1 + Q∗) + A(i+1)
k + B(i+1)

k

τ + 2
. (62)

Exploiting (38)–(39) and (52), we have

ν̂k|k = νk + 2, (63)

Δ̂k|k = C(N )
k + D(N )

k + Δk . (64)
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Substituting (23) in (63)–(64) results in

ν̂k|k = ν̂k−1|k−1 + 2, (65)

Δ̂k|k = Δ̂k−1|k−1 + C(N )
k + D(N )

k . (66)

According to the recursive relation in (65)–(66), ν̂k−1|k−1 and Δ̂k−1|k−1 can be
calculated as

ν̂k−1|k−1 = ν0 + 2(k − 1), (67)

Δ̂k−1|k−1 = (ν0 − m − 1)R∗ +
k−1∑

j=1

[
C(N )

j + D(N )
j

]
, (68)

where ν̂0|0 = ν0 and Δ̂0|0 = Δ0 = (ν0 − m − 1)R∗ are used in (67)–(68).
Employing (23) and (67)–(68) in (38)–(39) yields

ν̂
(i+1)
k = ν0 + 2k, (69)

Δ̂
(i+1)
k = (ν0 − m − 1)R∗ + C(i+1)

k + D(i+1)
k +

k−1∑

j=1

[
C(N )

j + D(N )
j

]
. (70)

Substituting (69)–(70) in (54), R̄
(i+1)
k can be reformulated as

R̄
(i+1)
k =

{
(ν0 − m − 1)R∗ + C(i+1)

k + D(i+1)
k +

k−1∑

j=1

[
C(N )

j + D(N )
j

]
⎫
⎬

⎭
/

[(ν0 − m − 1) + 2k] . (71)

Next, we discuss the effects of parameters q∗, r∗, Q∗, R∗, αk , βk , τ and
ν0 upon the proposed AKF. It is observed from (59)–(60), (62) and (71) that
the modified one-step prediction û(i+1)

k is a weighted sum of priori information
(
Fk−1 x̂k−1|k−1 + q∗) and innovation x̂(i)

k|k with weights αk and 1, respectively;

the modified measurement noise mean vector λ̂
(i+1)
k is a weighted sum of priori

information r∗ and innovation
(
zk − Hk x̂

(i)
k|k

)
with weights βk and 1, respec-

tively; the modified prediction error covariance matrix P̄
(i+1)
k|k−1 is a weighted sum of

priori information
(
Fk−1Pk−1|k−1FT

k−1 + Q∗) and innovation
(
A(i+1)
k + B(i+1)

k

)

with weights τ and 2, respectively; and the modified measurement noise covari-

ance matrix R̄
(i+1)
k is a weighted sum of priori information R∗ and innovation{

C(i+1)
k + D(i+1)

k + ∑k−1
j=1

[
C(N )

j + D(N )
j

]}
with weights ν0 −m−1 and 2k, respec-

tively. Thus, the parameters q∗, r∗, Q∗ and R∗ dominate the accuracy of priori
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information, and the parameters αk , βk , τ and ν0 dominate the confidence level to
priori information.

Since the VB approach only guarantees the local convergence of variational
iterations, accurate priori information is necessary. To this end, the nominal param-
eters q∗, r∗, Q∗ and R∗ require to be near the true values q, r , Q and R,
respectively. In this paper, the nominal mean vectors and covariance matrices of
state and measurement noises are, respectively, suggested to be selected as q∗ =
[q1, . . . , qi , . . . , qn]T, r∗ = [r1, . . . , r j , . . . , rm]T, Q∗ = diag[Q1, . . . , Qi , . . . , Qn]
and R∗ = diag[R1, . . . , R j , . . . , Rm], where Qi > 0 and R j > 0. The explicit selec-
tions of the parameters qi , r j , Qi and R j depend on practical application, and the
approximated values of the parameters are available in many practical application.
The selections of the parameters αk , βk , τ and ν0 rely heavily on the selections of the
nominal parameters q∗, r∗, Q∗ and R∗ because they determine the accuracy of priori
information.

Finally, we study the numerical stability of the proposed AKF with the selected
parameters. Since the nominal covariance matrices of state and measurement
noises are, respectively, set as Q∗ = diag[Q1, . . . , Qi , . . . , Qn] and R∗ =
diag[R1, . . . , R j , . . . , Rm] with Qi > 0 and R j > 0, both Q∗ and R∗ are positive
matrices, i.e.,

Q∗ > 0, R∗ > 0. (72)

According to (40)–(43), the auxiliary parameters A(i+1)
k , B(i+1)

k , C(i+1)
k and D(i+1)

k
are all positive semi-definite matrices, i.e.,

A(i+1)
k ≥ 0, B(i+1)

k ≥ 0, C(i+1)
k ≥ 0, D(i+1)

k ≥ 0. (73)

Utilizing Pk−1|k−1 > 0, τ > 0, ν0 − m − 1 > 0 and (72)–(73) in (62) and (71)
obtains

P̄
(i+1)
k|k−1 > 0, R̄

(i+1)
k > 0. (74)

We can see from (74) that both the modified prediction error covariance matrix

P̄
(i+1)
k|k−1 and the modified measurement noise covariance matrix R̄

(i+1)
k are positive

definite, based on which the modified innovation covariance matrix (Hk P̄
(i+1)
k|k−1H

T
k

+R̄
(i+1)
k ) in (45) is also positive definite. Thus, the proposed AKF has numerical

stability using the selected parameters.

Remark 1 The estimation accuracy and computational complexity of the proposed
filter are determined by the number of iterations N . The more number of iterations
is used, the better estimation accuracy can be obtained but the higher computational
complexity is needed. Normally, the number of iterations is a tradeoff of the estimation
accuracy and computational complexity. In practical engineering applications, the
selection of the number of iterations relies on the users’ requirements. If the users
require good estimation accuracy, then a large N should be selected. Conversely, if
the users require good real-time performance, then an appropriately large N should
be chosen, which implies that the computational complexity can be improved by
sacrificing estimation accuracy.
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5 Simulation Study

The proposed AKF and existing state-of-the-art adaptive Kalman filters are tested
and compared in a maneuvring target tracking example. The target moves with a
constant velocity in a plane, whose positions are observed in clutter. The target is
tracked using a constant velocity model, and the noise corrupted positions are used
for measurement vectors. The cartesian coordinates and corresponding velocities are
selected as a state vector, i.e., xk � [xk yk ẋk ẏk], where xk , yk , ẋk and ẏk denote
the cartesian coordinates and corresponding velocities, respectively. The discrete-time
linear state-space model is given by (1)–(2), and the state transition matrix Fk and
measurement matrix Hk are given by [8]

Fk =
[
I2 Δt I2
0 I2

]
, Hk = [

I2 0
]
, (75)

where the sampling interval Δt = 1s.
The state and measurement noises are assumed to have stationary Gaussian dis-

tributions, i.e., wk ∼ N(q, Q) and vk ∼ N(r, R), where the true mean vectors and
covariance matrices are given by

q = [1 1 1 1]T, Q = 3

[
Δt3
3 I2 Δt2

2 I2
Δt2
2 I2 Δt I2

]

, (76)

q = [1 1]T, R =
[
10 5
5 10

]
. (77)

In this simulation, the nominal mean vectors and covariance matrices of state and
measurement noises are, respectively, set as q∗ = 04×1, r∗ = 02×1, Q∗ = I4 and
R∗ = 100I2. To show the effectiveness and superiority of the proposed AKF, we com-
pare the performance of the Kalman filter with nominal noise statistics (KFNNS), the
Kalman filter with true noise statistics (KFTNS), the existing SHAKF [2], the existing
VBAKF for estimating Pk|k−1 and R (VBAKF-PR) [6], and the proposed AKF with
inaccurate noise statistics. Note that, in this simulation, the existing SHAKF often
diverges, so its simulation results are not given in the following analysis and compar-
ison. The algorithm parameters of the existing VBAKF-PR are selected as: the tuning
parameter τ = 3 and the forgetting factor ρ = 1. The algorithm parameters of the
proposed AKF are set as: the tuning parameter τ = 3, the priori confidence parameters
αk = 0.5 and βk = 3, and the initial dof parameter ν0 = 4. Moreover, in the existing
VBAKF-PR, themean vectors of state andmeasurement noises are, respectively, set as
q∗ and r∗ due to its inability to estimate unknown mean vectors. The true initial state
vector x0 = [100, 100, 10, 10]T, and the initial estimation error covariance matrix
P0|0 = 10I4, and the initial state estimate x̂0|0 is chosen from N (x0, P0|0) randomly.
The number of measurements is 200, and the number of iteration is set as N = 10, and
1000 independent Monte Carlo runs are performed. All Kalman filtering algorithms
are coded with MATLAB and the used computer has an Intel Core i7-6500U CPU at
2.50 GHz.
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The root mean square errors (RMSEs) and the averaged root mean square errors
(ARMSEs) of position and velocity are utilized to evaluate the estimation accuracy of
state vector. We define the RMSE and ARMSE of position as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RMSEpos =
√

1
M

M∑

j=1

(
(x j

k − x̂ j
k|k)2 + (y j

k − ŷ j
k|k)2

)

ARMSEpos =
√

1
MT

T∑

k=1

M∑

j=1

(
(x j

k − x̂ j
k|k)2 + (y j

k − ŷ j
k|k)2

) , (78)

where (x j
k , y j

k ) and (x̂ j
k|k, ŷ

j
k|k) denote, respectively, the true position and the filtering

estimate of position at the j-thMonte Carlo run, and T = 200 s denotes the simulation
times, and M = 1000 denotes the total number of Monte Carlo runs. Similarly, we
can also formulate the RMSE and ARMSE of velocity by RMSEvel and ARMSEvel.

The square root of normalized Euclidean norm (SRNEN) and averaged SRNEN
(ASRNEN)are employed to evaluate the estimation accuracyof the one-stepprediction
and measurement noise mean vector. We define the SRNEN and ASRNEN of the one-
step prediction as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SRNENx �
(

1
nM

M∑

j=1
‖x̂ j

k|k−1 − x̂ j
o,k|k−1‖22

) 1
4

ASRNENx �
(

1
nMT

T∑

k=1

M∑

j=1
‖x̂ j

k|k−1 − x̂ j
o,k|k−1‖22

) 1
4

, (79)

where ‖ · ‖2 denotes the Euclidean norm, and x̂ j
k|k−1 denotes the estimate of one-step

prediction at the j-th Monte Carlo run, and x̂ j
o,k|k−1 denotes the accurate one-step

prediction at the j-th Monte Carlo run provided by the KFTNS. Similarly, we can
also formulate the SRNEN and ASRNEN of the measurement noise mean vector by
SRNENr and ASRNENr .

The square root of normalized Frobenius norm (SRNFN) and averaged SRNFN
(ASRNFN) are used to evaluate the estimate accuracy of the prediction error and
measurement noise covariance matrices. The SRNFN and ASRNFN of the prediction
error covariance matrix are defined as follows [6]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SRNFNP �
(

1
n2M

M∑

j=1
‖ P̂ j

k|k−1 − P j
o,k|k−1‖2F

) 1
4

ASRNFNP �
(

1
n2MT

T∑

k=1

M∑

j=1
‖ P̂ j

k|k−1 − P j
o,k|k−1‖2F

) 1
4

, (80)

where ‖·‖F denotes the Frobenius norm, and P̂
j
k|k−1 denotes the estimate of prediction

error covariance matrix at the j-thMonte Carlo run, and P j
o,k|k−1 denotes the accurate
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Fig. 3 SRNENs of x̂k|k−1 and r

prediction error covariancematrix at the j-thMonteCarlo run provided by theKFTNS.
Similarly, we can also formulate the SRNFN and ASRNFN of the measurement noise
covariance matrix by SRNFNR and ASRNFNR .

Figures 2, 3 and 4 show, respectively, the RMSEs of position and velocity, the
SRNENs of the one-step prediction x̂k|k−1 and measurement noise mean vector r ,
and the SRNFNs of the prediction error covariance matrix Pk|k−1 and measurement
noise covariance matrix R, where the black and blue lines coincide in the bottom
subfigure of Fig. 3. It is seen from Fig. 2 that the proposed AKF has smaller RMSEs
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Fig. 5 ARMESs of position and velocity for different numbers of iteration N = 1, 2, . . . , 20

of position and velocity than the existing KFNNS and VBAKF-PR, and the proposed
AKF can achieve almost the same RMSEs of position as the optimal KFTNS. We can
also see from Figs. 3 and 4 that the proposed AKF has smaller SRNENs and SRNFNs
than the existing KFNNS and VBAKF-PR. Furthermore, the implementation times
of the proposed AKF and existing KFNNS and VBAKF-PR in a single step run are,
respectively, 0.63 ms, 0.02 ms and 0.46 ms. Thus, the proposed AKF can better esti-
mate the statistical parameters

{
x̂k|k−1, r, Pk|k−1, R

}
but has higher computational
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Fig. 7 ASRNFNs of Pk|k−1 and R for different numbers of iteration N = 1, 2, . . . , 20

complexity as compared with the existing KFNNS and VBAKF-PR, which results in
improved state estimation accuracy.

Figures 5, 6 and 7 show, respectively, the ARMSEs of position and velocity, the
ASRNENs of x̂k|k−1 and r , and the ASRNFNs of Pk|k−1 and R when different num-
bers of iteration N = 1, 2, . . . , 20 are selected, where the black and blue lines coincide
in the bottom subfigure of Fig. 6. It can be observed from Figs. 5, 6 and 7 that the
proposed AKF has smaller ARMSEs, ASRNENs and ASRNFNs than the existing
KFNNS and VBAKF-PR when N ≥ 3, and the proposed AKF has almost the same
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Fig. 9 RMESs of position and velocity for different priori confidence parameters βk = 2, 3, 4, 5, 6, 7

ARMSEs of position as the optimal KFTNS when N ≥ 5. Thus, the proposed AKF
has better accuracy for jointly estimating position, velocity and statistical parameters{
x̂k|k−1, r, Pk|k−1, R

}
when N ≥ 3. Moreover, we can observe from Figs. 5, 6 and

7 that the ARMSEs, ASRNENs and ASRNFNs of the proposed AKF all converge
when N ≥ 10. Therefore, the number of iteration N = 10 is enough to guarantee the
performance of the proposed AKF.
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Fig. 11 RMESs of position and velocity for different initial dof parameters ν0 = 3.1, 3.5, 4.0, 4.5, 5.0, 5.5

Figures 8, 9, 10 and 11 show the RMSEs of position and velocity when different
priori confidence parameters αk = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and βk = 2, 3, 4, 5, 6, 7,
different tuning parameters τ = 1, 2, 3, 4, 5, 6, and different initial dof parameters
ν0 = 3.1, 3.5, 4.0, 4.5, 5.0, 5.5 are, respectively, selected. It is seen fromFig. 8 that the
proposed AKFs with selected priori confidence parameters αk have better estimation
accuracy than existingKFNNS andVBAKF-PR, and the proposedAKFwithαk = 0.5
achieves the best estimation accuracy. It can be seen from Figs. 9 and 10 that the
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proposed AKFs with selected priori confidence parameters βk and tuning parameters
τ have almost consistent estimation accuracy and achieve better estimation accuracy
than the existing KFNNS and VBAKF-PR. We can see from Fig. 11 that the proposed
AKFs with selected initial dof parameters have almost consistent estimation accuracy
of position and better estimation accuracy as compared with the existing KFNNS and
VBAKF-PR.

6 Conclusion

In this paper, a new AKF was proposed for a linear Gaussian state-space model with
inaccurate noise statistics based on the VB approach. To resist the uncertainties of
noise statistics, the state vector, the one-step prediction and corresponding prediction
error covariance matrix, and the mean vector and covariance matrix of measurement
noise are jointly estimated based on the VB approach. Both the prior joint PDFs
of the one-step prediction and corresponding prediction error covariance matrix and
the joint PDF of the mean vector and covariance matrix of measurement noise are
selected as NIW distributions, based on which the posterior PDFs of these unknown
parameters are, respectively, approximated by Gaussian and IW distributions using
the VB approach. Simulation results of a target tracking example illustrated that the
proposed AKF has better estimation accuracy but higher computational complexity
than existing state-of-the-art AKFs, which is induced by the fact that the proposed
AKF can better estimate the one-step prediction and corresponding prediction error
covariance matrix and the mean vector and covariance matrix of measurement noise
as compared with existing state-of-the-art AKFs.

Appendices

A. Proofs of (29)–(33)

Substituting θ = x̂k|k−1, θ = r and (28) in (26), log q(i+1)(x̂k|k−1) and log q(i+1)(r)
are written as

log q(i+1)(x̂k|k−1) = −1

2
E(i)

[(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)]

− 1

2
αk

(
x̂k|k−1 − uk

)T E(i)
[
P−1
k|k−1

] (
x̂k|k−1 − uk

) + cx̂k|k−1, (81)

log q(i+1)(r) = −1

2
E(i)

[
(zk − Hkxk − r)T R−1 (zk − Hkxk − r)

]

− 1

2
βk (r − λk)

T E(i)
[
R−1

]
(r − λk) + cr . (82)

The first expectations in (81)–(82) are calculated as follows
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E(i)
[(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)]

= tr
{
E(i)

[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T]
E(i)

[
P−1
k|k−1

]}

= tr
{
E(i)

[(
xk − x̂(i)

k|k + x̂(i)
k|k − x̂k|k−1

) (
xk − x̂(i)

k|k+ x̂(i)
k|k − x̂k|k−1

)T]
×

E(i)
[
P−1
k|k−1

]}

=
(
x̂(i)
k|k − x̂k|k−1

)T
E(i)

[
P−1
k|k−1

] (
x̂(i)
k|k − x̂k|k−1

)
+ cx̂k|k−1, (83)

E(i)
[
(zk − Hkxk − r)T R−1 (zk − Hkxk − r)

]

= tr{E(i)
[
(zk − Hkxk − r) (zk − Hkxk − r)T

]
E(i)

[
R−1

]}

= tr{E(i)[(zk − Hk x̂
(i)
k|k − r − Hk(xk − x̂(i)

k|k))(zk − Hk x̂
(i)
k|k − r −

Hk(xk − x̂(i)
k|k))

T]E(i)
[
R−1

]
}

=
(
zk − Hk x̂

(i)
k|k − r

)T
E(i)

[
R−1

] (
zk − Hk x̂

(i)
k|k − r

)
+ cr . (84)

Substituting (83)–(84) in (81)–(82) and using (33) yields

log q(i+1)(x̂k|k−1) = −1

2

(
x̂(i)
k|k − x̂k|k−1

)T [
P̄

(i)
k|k−1

]−1 (
x̂(i)
k|k − x̂k|k−1

)

− 1

2
αk

(
x̂k|k−1 − uk

)T [
P̄

(i)
k|k−1

]−1 (
x̂k|k−1 − uk

) + cx̂k|k−1 , (85)

log q(i+1)(r) = −1

2

(
zk − Hk x̂

(i)
k|k − r

)T [
R̄

(i)
k

]−1 (
zk − Hk x̂

(i)
k|k − r

)

− 1

2
βk (r − λk)

T
[
R̄

(i)
k

]−1
(r − λk) + cr . (86)

Utilizing (85)–(86), we can obtain (29)–(32).

B. Proofs of (34)–(43)

Exploiting θ = Pk|k−1, θ = R and (28) in (26), log q(i+1)(Pk|k−1) and log q(i+1)(R)

are calculated as
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log q(i+1)(Pk|k−1) = −1

2
(ωk + n + 3) log

∣∣Pk|k−1
∣∣

− 1

2
E(i)

[(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)]

− 1

2
αkE

(i)
[(
x̂k|k−1 − uk

)T P−1
k|k−1(x̂k|k−1 − uk)

]

− 1

2
tr

{
Σk P

−1
k|k−1

}
+ cPk|k−1, (87)

log q(i+1)(R) = −1

2
(νk + m + 3) log |R|

− 1

2
E(i)

[
(zk − Hkxk − r)T R−1 (zk − Hkxk − r)

]

− 1

2
βkE

(i)
[
(r − λk)

T R−1 (r − λk)
]

− 1

2
tr

{
ΔkR−1

}
+ cR. (88)

Substituting (40)–(43) in (87)–(88) gives

log q(i+1)(Pk|k−1) = −1

2
(ωk + n + 3) log

∣∣Pk|k−1
∣∣

− 1

2
tr

{(
A(i+1)
k + B(i+1)

k + Σk

)
P−1
k|k−1

}
+ cPk|k−1, (89)

log q(i+1)(R) = −1

2
(νk + m + 3) log |R|

− 1

2
tr

{(
C(i+1)
k + D(i+1)

k + Δk

)
R−1

}
+ cR. (90)

According to (89)–(90), we can obtain (34)–(39).

C. Proofs of (44)–(47)

Using θ = xk and (28) in (26), log q(i+1)(xk) can be formulated as

log q(i+1)(xk) = −1

2
tr

{
E(i+1) [(zk − Hk xk − r) × (zk − Hk xk − r)T

]
× E(i+1)

[
R−1

]}

− 1

2
tr

{
E(i+1)

[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T]
E(i+1)

[
P−1
k|k−1

]}
+ cxk ,

(91)

where the first and third expectations are calculated as
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E(i+1)
[
(zk − Hkxk − r) (zk − Hk xk − r)T

]

= E(i+1)
[
(zk − Hk xk− λ̂

(i+1)
k + λ̂

(i+1)
k − r

) (
zk − Hk xk − λ̂

(i+1)
k + λ̂

(i+1)
k − r

)T]

= (zk− λ̂
(i+1)
k − Hkxk

) (
zk − λ̂

(i+1)
k − Hk xk

)T + Ω̂
(i+1)
k , (92)

E(i+1)
[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T]

= E(i+1) [(xk− û(i+1)
k + û(i+1)

k − x̂k|k−1

) (
xk − û(i+1)

k + û(i+1)
k − x̂k|k−1

)T]

=
(
xk − û(i+1)

k

) (
xk − û(i+1)

k

)T + Û
(i+1)
k . (93)

Employing (31) and (92)–(93) in (91) yields

log q(i+1)(xk) = −1

2

(
zk − λ̂

(i+1)
k − Hkxk

)T [
R̄

(i)
k

]−1 (
zk − λ̂

(i+1)
k − Hkxk

)

− 1

2

(
xk − û(i+1)

k
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[
P̄

(i)
k|k−1

]−1 (
xk − û(i+1)

k

)
+ cxk , (94)

According to (94), we can obtain (44)–(47), where (45)–(47) is given by the mea-
surement update of the Kalman filter.

D. Proofs of (55)–(58)

Exploiting (29)–(30) and (44), the auxiliary parameters A(i+1)
k , B(i+1)

k , C(i+1)
k and

D(i+1)
k in (40)–(43) can be, respectively, calculated as

A(i+1)
k = E(i)

[(
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k = αkE
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k + û(i+1)
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, (96)
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)
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k − Hk(xk − x̂(i)

k|k) +λ̂
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(i)
k|kH
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, (97)

D(i+1)
k = βkE
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r − λ̂
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According to (95)–(98), we can obtain (55)–(58).
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