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Abstract
We propose a new algorithm for accelerating the computation time of Charlier discrete
orthogonal moments for three-dimensional (3D) images, based on two fundamental
notions: The first is a new representation of 3D images called image cuboid represen-
tation (ICR) in which the 3D image is decomposed into a set of cuboids of the same
gray level instead of voxels, enabling a considerable reduction in both the amount of
treated voxels and the computation time of Charlier moments. The second is a matrix
calculation of the Charlier moments instead of direct or recursive calculations. The
significant reduction in the computation time for Charlier moments, in combination
with the ICR method, motivated the development of this new method for 3D image
reconstruction. Simulation results confirm the effectiveness of the proposed method in
terms of the calculation time of 3D Charlier moments as well as the speed and quality
of image reconstruction.

Keywords 3D Charlier moments · 3D image cuboid representation · 3D image
reconstruction · Matrix computation

1 Introduction

The dynamic development of 3D imaging technology has prompted researchers to
improve methods of analysis and processing of 3D images, including those based on
the theory of moments. Indeed, the latter has been applied for image reconstruction,
compression, watermarking, classification, and indexing as well as pattern recognition
[5, 10, 20, 24, 25, 31, 41].

Theoretically, moments can be classified into three main categories:
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(a) Nonorthogonal moments such as geometric and complex moments, which
have been applied by several researchers for reconstruction and classification of two-
dimensional (2D) images [7–15], although they are limited by two major problems,
namely information redundancy and noise sensitivity [30].

(b) Continuous orthogonal moments such as those of Legendre [30, 34, 39], Zernike
[3, 30, 40], Hermite [3, 14], Gegenbauer [13], and Jacobi [32], which have been
applied by many researchers. Their advantageous feature of orthogonality can solve
the problems of information redundancy and noise sensitivity, but they are limited
to problems that can be spatially discretized on domains defined by polynomials and
suffer from divergence of the values of moments, especially those of high order.

(c) Discrete orthogonal moments such as those of Tchebichef [2, 33], Krawtchouk
[38], Hahn [25, 36, 37], Charlier [8, 19], andMeixner [10, 26]. The main advantage of
these moments is that they do not require spatial discretization, thereby addressing the
problems encountered when using continuous orthogonal moments, albeit at the cost
of increased time consumption. Indeed, computation of such moments is a complex
and costly task in terms of time, limiting their application, especially for large image
sizes and in the case of calculations online. This slowness is mainly due to two factors:
the computation of a set of complex quantities for each order of moments, and the
evaluation of the values of the polynomial for each pixel of the image.

To reduce the cost of such moment computations, several algorithms have been
introduced in literature for 2D images [1, 6, 10, 11, 22, 26, 28];Most of these algorithms
are based on either:

• Acceleration of the time required to calculate the values of the polynomials using
new approaches such as recursive or matrix computations [6, 11, 17, 19, 33]

• Use of new image representations based, e.g., on blocks or slices, to reduce the
amount of the image that must be processed [28, 29]

However, no work has been dedicated to acceleration of the calculation of Charlier
discrete orthogonal moments to make them usable for 3D images, especially for 3D
objects of large size and for processing in real time.

We propose herein, for the first time, a new algorithm to accelerate the calculation
of Charlier discrete orthogonal moments for 3D images. The algorithm is based on a
new representation called image cuboid representation (ICR), in which a 3D image is
decomposed into a set of cuboids of the same gray level instead of voxels, allowing
a considerable reduction in both the quantity of voxels to be processed and thus the
computation time of the moments.

In addition, we adopt and compare three methods for calculating the Charlier
moments of a 3D image, viz. direct, recursive, and matrix, then choose the fastest.
Simulation results confirm the efficiency of the proposed method in terms of reducing
the time required to calculate the Charlier moments.

These results encouraged us to apply this representation for reconstruction of 3D
objects using Charlier moments. We therefore also propose a new method for recon-
struction of 3D images using Charlier moments, based on partial reconstruction of
3D images from the cuboids instead of global reconstruction. The proposed method
offers two advantages: acceleration of the computation and enhanced reconstruction
quality.
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The remainder of this manuscript is organized as follows: Section 2 defines the
three-dimensional Charlier moments and presents the three methods to calculate the
Charlier polynomial values. Section 3 presents the new 3D image representation based
on cuboids, called image cuboid representation (ICR). Section 4 presents the novel
algorithm to calculate the 3DCharliermoments rapidly basedon the ICRand thematrix
calculation of the moments. Then, Sect. 5 presents the new 3D image reconstruction
method based on the cuboids extracted using the ICR algorithm. Section 6 presents
simulation results that confirm the efficiency and speed of the proposed algorithm.
Finally, Sect. 7 concludes the paper.

2 3D Charlier Moments

The three-dimensional Charlier moments are defined as the projections of a 3D image
onto the orthogonal basis of the Charlier discrete orthogonal polynomials. Therefore,
for a 3D digital image f (x, y, z) with size N ×M ×K , that is, x ∈ [0, N − 1],
y ∈ [0, M − 1], and z ∈ [0, K − 1], the (n + m + k)th-order Charlier moment is
defined as

CMnmk �
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) f (x, y, z) (1)

where C̃a1
n (x) is the nth Charlier normalized polynomial.

Calculation of the 3DCharlier moments proceeds by calculation of the values of the
Charlier polynomials for each voxel of the 3D image.We present herein three methods
for calculating the values of the Charlier polynomials: the direct and recursivemethods
with respect to the order n, and the recursive method with respect to the variable x.

2.1 Direct Method

The nth Charlier polynomials can be represented using the hypergeometric function
as [21]

Ca1
n (x) � 2F0

(
−n,−x ;− 1

a1

)
, (2)

where x, n � 0, 1, 2, . . . , N − 1, N > 0, and a1 > 0.
The normalized form of the Charlier polynomials is defined by [21]

C̃a1
n (x) � Ca1

n (x)

√
ω(x)

ρ(n)
, (3)
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where ω(x) is the weight function of the Charlier discrete orthogonal polynomials,
viz.

ω(x) � e−a1ax1
x!

, (4)

and ρ(n) is the squared norm of the Charlier discrete orthogonal polynomials, defined
as

ρ(n) � n!

an1
. (5)

Calculation of the Charlier polynomial values using Eq. (2) is very demanding in
terms of time, requiring excessive operations including a certain number of multi-
plications and additions (factorials, powers, sums, etc.). To address this problem, we
introduce the recursive computation method.

2.2 Recursive Method with Respect to the Order n

The Charlier polynomials satisfy a recurrence relation between three successive terms,
defined by the following relation [8]:

C̃a1
n (x) � a1 − x + n − 1

a1

√
a1
n
C̃a1
n−1(x) −

√
n − 1

n
C̃a1
n−2(x) (6)

with n � 2, 3, …
C̃a1
0 (x) and C̃a1

1 (x) are the initial values, defined as

C̃a1
0 (x) �

√
ω(x)

ρ(0)
and C̃a1

1 (x) � a1 − x

a1

√
ω(x)

ρ(1)
. (7)

The calculation of theCharlier polynomial values using this recurrence relationwith
respect to the order n is limited by the numerical fluctuation problem of polynomial
values and for large values. To solve this problem, Hmimid et al. [9] suggested using
the recurrence relation with respect to the variable x instead of the order n to calculate
the values of the Charlier polynomials.

2.3 Recursive Method with Respect to the Variable x

The Charlier discrete orthogonal polynomials satisfy the following recurrence relation
between three successive terms with respect to the variable x:

Ca1
n (x) � x − 1 + a1 − n

a1
Ca1
n (x − 1) − x − 1

a1
Ca1
n (x − 2). (8)
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According to Eq. (3), the normalized form can be expressed by substitutions as
follows:

C̃a1
n (x) �

√
ω(x)

a1

[
x − 1 + a1 − n√

ω(x − 1)
C̃a1
n (x − 1) − x − 1√

ω(x − 2)
C̃a1
n (x − 2)

]
, (9)

where x � 2, . . . , N − 1..
The initial values are defined by

C̃a1
n (0) �

√
ω(0)

ρ(n)
and C̃a1

n (1) � a1 − n

a1

√
ω(1)

ρ(n)
. (10)

This section has presented the different types of calculations for the 3D Charlier
moments, namely the direct and recursive methods with respect to the variable x
and order n. The resulting definitions and properties are used throughout the work.
However, these calculations of the moments are very slow and complex, limiting their
wide use for 3D images. To address these problems, we propose, in the next section,
a new method based on the 3D image cuboid representation (ICR).

3 3D Image Cuboid Representation (ICR)

A 3D image is a three-dimensional representation of an object or set of objects in the
real or digital domain. In the case of a discrete representation, the 3D image is often
projected into a three-dimensional space with the three axes x, y, z. The notion of a
voxel in 3D images is the equivalent of a pixel in 2D images.

Therefore, a voxel represents the elementary unit of volume, defined by its position
in space, its dimensions, and its intensity. In addition, voxels are often considered as
elements that have the same dimensions, although there may be cases where voxels of
the same image are of different dimensions, as in magnetic resonance imaging (MRI)
medical images. In the case of voxels having the same dimensions, we consider that
the volume can be represented by a discrete function f (x, y, z) where each voxel at
coordinates (x, y, z) is represented by an intensity f i; alternatively, this function can
be represented as a 3D matrix (Fig. 1).

Herein, we suggest a new method for representing a 3D image using cuboids that
include voxels of the same intensity (homogeneous), considering the work of Spiliotis
[29] and Papakostas [23], who presented the concept of representing a 2D image using
a set of homogeneous pixel blocks.

Using this representation, called the image cuboid representation (ICR), an image is
defined by a set of cuboids, each of which contains a single gray level. This also allows
the image to be divided into larger elements than simple voxels but with homogeneous
intensity, thus reducing the number of elements that must be treated. Based on this
proposal, for 3D binary images, one no longer needs to describe the voxels of level
0, but only those of level 1. However, for gray level images, the intensity takes values
between 0 and 255, which results in cuboids represented by n (1≤n ≤255) values of
intensity, while cuboids of zero intensity are neglected. Thus, to represent a binary or
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fi(x,y,z)

Fig. 1 Representation of a 3D image

grayscale 3D image of size N ×M ×K , we propose the following algorithm, called
image cuboid representation (ICR):

ICR algorithm

Step 1: Divide the image f (x, y, z) such that x ∈ [1, N ], y ∈ [1, M] and z ∈ [1, K ] into a matrix K of
size N ×M

Step 2: Consider each line y of Kz with z � 0, . . . K − 1 and find object-level intervals for each
intensity value that exists in line y

Step 3: Compare intervals and blocks having the same intensity in line y − 1

Step 4: If an interval does not match with any block of the same intensity, it is the beginning of a new
block. If a block matches with an interval of the same intensity, the end of the block is in line y

Step 5: Compare blocks having the same intensity in the matrix Kz−1. If a block does not correspond
to any cuboid of the same intensity, then it is the beginning of a new cuboid

Step 6: Output the L cuboids described by their intensities f i and positions (x1, x2, y1, y2, z1, z2)

To illustrate the proposed algorithm, we apply it to a 3D image taken from the
McGill database [16], which represents a 3D “Airplane” with size of 128×128×128
(Fig. 2). Applying the ICR algorithm to this image, we obtain the different cuboids
that form the image, as shown in Fig. 2.

The number of cuboids in this image is 586, thus one can treat these 586 elements
instead of the 128 × 128 × 128 � 2 097 152 pixels, which shows the importance of
this new representation for image processing.

In the next sections, a new method for calculating the 3D Charlier discrete orthog-
onal moments and their inverse based on the 3D ICR is suggested, to reduce the
computation time and thereby accelerate the process of 3D image analysis (recon-
struction, shape recognition, classification, etc.).
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Fig. 2 Several views of the representation of the “Airplane” image using cuboids

4 Fast Computation of 3D Charlier Discrete Orthogonal Moments

In this section,wepropose a newmethod to compute the 3DCharliermoments based on
the new representation presented in the previous section. Applying the ICR algorithm,
the 3D Charlier moments can be calculated using two methods:

• Direct calculation from the cuboids instead of the whole image
• Calculation as the product of the matrices for each cuboid
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4.1 Direct Computation of 3D Charlier Moments

For a 3D image f (x, y, z) containing L cuboids extracted using the ICR algorithm,

f (x, y, z) �
255∑

i�1

fi (x, y, z), (11)

where { fi , i � 1, 2, . . . , 255} is the ith intensity of the 3D image and

fi (x, y, z) � Cub fi
j , (12)

where Cub fi
j is cuboid j of intensity f i, j � 1, ···, and Li is the jth cuboid of intensity

f i, while L �
255∑
i�1

Li , where Li is the number of cuboids of each intensity f i.

Using the ICR algorithm, the 3D Charlier moments of order (n + m + k) for a 3D
image f (x, y, z) of size N ×M ×K in Eq. (1) can be computed as

CMnmk �
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) f (x, y, z)

�
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z)

255∑

i�1

fi (x, y, z)

�
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) f1(x, y, z)

+
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) f2(x, y, z) + · · · · · ·

+
N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) f255(x, y, z). (13)

Since a cuboid is determined by the coordinates (x1, x2, y1, y2, z1, z2), Eq. (13)
can be written as

CMnmk � f1
∑

x1

∑

y1

∑

z1

C̃a1
n (x1)C̃

a1
m (y1)C̃

a1
k (z1)

+ f2
∑

x2

∑

y2

∑

z2

C̃a1
n (x2)C̃

a1
m (y2)C̃

a1
k (z2)

+ · · · f255
∑

x255

∑

y255

∑

z255

C̃a1
n (x255)C̃

a1
m (y255)C̃

a1
k (z255)

� f1CM
1
nmk + f2CM

2
nmk + · · · f255CM255

nmk
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�
255∑

i�1

fiCM
i
nmk, (14)

where CMi
nmk is the (n + m + k)th-order 3D Charlier discrete orthogonal moment of

intensity fi .
The moments corresponding to an intensity fi can be calculated from the cuboids

of each intensity using the relation

CMi
nmk �

Li∑

j�1

fi

x
2,Cub

fi
j∑

x�x
1,Cub

fi
j

C̃a1
n (x)

y
2,Cub

fi
j∑

y�y
1,Cub

fi
j

C̃a1
m (y)

z
2,Cub

fi
j∑

z�z
1,Cub

fi
j

C̃a1
k (z)

�
Li∑

j�1

CM
Cub

fi
j

nmk , (15)

where CM
Cub

fi
j

nmk is the (n +m + k)th-order 3D Charlier discrete orthogonal moment of
intensity f i for each cuboid.

Thus, the 3D Charlier discrete orthogonal moments can be written as

CMnmk �
255∑

i�1

Li∑

j�1

x
2,Cub

fi
j∑

x�x
1,Cub

fi
j

y
2,Cub

fi
j∑

y�y
1,Cub

fi
j

z
2,Cub

fi
j∑

z�z
1,Cub

fi
j

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) fi (x, y, z)

�
255∑

i�1

Li∑

j�1

CM
Cub

fi
j

nmk (16)

with

CM
Cub

fi
j

nmk �
x
2,Cub

fi
j∑

x�x
1,Cub

fi
j

y
2,Cub

fi
j∑

y�y
1,Cub

fi
j

z
2,Cub

fi
j∑

z�z
1,Cub

fi
j

C̃a1
n (x)C̃a1

m (y)C̃a1
k (z) fi (x, y, z). (17)

4.2 Matrix Computation of 3D Charlier Moments

In this section, to accelerate the computation of the 3DCharlier moments, we combine
the ICR algorithmwith that based onmatrix multiplication proposed byWu et al. [35].

After specifying the cuboids of a 3D image using the ICR algorithm, we first apply
the matrix calculation of the Charlier moments as follows: First, for each matrix of
cuboid j of size Nj ×Mj ×Kj with N j � x2 − x1 + 1, Mj � y2 − y1 + 1, and K j �
z2−z1+1 by the coordinates (x1, x2, y1, y2, z1, z2) that are based on the decomposition
of this cuboid j in Kj matrix, which represents the blocks bzi j , z1 ≤ z ≤ z2. Then, for
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each block in the following step. Thus, it is evident that each block is determined by
the coordinates (x1, x2, y1, y2).

The 3D Charlier orthogonal moments for each cuboid in Eq. (17) can thus be
expressed as

CM
Cub

fi
j

nmk �
z
2,Cub

fi
j∑

z�z
1,Cub

fi
j

C̃a1
k (z)

⎡

⎢⎢⎣

x
2,Cub

fi
j∑

x�x
1,Cub

fi
j

y
2,Cub

fi
j∑

y�y
1,Cub

fi
j

C̃a1
n (x)C̃a1

m (y) fi (x, y, z)

⎤

⎥⎥⎦

�
z
2,Cub

fi
j∑

z�z
1,Cub

fi
j

C̃a1
k (z)CM

bzi j
nm (18)

where CM
bzi j
nm are the Charlier moments in each block of cuboid j, which can also be

written as

CM
bzi j
nm �

x
2,Cub

fi
j∑

x�x
1,Cub

fi
j

y
2,Cub

fi
j∑

y�y
1,Cub

fi
j

C̃a1
n (x)C̃a1

m (y) fi (x, y, z), (19)

which can be reexpressed as a matrix product thus

CM
bzi j
nm � P1 I P

T
2 , (20)

where

CMbzi j �
{
CM

bzi j
nm

}n�M−1,m�N−1

n,m�0
, 0 ≤ n ≤ M − 1, 0 ≤ m ≤ N − 1

P1 �
{
C̃a1
n (x)

}n�M−1,x�x
2,Cub

fi
j

n�0,x�x
1,Cub

fi
j

, 0 ≤ n ≤ M − 1, x
1,Cub

fi
j

≤ x ≤ x
2,Cub

fi
j

P2 �
{
C̃a1
m (y)

}m�N−1,y�y
2,Cub

fi
j

m�0,y�y
1,Cub

fi
j

, 0 ≤ m ≤ N − 1, y
1,Cub

fi
j

≤ y ≤ y
2,Cub

fi
j

I � { fi (x, y, z)}
x�x

2,Cub
fi
j

,y�y
2,Cub

fi
j

x�x
1,Cub

fi
j

,y�y
1,Cub

fi
j

, x
1,Cub

fi
j

≤ x ≤ x
2,Cub

fi
j
, y

1,Cub
fi
j

≤ y ≤ y
2,Cub

fi
j
.

The calculation of the 3D Charlier moments for each cuboid proceeds through the
two following steps:

Step1.Compute thematrixKj along the z-direction usingEq. (20) to yield temporary

matrices of the Charlier moments at each block of cuboid j, where CM
bzi j
nm denotes

the element in the nth row and mth column of the kth plane in the z-direction.
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Step 2. Rearrange the matrices obtained in step 1 and multiply by the polynomial

matrices P3 �
{
C̃a1
k (z)

}k�K−1,z�z
2,Cub

fi
j

k�0,z�z
1,Cub

fi
j

, 0 ≤ k ≤ K −1 , z
1,Cub

fi
j

≤ z ≤ z
2,Cub

fi
j

to obtain a (n + 1) matrix of size (m + 1)× (k + 1) and thereby the 3D Charlier
moments of order (n, m, k) for each cuboid.
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The 3D Charlier moments of order n � 0 can then be written for each cuboid as
the following matrix:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

CM
Cub

fi
j

000 CM
Cub

fi
j

001 · · · CMCub
fi
j

00k

CM
Cub

fi
j

010 CM
Cub

fi
j

011 · · · CMCub
fi
j

01k
...

...
. . .

...

CM
Cub

fi
j

0m0 CM
Cub

fi
j

0m1 · · · CMCub
fi
j

0mk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̃a1
0

(
z
1,Cub

fi
j

)
C̃a1
0

(
z
1,Cub

fi
j
+ 1

)
· · · C̃a1

0

(
z
2,Cub

fi
j

)

C̃a1
1

(
z
1,Cub

fi
j

)
C̃a1
1

(
z
1,Cub

fi
j
+ 1

)
· · · C̃a1

1

(
z
2,Cub

fi
j

)

...
...

. . .
...

C̃a1
k

(
z
1,Cub

fi
j

)
C̃a1
k

(
z
1,Cub

fi
j
+ 1

)
· · · C̃a1

k

(
z
2,Cub

fi
j

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CM
b
z1
i j
00

(
z
1,Cub

fi
j

)
CM

b
z1
i j
01

(
z
1,Cub

fi
j

)
· · · CMb

z1
i j
0m

(
z
1,Cub

fi
j

)

CM
b
z1
i j
00

(
z
1,Cub

fi
j
+ 1

)
CM

b
z1
i j
01

(
z
1,Cub

fi
j
+ 1

)
· · · CMb

z1
i j
0m

(
z
1,Cub

fi
j
+ 1

)

...
...

. . .
...

CM
b
z1
i j
00

(
z
2,Cub

fi
j

)
CM

b
z1
i j
01

(
z
2,Cub

fi
j

)
· · · CMb

z1
i j
0m

(
z
2,Cub

fi
j

)

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Meanwhile, for order n � 1, the 3D Charlier moments for each cuboid can be
written as the following matrix:
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For order n, the 3DCharliermoments for each cuboid can bewritten as the following
matrix:
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.

Then, having calculated the 3D Charlier moments for each cuboid using the blocks
in each, one sums the resulting matrices for each cuboid to finally compute the 3D
Charlier moments using Eq. (16).

The direct and matrix calculations based on the 3D ICR require less computational
time. The significant reduction in the time required to calculate the 3DCharlier discrete
orthogonal moments when using these two computational methods encouraged us to
apply them for several image processing tasks such as reconstruction and classification.

5 Fast 3D Image Reconstruction Using 3D Charlier Moments

In this section, we present a fast and accurate approach for 3D image reconstruction
using Charlier discrete orthogonal moments. The approach is based on the new ICR
algorithm. Thus, the acceleration of the reconstruction process for a 3D image is due
to two factors:

• The rapid calculation of the Charlier moments using the cuboids extracted from
each image

• The partial reconstruction of the image from the cuboids instead of the whole image

Two versions of the proposed reconstruction method are presented:

• A local reconstruction of the 3D image using a direct computation on the cuboids
• Amethod based on the matrix calculation for each block at each cuboid, to calculate
the local Charlier 3D moments
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5.1 Local Reconstruction of 3D Image by Direct Computation of 3D Charlier
Moments

In theory, an original 3D image function f (x, y, z) of sizeN ×M ×K can be represented
by an infinite series of 3D moments:

f (x, y, z) �
∞∑

n�0
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k�0

CMnmkC̃
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⎧
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0 ≤ y ≤ M − 1
0 ≤ z ≤ K − 1

(21)

The local reconstruction of a 3D image f (x, y, z) of sizeN ×M ×K can be obtained
by direct calculation from the 3D image cuboid representation (ICR), using the defi-
nition of the 3D Charlier moments in Eq. (17):

f (x, y, z) �
255∑

i�1

Li∑

j�1

∞∑

n�0

∞∑

m�0

∞∑

k�0

CM
Cub

fi
j

nmk C̃a1
n (x)C̃a1

m (y)C̃a1
k (z),

⎧
⎪⎪⎨

⎪⎪⎩

x
1,Cub

fi
j

≤ x ≤ x
2,Cub

fi
j

y
1,Cub

fi
j

≤ y ≤ y
2,Cub

fi
j

z
1,Cub

fi
j

≤ z ≤ z
2,Cub

fi
j

�
255∑

i�1

Li∑

j�1

f Cub
fi
j (x, y, z), (22)

where f Cub
fi
j (x, y, z) is the partial reconstruction for each cuboid:
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5.2 Local Reconstruction of 3D Image byMatrix Computation of 3D Charlier
Moments

In this subsection, we present a new method for reconstructing the 3D image, called
the local reconstruction method; it allows reconstruction of the 3D image using the
Charlier 3D matrix calculation of the blocks of each cuboid j. If the 3D moments are
limited to one order, the partial reconstruction of the 3D Charlier moments for each
cuboid using Eq. (23) can be rewritten as
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where Fbzi j is the partial reconstruction of the 2D Charlier moments in each block of
cuboid j.
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Fbzi j can also be written as

Fbzi j (x, z) �
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We calculate Fbzi j in Eq. (25) by using a matrix form for a 2D image, which can be
reexpressed as

Fbzi j � QT
1CM

bzi j Q2, (26)

where Fbzi j , CMbzi j , QT
1 , and Q2 are defined as
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The local reconstruction of a 3D image using the matrix computation of the 3D
Charlier moments for each cuboid proceeds through the following three-step algo-
rithm:

Algorithm for the local reconstruction of 3D Charlier moments

Step 1: Compute the matrix Kj along the m-direction using (26) to obtain temporary matrices of the

partial reconstruction of the 2D Charlier moments in each block of cuboid j, where F
bzi j
xz denotes the

element in the xth row and zth column in the yth plane of m-direction. F
bzi j
xz (m),m � 0, 1, . . . , Max.

Step 2. Rearrange the matrices obtained in step 1 and multiply by the polynomial matrices Q3 �
{
C̃
a1
m (y)

}m�Max,y�y
2,Cub

fi
j

m�0,y�y
1,Cub

fi
j

, y
1,Cub

fi
j

≤ y ≤ y
2,Cub
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j

, 0 ≤ m ≤ Max to obtain a matrix Nj of size

Mj ×Kj , which yields the local reconstruction of the 3D Charlier moments for each cuboid f
Cub

fi
j

of size (Nj , Mj , Kj).

Step 3.Merge the partial reconstruction of the 3D Charlier moments of each cuboid to reconstruct a 3D
image with the same size as the original 3D image.

Figure 3 shows the flowchart for calculating the 3D Charlier moments and their
inverse using the matrix computation via the ICR algorithm.

The proposed method focuses on reducing the computation time required to obtain
the 3D Charlier discrete orthogonal moments of a 3D image, vastly enhancing the
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Fig. 3 3D image reconstruction process diagram

quality of the 3D image reconstruction. Clearly, our method is based on two main
concepts:

• The image cuboid representation (ICR)
• The matrix calculation of the 3D Charlier moments and their inverse

The 3D image decomposition therefore starts with the extraction of cuboids for
which only weak-order moments are needed, based on the ICR algorithm. The
extracted cuboids are then applied to calculate the 3D Charlier moments using the
matrix calculation for each cuboid. Each cuboid is then rebuilt using the 3D Charlier
moments computed for each cuboid. Finally, the matrices of the reconstructed cuboid
are summed to complete the 3D image reconstruction.

6 Simulations and Results

To validate the theoretical results developed in the previous sections and test the
performance of the proposedmethod in terms of time and reconstruction performance,
several simulations were carried out. This section is divided into two subsections:

• Firstly, we compare the calculation time of the 3D Charlier moments and their
inverse using the recurrence calculationmethodwith respect to the variable x and the
two versions of the proposed method, viz. based on direct and matrix calculations.

• Secondly, we test the ability of the 3D Charlier discrete orthogonal moments to
reconstruct 3D images when using the global and the proposed local methods. We
also test the proposed method for other types of 3D discrete orthogonal moments
such as those of Tchebichef, Krawtchouk, and Hahn, and compare the four types of
moments in terms of computation time and image reconstruction performance.

6.1 Computation Time of 3D Charlier Moments

In this subsection, we compare the time required to compute the Charlier discrete
orthogonal moments using the recursive and the two versions of the proposed method
based on the 3D image representation using cuboids according to the ICR algorithm
presented in Sect. 3.
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In the first test, we present the simulation results obtained in terms of the number
of cuboids extracted from each 3D image. We use images of size 128×128×128
voxels, viz. four 3D images extracted from from the McGill 3D shape benchmark
database CVonline [16] (Fig. 4) and three MRI images (Fig. 5), as a three-dimensional
matrix, where each image is composed of a different number of cuboids.

After extracting the cuboids from each 3D image using the ICR algorithm, the
ICR and the number of cuboids in each image are shown in Figs. 4 and 5; this new
representation of the 3D images effectively reduces the number of elements to be
processed, as the number of cuboids in a 3D image is much smaller than the number
of voxels.

In the second test, we compare the time required to calculate the 3DCharlier discrete
orthogonal moments using both the recursive and the proposed methods based on the
3D ICR with either the direct or matrix calculations. The process of calculating the
3D Charlier moments is performed for orders ranging from 0 to 90 for two 3D images
(“Ant” and “Bird”) of size 128×128×128 (Fig. 4).

Figure 6 shows the time required to compute the Charlier moments using the three
methods, viz. the recursive, direct, and matrix approaches, revealing that the two
proposedmethods are faster than the recursive one, with thematrix version being faster
than the direct one. These results confirm the importance of the proposed method for
calculating the 3D Charlier moments compared with the recursive method. Note that
the time required for cuboid extraction from each 3D image is approximately 0.1 ms,
being much shorter than the time required to calculate the 3D Charlier moments by
the recursive method.

In the third test, we compare the time required to reconstruct a 3D image using
the 3D Charlier moments computed by the three methods presented above. The
reconstruction process is performed using the 3D Charlier moments of order from 0 to
90 for the two previous 3D images (“Ant” and “Bird”) of size 128×128×128 (Fig. 4).

Figure 7 shows the reconstruction times for the two images using the 3D Charlier
moments computed by the threemethods, viz. recursive, direct, andmatrix. The results
in this figure confirm that the reconstruction time using the moments calculated by
the two proposed methods is shorter compared with the recursive method, and that
the proposed matrix method is faster than the direct version. These results confirm the
importance of the two methods proposed for 3D image reconstruction.

In the fourth test, we test our proposed method but with other types of 3D dis-
crete orthogonal moments, namely those of Tchebichef [35], Krawtchouk [12], and
Hahn [4]. We compare the computation time for the 3D image “Bird” when using
the Tchebichef, Krawtchouk, and Hahn moments with the reconstruction time for this
image using the three methods presented above. The calculation and reconstruction
processes were performed using moments of order from 0 to 90. To compare the three
computational methods, the execution time improvement ratio (ETIR) is used as a
criterion [27], defined as ETIR = (1−Time1/Time2)× 100, where Time1 and Time2
are the execution times of the recursive and the proposed methods. ETIR � 0 if both
execution times are identical.

Tables 1 and 2 present the average computation time for the 3D moments of
Tchebichef, Krawtchouk, Hahn, and Charlier of order from 0 to 90 for the 3D “Bird”
image using the three methods presented above. Note that ETIR1 [11] is calculated



3732 Circuits, Systems, and Signal Processing (2019) 38:3715–3742

3D original images of size  
128x128x128 

Image cuboid representation 
(ICR) 

Number 
of 

cuboid
Ant

1436 

Bird

1616 

Crab

3133 

Dolphin 616 

Fig. 4 Image cuboid representation (ICR) of 3D images

between the direct method and the recursive method, while ETIR2 [11] is computed
between the matrix method and the recursive method.
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Fig. 5 Image cuboid representation (ICR) of 3D MRI images

The simulation results in Tables 1 and 2 show that the computation time for the
moments and the reconstruction of the two images by the two methods (direct and
matrix) is much shorter than when using the moments obtained by the recursive
method. This confirms the speed and robustness of the two proposed methods for
the calculation of the 3D moments and the reconstruction of 3D images, compared
with the recursive method. The computational time required for the 3D moments of
Tchebichef, Krawtchouk, Hahn, and Charlier is considerably shortened, where the
acceleration reaches 99 %.

Note that the results in Figs. 6 and 7 and Tables 1 and 2 were obtained for the
case a1 � 80 for the Charlier polynomials, for the case p � 0.5 for the Krawtchouk
polynomials, and for the case a � 10 and b � 10 for the Hahn polynomials.
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(a) (b)

Fig. 6 Time required to compute the 3D Charlier moments for the 3D images “Ant” (a) and “Bird” (b) using
the recursive method and the proposed direct and matrix methods

(a) (b)

Fig. 7 Reconstruction time for 3D images “Ant” (a) and “Bird” (b) using the 3D Charlier moments obtained
by the recursive method and the proposed direct and matrix methods

6.2 3D Image Reconstruction by Global and Local Methods Using 3D Charlier
Moments

In this section, we discuss the capacity of 3D Charlier moments for 3D image recon-
struction using the proposed local and global methods presented in Sect. 5, applying
objective criteria commonly used in literature to measure the quality of reconstructed
3D images. To evaluate the performance of the two methods, we calculate the mean
squared error (MSE) between the original and reconstructed image, a criterion that is
widely used in the field of image analysis as a quantitative measure of reconstruction
accuracy.

The mean squared error for a 3D image of size N ×M ×K is defined as

MSE � 1

N × M × K

N−1∑

x�0

M−1∑

y�0

K−1∑

z�0

(
f (x, y, z) − ∧

f (x, y, z)

)2

, (27)
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Table 1 Average calculation time for the 3Dmoments using the three methods and the reduction percentage
for the 3D image “Bird”

Type of 3D moments Average moment calculation time using the three
methods

ETIR1 % ETIR2 %

Recursive method Direct method Matrix method

Tchebichef [35] 2.8117 × 104 1.0612 × 103 3.1579 96.2256 99.9888

Krawtchouk [12] 2.8104 × 104 1.0723 × 103 3.0156 96.1844 99.9893

Hahn [4] 3.0996 × 104 1.0698 × 103 2.7255 96.5486 99.9912

Charlier 2.8643 × 104 1.0500 × 103 2.6955 96.3343 99.9906

Table 2 Average 3D image reconstruction time using 3D moments obtained by the three methods and the
reduction percentage for the 3D image “Bird”

Type of 3D moments Average 3D image reconstruction time using the three
methods

ETIR1 % ETIR2 %

Recursive method Direct method Matrix method

Tchebichef [35] 3.108 × 104 1.3125 × 103 3.8166 95.7770 99.9877

Krawtchouk [12] 3.5860 × 104 1.5123 × 103 5.9180 95.7828 99.9835

Hahn [4] 3.3808 × 104 1.9123 × 103 4.6928 94.3436 99.9861

Charlier 3.3860 × 104 1.3066 × 103 4.2965 96.1412 99.9873

where
∧
f (x, y, z) is the reconstructed version of the 3Doriginal image function f (x, y, z)

for each voxel (x, y, z).
In Ref. [18], the peak signal-to-noise ratio is defined in decibels (dB) as

PSNR � 10 log10

(
k2

MSE

)
, (28)

where k is the maximum value in each voxel of the 3D original image.
To illustrate the performance of the proposed local method, we tested our algorithm

on two 3D images of size 128×128×128 voxels, viz. “Crab” and “Image 1” shown
in Figs. 4 and 5, respectively. The reconstruction test was performed using the two
methods on the different 3D images: the proposed local method and the global one
using the 3D Charlier discrete orthogonal moments of order from 0 to 90.

Figures 8 and 9 show the mean squared error (MSE) and the peak signal-to-noise
ratio obtained for the 3D image “Crab” using bothmethods.Note that themean squared
error (MSE) decreases as the number of orders of Charlier 3D moments is increased,
approaching zero.

When the maximum order of the moments reaches a certain value, the recon-
structed image becomes very similar to the original image. The PSNR ratio increases
with increase of the Charlier moment order, until reaching a stable value where the
reconstructed image becomes closest to the original image.
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(a) (b)

Fig. 8 a Mean squared error (MSE) and b peak signal-to-noise ratio (PSNR) obtained using 3D Charlier
moments for the 3D image “Crab” with the global and proposed local methods

(a) (b)

Fig. 9 a Mean squared error (MSE) and b peak signal-to-noise ratio (PSNR) obtained using 3D Charlier
moments for the 3D image “Image of MRI” with the global and proposed local methods

Moreover, this figure also shows that the proposed local method is efficient in terms
of the quality of the 3D image reconstruction in comparison with the global method,
illustrating the power of this method for different 3D images.

In the second test, we test the 3D image reconstruction capability of the proposed
method using other types of 3Ddiscrete orthogonalmoments, viz. those of Tchebichef,
Krawtchouk, and Hahn. The reconstruction test is performed on the same 3D image
(“Crab”) using the three sets of moments obtained using the proposed local methods
and the global one.

The simulation results in Figs. 10, 11, and 12 further demonstrate the effectiveness
of the proposed method for 3D image reconstruction using the different types of 3D
discrete orthogonal moments. Having shown the robustness of the local method for 3D
image reconstruction, these results confirm its image reconstruction capability when
using the moments of Tchebichef, Krawtchouk, Hahn, and Charlier.
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(a) (b)

Fig. 10 a Mean squared error (MSE) and b peak signal-to-noise ratio (PSNR) when using 3D Tchebichef
moments for the 3D image “Crab” with the global and proposed local methods

(a) (b)

Fig. 11 a Mean squared error (MSE) and b peak signal-to-noise ratio (PSNR) when using 3D Krawtchouk
moments for the 3D image “Crab” with the global and proposed local methods

(a) (b)

Fig. 12 aMean squared error (MSE) and b peak signal-to-noise ratio (PSNR)when using 3DHahnmoments
for the 3D image “Crab” with the global and proposed local methods
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(a) (b)

Fig. 13 a Mean squared error (MSE) and b peak signal-to-noise ratio (PSNR) when using 3D moments of
Tchebichef, Krawtchouk, Hahn, and Charlier for the 3D image “Crab” with the proposed local method

3D original image 

Recursive Method 

Proposed Method 

Fig. 14 Columns 1 to 5 show reconstructed 3D “Airplane” images up to order 10, 20, 30, 50, and 80,
respectively

The simulation results in Fig. 13 confirm the capacity of these moments for recon-
struction of 3D images with a slight advantage for Charlier and Krawtchouk moments
compared with those of Tchebichef or Hahn.

Finally, Figs. 14, 15, 16, and17 show the original 3D images “Airplane” and “Table,”
chosen from the McGill database [16], with size of 128×128×128 voxels and the
original 3DMRI images “Image 2” and “Image 3,” reconstructed from the 3DCharlier
moments using the two methods, viz. the proposed local and global method, at orders
10, 20, 30, 50, and 80.
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3D original image 

Recursive Method 

Proposed Method 

Fig. 15 Columns 1 to 5 show reconstructed 3D “Table” images up to order 10, 20, 30, 50, and 80, respectively

3D original image 

Recursive Method 

,,,
Proposed Method 

Fig. 16 Columns 1 to 5 show reconstructed 3D “Image 2” images up to order 10, 20, 30, 50, and 80,
respectively

With increasing order of the moments, the quality of the reconstruction increases,
and the proposed local method presents better reconstruction quality than the global
method for the different 3D images, confirming its effectiveness.
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3D original image 

     
Recursive Method 

     
Proposed Method 

Fig. 17 Columns 1 to 5 show reconstructed 3D “Image 3” images up to order 10, 20, 30, 50, and 80,
respectively

7 Conclusions

A fast and efficient method to calculate the 3D Charlier discrete orthogonal moments
for a 3D image is proposed based on a new representation of the 3D image and a
matrix computation of the 3D Charlier discrete orthogonal moments from cuboids of
the 3D image. Themethod has been applied for local reconstruction of 3D images from
Charlier moments extracted from the cuboids of the 3D image. The simulation results
confirm the speed and quality of the 3D image reconstruction using the proposed
method. In the future, we plan to apply this method for classification of 3D images
using invariant Charlier moments.
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