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Abstract
This paper presents two novel recursive partitioned one-to-one gray level mapping
(RPOGM) algorithms, viz., recursive median partitioned one-to-one gray level map-
ping (RMDPOGM) and recursive mean partitioned one-to-one gray level mapping
(RMPOGM). The proposed RPOGM methods serve multiple objectives and address
the issues such as (i) intensity saturation, (ii) intensity compression and (iii) ensure uni-
form degree of enhancement of all gray levels and thus result in overall enhancement
of the processed image. In RMPOGM, image/histogram is partitioned recursively,
(recursion level restricted to two, resulting in four sub-histograms) based on mean.
RMDPOGM is similar to RMPOGM except histogram partitioning is done based on
median. In RPOGM methods, image-dependent weights for each sub-histogram are
calculated separately. Later, these weights are used for transformation. Finally, all the
transformed sub-images are combined to get the processed image. As the images pro-
cessed by these methods are not having any loss of details, it results in retaining the
structural details of the objects and hence preserves fine contours even after enhance-
ment. This results in low gradient magnitude similarity deviation (GMSD) between
the processed image and input image. Experimental results show the superiority of the
proposed methods over the state-of-the-art histogram equalization methods in terms
of preserving entropy, preserving mean brightness and having low GMSD.
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1 Introduction

Image enhancement is widely used to process surveillance, military, satellite, med-
ical and geophysical images to get the visually important details. Due to simplicity
and less computational cost, conventional histogram equalization (HE) [5] is initially
preferred. HE produces better image if all the gray levels occupy frequencies above
some threshold. But in real scenario, images may not satisfy this condition. In such
cases, HE is having the problem of producing artifacts such as noise amplification and
patches in the processed image. This is due to saturation of intensities (narrow range of
peaks or high frequency gray levels in the input histogram being spread to wide range
in the output histogram) in histogram of processed image. This causes large bright-
ness deviation in the output image and produces large absolute mean brightness error
(AMBE). Preserving brightness is most important in consumer electronic products. To
cater to the needs of consumer electronic products, new techniques are derived. These
are, modifications applied to input histogram, before conventional HE is applied on
them. Conventional HE operates on whole image, whereas the later techniques operate
on sub-images. First such modification proposed to preserve the brightness is, bright-
ness preserving bi-histogram equalization (BBHE) [9]. BBHE bisects the image based
on mean intensity. Other modifications to partition the histogram of image are min-
imum mean brightness error bi-histogram equalization (MMBEBHE) [3], dualistic
sub-image histogram equalization (DSIHE) [21], recursive mean separate histogram
equalization (RMSHE) [4] and recursive sub-image histogram equalization (RSIHE)
[15]. DSIHE separates the histogram based on median intensity, to ensure that there is
equal number of pixels in each sub-histogram. RMSHE adopts the features of BBHE
to separate each sub-histogram recursively. DSIHE features are recursively applied in
RSIHE for histogram separation. But in both RSIHE and RMSHE, the partitions are
restricted to power of two. The problem of these methods is that too many recursive
steps lead to no enhancement of the image [8], and rather leads to original image
and also optimum recursion point to stop the histogram partition is not mentioned in
these methods. MMBEBHE carries recursive operation of BBHE for finding separa-
tion point, which gives processed image’s mean brightness closer to input image mean
brightness. It is having high computational cost to find separation intensity, especially
for images having more gray levels [2, 13]. Although these methods preserve the
brightness to considerable amount, they suffer from intensity saturation and intensity
compression in some sub-histogram regions, and fail to give noise-free and naturally
enhanced image.

Unlike previous recursive partitioned histogram equalization (RPHE)methods:HE,
BBHE, MMBEBHE, DSIHE, RMSHE and RSIHE which use statistical parameters
in splitting histogram, dynamic histogram equalization (DHE) [1] and brightness pre-
serving dynamic histogram equalization (BPDHE) [8] methods use local minima and
local maxima in separating the histogram, respectively. In DHE, 3 × 3 averaging
filter is applied on histogram to avoid insignificant minima. Later, local minima are
found out to carry out histogram separation. If there is any dominant portion in the
sub-histogram, recursive operation is carried out till dominant-free sub-histograms are
achieved. These separated sub-histograms are assigned to new dynamic range accord-
ing to their occupied range before they are equalized by conventional HE.One problem
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associated with DHE is that it produces large AMBE as sub-histograms are assigned
to new ranges. To address this problem, BPDHE was developed. BPDHE uses Gaus-
sian filter to smooth the histogram, and later local maxima are used for separating the
sub-histograms. These separated histograms are assigned to new dynamic range, and
conventional HE is applied to equalize. Finally, brightness normalization is carried out
to preserve the mean brightness. One problem associated with this is selection of nor-
malization factor. If normalization ratio is less than 1, it gives poor contrasted image,
and if greater than 1, it results in some of the intensities rounded to the maximum gray
level [12]. Both the methods produce the images with some aspects of HE, especially
if the separating point between two minima and two maxima is large. In this scenario,
the sub-histogram falling between these minima or maxima is assigned to very large
new dynamic range according to their proportion, which results in intensity saturation.

Kim et al. [10] proposed two approaches, viz., recursively separated weighted his-
togram equalization based on mean (RSWHE-M) and recursively separated weighted
histogram equalization based on median (RSWHE-D) to preserve mean brightness
well and to improve the image quality. RSWHE-M is similar to RMSHE in par-
titioning the histogram into sub-histograms, and these are restricted to four. These
sub-histogram probability density functions (PDF) are modified through weights,
based on normalized power law function. Modified sub-histograms are processed
by the conventional HE for enhancement. RSWHE-D is similar to RSWHE-M, but
histogram separation is based on median. Author claims that RSWHE-M gives better
results than the others. But, RSWHE-M suffers from intensity saturation and intensity
compression in some of the sub-histograms, giving patchy look in some portions of
the image [16].

To control the over enhancement, hence intensity saturation, clipped histogram
equalization (CHE) methods, viz., median-mean based sub-image-clipped histogram
equalization (MMSICHE) [16], bi-histogram equalization with plateau limit(BHEPL)
[13], weighted threshold histogram equalization (WTHE) [20], quadrant dynamic
histogram equalization(QDHE) [12] and exposure-based sub-image histogram equal-
ization(ESIHE)[17], adaptive image enhancement based on bi-histogram equalization
(AIEBHE) [19] with plateau limit, adaptive contrast modified histogram equalization
(ACMHE) [14] and recursively separated exposure-based sub-image histogram equal-
ization (RS-ESIHE) [18]were proposed to control the degree of enhancement. BHEPL
usesmean to separate histogram into two. Plateau level is set to clip the histograms, and
these clipped histograms are equalized by HE to get final image. In WTHE, weighted
and threshold PDF is used to alter the histogram. It restricts the modified probability
(frequencies) to be within the upper and lower thresholds. Finally, HE is performed
on the modified histogram. QDHE adopts the features of both RSIHE and DHE. It
uses feature of RSIHE in separating histograms, and these four sub-histograms are
restricted to clipped threshold, calculated by averaging the intensity frequencies. It
uses feature of DHE in allocating the clipped sub-histograms to new dynamic range.
Finally, conventional HE is applied on them to get processed image.

ESIHE uses exposure threshold [7] gray level to split the histogram into two. These
sub-histograms are limited to clipped threshold, calculated by averaging histogram
frequencies. Then, conventional HE is applied on clipped histograms to get over all
equalized images. MMSICHE uses median intensity to divide the histogram. Then,



3230 Circuits, Systems, and Signal Processing (2019) 38:3227–3250

each of the sub-histogram is divided into two based on mean intensities. Median of
occupied gray level frequencies is used as a clipped threshold to clip all sub-histograms.
Conventional HE is applied on these clipped histograms to get enhanced image.

AIEBHE adopts the feature of DSIHE in separating sub-histograms. Later, unlike
all CHE methods, AIEBHE uses the minimum value among: gray level frequencies,
mean and median of image as clipping threshold. After clipping, sub-histograms are
processed by conventional HE to get output image.

Adaptive contrast modified histogram equalization (ACMHE) mimics the features
of RSIHE in partitioning histogram, feature of QDHE in setting plateau level, feature
of QDHE with added enhancement rate parameter to adjust dynamic range allocation
of sub-histograms. Later, HE is performed on these modified and re-allocated sub-
histograms. Finally, enhancement level is adjusted to get better image.

RS-ESIHE uses the recursion version of ESIHE to enhance the low contrasted
images.Here, ETgray is used to bisect the histogram.Later, the two sub-histograms are
bisected to twomore based on lower ET and upper ET. Later, plateau level is calculated
by averaging gray level frequencies and is applied to clip all four sub-histograms.
Finally, HE is applied to these sub-images and combined to get the processed image.
Even though it results in better image than the ESIHE-processed image, it also results
in gray level loss and improper utilization of gray band due to fall of exposure threshold
in separating sub-histograms [6].

Advanced HE variants, named clipped histogram equalization with multi-plateau
levels (CHEWMP), have been developed in recent years. In 2015, Lim et al. [11]
proposed a new histogram equalization method for digital image enhancement
and brightness preservation. This work adopts the feature of BBHE in separating
sub-histograms and feature of QDHE in deciding clipping level. Later, these sub-
histograms are altered through three clipping levels (these are calculated as mean of
global and local sub-histograms), and HE is applied in the final stage to get processed
image. In 2017, bi-histogram equalization using two plateau limits (BHE2PL) [2]
is proposed. This uses mean as in BBHE to divide the histogram into two. Later,
nonzero frequency gray levels of these sub-histograms are restricted to two clipping
levels. Finally, HE is applied to the sub-histograms and combined to get final image.

Even though the above techniques have improved performance over conventional
HE, these methods suffer from gray level loss. These lost gray levels get overlapped
with existing gray levels affecting many gray levels. The objects corresponding to
these affected gray levels loose much of the information and do not guarantee natural
look and natural enhancement. The gray level loss causes a decrease in output image
entropy. Also, these methods enhance some of the objects well at the cost of others,
as they are having non-uniform degree of enhancement of gray levels.

To address the above issues, two new techniques are proposed, viz., RMDPOGM
and RMPOGM, that use data-dependent weights for transformation. RMDPOGM and
RMPOGM adopt the feature of RSIHE and RMSHE, respectively, in partitioning the
histogram into sub-histograms. For the sub-histograms, the corresponding weights
are calculated. Each weight is dependent on a number of nonzero frequency gray
levels in that sub-histogram. Later, these weights are used to map the gray levels. The
main idea behind this is to utilize the gray band (0–255) efficiently and uniformly. It
ensures the gray levels being uniformly enhanced in each sub-histogram. This makes
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the corresponding objects of the gray levels being enhanced uniformly (no saturation
of intensities), leading to naturally enhanced image. As the transformation is strictly
monotonic, it guarantees preservation of gray levels and thus preserves entropy after
enhancement. These methods not only address the saturation of intensities, but also
avoid intensity compression. These attributes result in maintaining fine contours of
the objects in the processed image. This results in naturally enhanced image with all
structural details, leading to low gradient magnitude similarity deviation (GMSD) [22]
between input and output images. They also preserve mean brightness well, and thus
are best suited for consumer electronic products.

This paper is organized as follows: The “details and commonalities of different HE
methods” that depend on cumulative distribution function (CDF)-based transformation
is discussed in Sect. 2. Section 3 explains the proposed RPOGM transformations.
Section 4 gives simulation results. Concluding remarks of the paper are given in
Sect. 5.

2 Image Enhancement Using CDF-Based Transformation Function

Let us consider an image, F(x, y) captured under low contrast environment. The most
commonly used method to improve the contrast is HE. The gray level of an image at
pixel location (x, y), given by r, is denoted as

F(x , y) � r ; r ∈ [0, L − 1] (1)

where L is total number of gray levels, equal to 256.
Collection of all these frequencieswith respect to gray levels is the image histogram.

A vector representation of this is

H � [
f0, f1, . . . fL−1

]
(2)

where f r is the frequency of the rth gray level.
The HE maps input gray level r ε [0, L − 1] to the output gray level s ε [rminimum,

rmaximun] using CDF, Cr , as

s � T (r) � rminimum + (rmaximum − rminimum)Cr . (3)

Various modifications to this fundamental HE are proposed. However, all the CDF-
based transformations share some or all commonalities as listed below.

1. Transformed functions, while mapping, exhibit steep rise in certain gray levels.
Steep rise causes saturation of intensities, results in noise amplification. More the
steep rise, more the intensity saturation.

2. Flat regions are due to many-to-one mapping, causing gray level loss.
3. More the range of flat region, more the compression of gray levels. This results in

false contours of the objects that belong to the compressed gray levels.
4. Inverse mapping is not possible due to gray level loss and gray level overlap.
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To overcome these issues, RPOGM techniques are proposed. The merits of these
are:

1. No steep rise in the transformation function, balanced gray level distribution in
output image’s histogram as it relies on data-dependent weights.

2. No flat regions in the transformation function as the mapping is one to one.
3. Mapping is reversible as there is no loss of gray levels.

Along with these features, the proposed RPOGM techniques give better image
quality than the state-of-the-art HE variants, especially for the images that are having
large uniform background and small non-uniform foreground (non-UFG), such as the
objects that are taken in clear sky under day light conditions, the images of small
objects on the sea or any image that is having large uniform background (UBG).

The images with large uniform background result in histogram having few peaks
that are concentrated with a little span in the gray band [0–255]. Here, the span refers
to the range of gray levels placed between first peak and last peak. As these peaks are
related to uniform background, they should not be enhanced or should not be spread
in the processed histogram so as to have a noise-free image.

Thismotivates us to choose recursivemean/median partitioning of the histogram, as
starting, middle and ending sub-histograms cover these peaks if image has dark/black,
gray and bright/white backgrounds, respectively.

This kind of statistical partitioning gives scope to enhance the non-peaks that cor-
respond to small objects in the foreground (local features).

This has been verified for the girl and jet images. For the other images, the proposed
methods are giving comparable/better results than the HE variants. But, the proposed
algorithms have limitations in processing the images having large non-uniform fore-
ground with small uniform background or those having widely occupied gray levels
in gray band.

The formulation of the proposed RMPOGMandRMDPOGMmethods is discussed
in the following section.

3 Proposed RPOGM Transformations and their Computational
Complexity

InRPOGMtransformations, the number of input gray levels is preserved. Two transfor-
mation functions, viz., RMPOGMandRMDPOGM, are developed based on histogram
vector H.

3.1 The RMPOGMTransformation

In this, transformation functions are developed based on mean gray level of F(x, y).
From the statistics, mean gray level rmean can be obtained as

rmean �
∑L−1

r�0 r fr
∑L−1

r�0 fr
(4)
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This mean can be used to divide the histogram of image into two partsHL and HU,
given by

H � [HL, HU] (5)

where

HL(i) � fi where i � 0, 1, 2, . . . rmean (6)

HU(i) � fi+rmean+1 where i � 0, 1, 2, . . . L − rmean − 2 (7)

The lower and upper sub-histograms,HL andHU, are further divided into two, viz.,
HLl, HLu and HUl, HUu based on the means rmeanl and rmeanu, respectively, as

rmeanl �
∑rmean

r�0 r fr∑rmean
r�0 fr

(8)

rmeanu �
∑L−1

r�rmean+1 r fr∑L−1
r = rmean+1 fr

(9)

Then, histogram H can be partitioned into four parts HLl, HLu, HUl and HUu
given by

H � [HLl, HLu, HUl, HUu] (10)

where

HLl(i) � fi where i � 0, 1, 2, · · · rmeanl (11)

HLu(i) � fi+rmeanl+1 where i � 0, 1, 2, . . . rmean − rmeanl − 1 (12)

HUl(i) � fi+rmean+1 where i � 0, 1, 2, . . . rmeanu − rmean − 1 (13)

HUu(i) � fi+rmeanu+1 where i � 0, 1, 2, . . . L − rmeanu − 2 (14)

The occurrences of f r � 0 for r ε [0, rmeanl], r ε [rmeanl + 1, rmean], r ε [rmean + 1,
rmeanu], r ε [rmeanu + 1, L − 1] can be separated, and nonzero frequency gray levels
are obtained in each partition.

LetCLl,CLu,CUl andCUu denote number of nonzero frequency gray levels in HLl,
HLu, HUl and HUu, respectively. It is easy to note that the number of zero frequency
gray levels in HLl, HLu, HUl and HUu are ZLl, ZLu, ZUl and ZUu, respectively, as
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ZLl � rmeanl + 1 − CLl (15)

ZLu � rmean − rmeanl − CLu (16)

ZUl � rmeanu − rmean − CUl (17)

ZUu � L − 1 − rmeanu − CUu (18)

New vectors NLl, NLu, NUl and NUu are developed by removing zero frequencies
from HLl, HLu, HUl and HUu. If jth nonzero frequency gray level is present at ith
position of vector HLl, we can relate NLl and HLl as

NLl( j) � HLl(i) where HLl(i) �� 0 and j � 0, 1, 2, . . .CLl − 1 (19)

Similarly, NLu and HLu, NUl and HUl, NUu and HUu are related as

NLu( j) � HLu(i) where HLu(i) �� 0 and j � 0, 1, 2, . . .CLu − 1 (20)

NUl( j) � HUl(i) where HUl(i) �� 0 and j � 0, 1, 2, . . .CUl − 1 (21)

NUu( j) � HUu(i) where HUu(i) �� 0 and j � 0, 1, 2, . . .CUu − 1 (22)

N, new indexed histogram, is generated by cascading NLl, NLu, NUl and NUu as

N � [NLl, NLu, NUl, NUu] (23)

The weights corresponding to sub-histograms are given by

αLl � 1 + rmeanl

CLl
(24)

αLu � rmean − rmeanl

CLu
(25)

αUl � rmeanu − rmean

CUl
(26)

αUu � L − 1 − rmeanu

CUu
(27)

The gray levels in NLl are transformed by the above data-dependent weight αLl as

s � TLl( j) � ( j + 1)αLl for j � 0, 1, . . .CLl − 1 (28)

Similarly, gray levels in NLu, NUl and NUu are transformed as
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s � TLu( j) � rmeanl + ( j + 1)αLu for j � 0, 1, . . .CLu − 1 (29)

s � TUl( j) � rmean + ( j + 1)αUl for j � 0, 1, . . .CUl − 1 (30)

s � TUu( j) � rmeanu + ( j + 1)αUu for j � 0, 1, . . .CUu − 1 (31)

The above method is summarized in the following steps

1. Calculate rmean, rmeanl and rmeanu using Eqs. (4), (8) and (9), respectively.
2. PartitionH as HLl, HLu, HUl and HUu using Eqs. (11), (12), (13) and (14) using

rmeanl, rmean and rmeanu
3. Generate NLl, NLu, NUl and NUu from HLl,HLu, HUl and HUu using Eqs. (19),

(20), (21) and (22), respectively.
4. Derive weights αLl, αLu, αUl and αUu using Eqs. (24), (25), (26) and (27).
5. Apply weights on NLl, NLu, NUl and NUu to get output as in Eqs. (28), (29), (30)

and (31).

3.2 The RMDPOGMTransformation

The RMDPOGM is similar to RMPOGM except finding the median gray level of
image, rmedian. This is used to separate the image into two as lower half FL(x, y)
and upper half FU (x, y) that ranges [0, rmedian] and [rmedian + 1, L − 1], respectively.
These two images are further divided into two of each as FLl(x , y) and FLu(x , y),
FUl(x, y) and FUu(x, y) by medians as rmedianl, rmediani, which are median intensities
of FL(x , y) and Fu(x , y), respectively. The histograms of FLl(x , y), FLu(x , y), FUl
(x , y) and FUu(x , y) are HLl, HLu, HUl and HUu with ranges [0, rmedianl], [rmedianl
+ 1, rmedian], [rmedian + 1, rmedianu] and [rmedianu + 1, L − 1], respectively.

This method is briefed as follows.

1. Calculate rmedian, rmedianl and rmedianu.
2. Use rmedianl, rmedian and rmedianu to partitionH as HLl, HLu, HUl and HUu using

Eqs. (11), (12), (13) and (14).
3. NLl, NLu, NUl and NUu are generated from HLl, HLu, HUl and HUu using

Eqs. (19), (20), (21) and (22).
4. Equations (24), (25), (26) and (27) are used to derive the αLl, αLu, αUl and αUu

by replacing rmean by their corresponding rmedian.
5. Transformations TLl, TLu, TUl and TUu are derived by applying above weights

on NLl, NLu, NUl and NUu as in Eqs. (28), (29), (30) and (31).

Following observations can be made from RPOGM transformations.

3.3 Computational Complexity of the Proposed Techniques

For an image having P rows andQ columns, histogram computation of image requires
O(PQ) time. O(L) time is required for the computation of mapping function. To
enhance the image by mapping function requires another O(PQ) time. So, total
time required for HE is O(2PQ + L). Compared to HE, BHE requires O(L) more
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time for mean computation. So, total time required for BHE is O(2PQ + 2L). Sim-
ilarly RMSHE, DSIHE, RSIHE, BHEPL, QDHE, ESIHE, MMSICHE, AIE-BHE,
RSESIHE and BHE2PL require O(2PQ + 3L), O(2PQ + 2L), O(2PQ + 2L),
O(2PQ + 2L + 2), O(2PQ + 3L + 8), O(2PQ + 1 + 2L), O(2PQ + 3L + 3), O
(2PQ + 3L), O(2PQ + 3L + 3) and O(2PQ + 2L + 6), respectively.

For RMDPOGM, computation time is similar to RSIHE, but it requires O(4) time
in addition to RSIHE for calculating four weights for four sub-histograms. So, total
time required for RMDPOGM is O(2PQ + 2L + 4). Computation time for RMPOGM
is similar to RMDPOGM, but it requires an additionalO(L) for lower and upper mean
findings for bisecting sub-histograms. So, total time required for RMPOGM isO(2PQ
+ 3L + 4).

NoteCompared to order of image size PQ,L� 256 is a small value. So, all the above
methods are real-time implementable as they require computation time of O(PQ) to
get enhanced image.

4 Simulation Results

Experimental results of the proposed RMDPOGM and RMPOGM methods are com-
pared with the old-to-recent existing histogram equalizationmethods, viz., HE, BBHE
(1997), RMSHE (2003), DSIHE (1999), RSIHE (2007), BHEPL (2009), QDHE
(2010), ESIHE (2014), MMSICHE (2014), AIEBHE (2014), RSESIHE (2015) and
BHE2PL (2017) (HE-BHE2PL). To test the efficiency of these algorithms, two widely
used image quality measures (IQM), viz., entropy and AMBE, are used. Fifteen test
images viz., girl, baboon, kodim1, kodim2, kodim3, kodim4, copter, hands, Lena, sail
boat, jet, air plane, Zelda, field and fish images are considered and IQM are tabulated.
We also used gray level analysis tables along with these measures for better under-
standing of causes for image quality degradation in HE-based images. To find out
the structural similarity of the enhanced image with input image, gradient magnitude
similarity deviation (GMSD) [22] is employed.

4.1 Entropy Assessment

Information content of an image depends on entropy. The more the entropy, the more
the details in the image. Entropy is calculated by

Entropy � −
L−1∑

l�0

p(l) log p(l) (32)

The entropy values of different images, processed by variousmethods, are tabulated
in Table 1. Gray level analysis of test images, viz., girl and jet, are listed in Tables 2
and 3, respectively. These tables give the information about number of gray levels lost,
how many numbers of gray levels are getting overlapped in the existing output gray
levels and the total number of gray levels affected. The number of gray levels affected
is sum of number of gray levels lost and number of gray levels overlapped in output
image.
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Table 2 Gray level analysis for girl image

Method No. of gray
levels in the
input image

No. of gray
levels in the
output image

No. of gray
levels lost

No. of gray
levels
overlapped in
the output
image

No. of gray
levels affected

HE 136 69 67 39 106

BBHE 136 74 62 37 99

RMSHE 136 97 39 31 70

DSIHE 136 66 70 44 114

RSIHE 136 85 51 39 90

BHEPL 136 114 22 15 37

QDHE 136 105 31 30 61

ESIHE 136 104 32 28 60

MMSIHE 136 118 18 18 36

AIEBHE 136 118 18 18 36

RSESIHE 136 105 31 20 51

BHE2PL 136 134 2 1 3

RMDPOGM 136 136 0 0 0

RMPOGM 136 136 0 0 0

Table 3 Gray level analysis for jet image

Method No. of gray
levels in the
input image

No. of gray
levels in the
output image

No. of gray
levels lost

No. of gray
levels
overlapped in
the output
image

No. of gray
levels affected

HE 191 96 95 35 130

BBHE 191 115 76 29 105

RMSHE 191 133 58 18 76

DSIHE 191 105 86 30 116

RSIHE 191 121 70 28 98

BHEPL 191 174 17 17 34

QDHE 191 140 51 23 74

ESIHE 191 128 73 30 103

MMSIHE 191 158 33 17 50

AIEBHE 191 154 37 17 54

RSESIHE 191 109 82 28 110

BHE2PL 191 191 0 0 0

RMDPOGM 191 191 0 0 0

RMPOGM 191 191 0 0 0
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From the above tables, it can be observed that in all theHEvariants except BHE2PL,
many gray levels are lost (lost gray levels have overlapped with existing gray levels)
reducing the output image’s entropy. In BHE2PL a few gray levels of some of the
images are being affected. The affected gray levels lead to loss of many fine details in
the image. The loss of details can be observed in HE-processed images (Figs. 1b–m,
4b–m) of girl and jet images, respectively, at marked areas of Figs. 1p and 4p. For girl
image, the lost details can be noticed in face and hair. Similarly, the loss of details
can be visually noticed at the objects [objects that are marked with numbers 1 and
2 of jet image (Fig. 4p)] of images in Figs. 1b–m and 4b–m. The loss of details are
proportional to number of gray levels affected as listed in Tables 2, 3, 4 and 5. It can be
noticed that the loss of details in different HE-processed images are proportional to the
number of gray levels affected. For example, in girl image (Fig. 1a), it can be observed
from Table 2 that DSIHE-processed image (Fig. 1e), is having the highest number of
gray levels affected (114 out of 136), resulting in highly degraded image. BHE2PL-
processed image (Fig. 1m), is having the least number of gray levels affected (3 out
of 136), resulting in quality image compared to all other processed images (Fig. 1b–l)
of HE-RSESIHE methods. The images processed by RMDPOGM and RMPOGM do
not have any gray level loss. As the proposed methods retain the number of gray levels
even after enhancement, they preserve the entropy. These methods are giving natural
enhancement, as can be observed in the images (Figs. 1n, o, 4n, o) of girl and jet
images, respectively.

4.2 Assessment of GMSDThrough Gray Level Analysis

The perceptual similarity between the processed and input image is assessed by using
GMSD. An efficient and simple whole reference image quality assessment method
is GMSD, which performs better than the other state-of-the-art whole image qual-
ity assessment methods, viz., peak signal-to-noise ratio (PSNR), information fidelity
criteria (IFC), geometric structure distortion (GSD), gradient-structure similarity (G-
SSIM), structure similarity (SSIM), visual information fidelity (VIF), most apparent
distortion (MAD), multiscale-SSIM (MS-SSIM), gradient similarity (GS), gradient
magnitude similarity mean (GMSM), information weighted-SSIM (IW-SSIM) and
feature similarity (FSIM) [22]. Even though GMSD has high computational complex-
ity compared with PSNR and GMSM, it has better correlation with human visual
perception [22]. GMSD has less computational complexity and better performance
than the other metrics, viz., IFC, GSD, VIF, MAD and SSIM and all hybrids of SSIM
[22].

Pixel-wise gradient magnitude similarity (GMS) is given by

GMS(i) � 2mr (i)md(i) + c

m2
r (i) + m2

d(i) + c
(33)

where mr and md are gradient magnitudes of reference and distorted images, respec-
tively. Here, the input image is considered as reference image and enhanced image
as distorted image. The constant c is set as 0.0026 [22]. From the gray level analysis
Tables 2, 3, it is observed that the HEmethods [HE, BBHE, RMSHE, DSIHE, RSIHE,
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Fig. 1 a Original girl image, bHE, c BBHE, d RMSHE, e DSIHE, f RSIHE, g BHEPL, h QDHE, i ESIHE,
jMMSICHE, k AIEBHE, l RSESIHE,m BHE2PL, n RMDPOGM, o RMPOGM processed images of girl,
p marked image of girl

BHEPL, QDHE, ESIHE, MMSICHE, AIEBHE and RSESIHE (HE-RSESIHE)] are
havingmany gray levels affected. These affected gray levels affect the objects to which
they belong. More the gray levels affected, more the structural deviation of the output
image. Asmost of the HEmethods are havingmany gray levels affected, it is reflecting
in structural changes in corresponding output image.

As BHE2PL is having very few gray levels affected, it results in better image with
structural details than others. Standard deviation of GMS is GMSD, given by

GMSD �

√√
√√√ 1

PQ

PQ∑

i�1

⎛

⎝GMS(i) − 1

PQ

PQ∑

i�1

GMS(i)

⎞

⎠

2

(34)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

wide range of input gray mapped to 
narrow range of output gray (results 
intensity compression due to flat 
region and one more intensity 
compression can be observed below)

narrow range of input gray are mapped to wide range of 
output gray (intensity satura�on due to steep rise region)

(m) (n)

Fig. 2 a HE, b BBHE, c RMSHE, d DSIHE, e RSIHE, f BHEPL, g QDHE, h ESIHE, i MMSICHE,
jAIEBHE, k RSESIHE, l BHE2PL,m RMDPOGM, n RMPOGM processed transformations of girl image

The lower the GMSD, better the similarity of input and output images. It can be
observed from the entropy Table 1, gray level analysis Tables 2, 3 and GMSD Table 4
that they are closely correlated with each other. The lesser the number of gray levels
affected, lower the loss of details, better the entropy and less loss of structural details.
This reflects as lower GMSD. So, to have lowGMSD, the image should have a smaller
number of gray levels affected with high entropy.

The HE methods are having many gray levels affected, high GMSD and are pro-
ducing false contours at the marked objects (Figs. 1p, 4p) of Figs. 1b–m and 4b–m. It
can also be observed that CHE methods, viz., BHEPL, BHE2PL, are having a smaller
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(a) (b) (c) (d)

(e) (f) (g) (h)

gray levels marked with number 1 in Fig. 3(m) are 
compressed to narrow range (resulted from bo�om 
side flat region in transforma�on, Fig 2(a))

gray levels marked with number 3 in Fig. 
3(m) are compressed to narrow range 
(resulted from flat region in 
transforma�on)

gray levels marked with number 2 in Fig. 
3(m) are expanded to wider range 
(resulted from steep rise region in 
transforma�on)

(i) (j) (k) (l)

(m) (n) (o)

(p)

these grays belong to 
back ground of girl 
image

most of these grays 
belongs to face of girl

most of these grays belong to 
hair of the girl

Fig. 3 a Original histogram of girl, b HE, c BBHE, d RMSHE, e DSIHE, f RSIHE, g BHEPL, h QDHE,
i ESIHE, j MMSICHE, k AIEBHE, l RSESIHE, m BHE2PL, n RMDPOGM, o RMPOGM processed
histograms of girl, p marked image of (a)
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Fig. 4 aOriginal image of jet, bHE, cBBHE, dRMSHE, eDSIHE, f RSIHE, gBHEPL, hQDHE, i ESIHE,
jMMSICHE, k AIEBHE, l RSESIHE,m BHE2PL, n RMDPOGM, o RMPOGM processed images of jet,
p marked image of (a)

number of gray levels affected compared to HE-RSIHE methods, resulting in rela-
tively better image having lower GMSD than HE and RPHE methods. Even in CHE
methods, BHE2PL is having very low GMSD (refer GMSD Table 4 as average of 15
test images, 0.0350) for test images, resulting in better structural detailed image.

From Tables 2, 3, it can be observed that the proposed methods, viz., RMDPOGM
and RMPOGM, are having zero gray levels affected; thus, they are preserving the
entropy (refer Table 1). This is leading to very low GMSD for the RPOGM-processed
images compared to HE-, RPHE- and CHE-processed images, Table 4. (This can also
be observed in the marked objects (Figs. 1p, 4p) of images (Figs. 1n, o, 4n, o) of
well-enhanced girl and jet images, respectively.)
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Fig. 5 a Original histogram of jet, b HE, c BBHE, d RMSHE, e DSIHE, f RSIHE, g BHEPL, h QDHE,
i ESIHE, j MMSICHE, k AIEBHE, l RSESIHE, m BHE2PL, n RMDPOGM, o RMPOGM processed
histograms of jet, p marked image of (a)

4.3 Brightness Preservation

Absolute mean brightness error (AMBE) is a good estimate of brightness preserva-
tion. Brightness preservation is the most important parameter in consumer electronic
products. AMBE is calculated as

AMBE � ∣
∣rmeanx − rmeany

∣
∣ (35)

where rmeanx is the mean of input image and rmeany is the output image mean. We can
observe from Table 5 that the numbers marked as bold represent low AMBE. It can
be observed that proposed methods are having low AMBE for most of the images and
for other images also the values are closer to the low AMBE (marked bold). Average
value of AMBE shows that both the proposed methods are preserving brightness, thus
best suited for consumer electronic products.

4.4 Visual Quality

Visual quality is an important parameter in analyzing noise amplification, over
enhancement, artifacts such as patches and unnatural look in the processed images.
Visual quality is assessed by analyzing the input, output histograms and its intensity
transformation. Various HE methods are compared with RMDPOGM and RMPOGM
methods.

To test the robustness of the proposed algorithms, we have taken two images with
different foregrounds and different backgrounds, viz., girl (Fig. 1a) and jet (Fig. 4a)
images. Themarked objects of these images are shown in Figs. 1p, and 4p, respectively.
Visually noticeable loss of details can be found at thesemarked objects in the processed
images (Figs. 1b–m, 4b–m) ofHE,BBHE,RMSHE,DSIHE,RSIHE,BHEPL,QDHE,
ESIHE, MMSICHE, AIEBHE, RSESIHE and BHE2PL (HE-BHE2PL), respectively.

Let us consider the girl image (Fig. 1a) for analysis. HE-, BBHE-, DSIHE- and
RSIHE-processed images (Fig. 1b, c, e, f), respectively, have noise amplified in the
background. This is due to steep rise in transformations (Fig. 2a, b, d, e). Also, these
methods have darkened the hair and brightened the face, due to intensity compression
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on left and right side of the histograms, respectively [refer callouts (Fig. 3b) for detailed
description] (Fig. 3b, c, e, f).

BHEPL- and ESIHE-processed images (Fig. 1g, i), have low noise in background,
as there is small steep rise region in transformations (Fig. 2f, h). These methods have
introduced some loss of details on face and have small patchy look. This is due to
small flat region in transformations of BHEPL and ESIHE.

There is no background noise in RMSHE-, QDHE- and MMSICHE-processed
images (Fig. 1d, h, j), which are looking better than all aforementioned HE methods.
This can be observed as there is no intensity saturation in histograms (Fig. 3d, h,
j) and no steep rise in the transformations (Fig. 2c, g, i). But, small flat region in
transformations is causing face to lose some of the details and looks slightly brighter
and patchy.

All the HE-based methods suffer from gray level loss and gray level overlap with
existing gray levels. This leads to many-to-few/many-to-one gray level mapping (flat
region) in the transformations. As MMSICHE and AIEBHE are having minimum
number of gray levels lost, it has less loss of details and is looking better than all other
HE-based methods (Fig. 1j, k). This can also be observed from gray level analysis that
only 36 gray levels are affected by these methods. RSESIHE even though seems to be
visually good (Fig. 1l), a careful observation reveals that there is a loss of details on
hair and face.

Also, RSESIHE-processed girl image is having noise in the background. From
the output histogram, it can be noticed that gray levels have not utilized gray band
efficiently. [Output histogram occupies gray from 30 to 234 only as lower ET and
upper ET fall at 30 and 234, respectively. The reason behind this is as there is no gray
from 0–30 and above 234 in input histogram, there is no scope to enhance them.]
BHE2PL-processed image (Fig. 1m), is giving pleasing results than all other HE
variants (HE-RSESIHE), except that very few details on hair have been lost.

RMDPOGM- and RMPOGM-processed images (Fig. 1k, l) are giving good
enhancement with natural look. It is not having patches, noise and loss of details
as there is neither steep rise nor flat region in the transformations (Fig. 2j, k). This
results in no intensity saturation and intensity compression in histograms, respectively
(Fig. 3k, l).

Next, we consider jet image (Fig. 4a) for analysis. Pixels belonging to the back-
ground of image falls to the gray levels from 153 to 216. This gray level range is
marked with red thick line in histogram (Fig. 5m). This narrow range of marked gray
levels is spread to a wide range in HE-, BHE-, RMSHE-, DSIHE-, RSIHE-, BHEPL-
, QDHE- and ESIHE-processed histograms (Fig. 5b–i), marked as a thick red line.
Among the red marked gray levels, the contribution of black marked gray levels is
large in noise enhancement. The background noise is directly proportional to range of
intensity spreadmarkedwith black. In HE-, BHE-, DSIHE- and RSIHE-processed his-
tograms (Fig. 5b, c, e, f), the spread is more compared to RMSHE-, BHEPL-, QDHE-
and ESIHE-processed histograms (Fig. 5d, g, h, i). Hence, HE-, BHE-, DSIHE- and
RSIHE-processed images (Fig. 4b, c, e, f), respectively, have relatively more noise
than that of Fig. 4d, g, h, i. In the marked areas numbered 3 and 4 (ref Fig. 4p), there
is a noticeable loss of details for all HE-based images.
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Fig. 6 a HE, b BBHE, c RMSHE, d DSIHE, e RSIHE, f BHEPL, g QDHE, h ESIHE, i MMSICHE,
j AIEBHE, k RSESIHE, l BHE2PL,m RMDPOGM, n RMPOGM processed transformations of jet image

AIEBHE-processed image (Fig. 4k) has better details in object 1, but has loss of
details in object 2 and has darkened the object. Also, this is introducing background
noise due to spread of peaks. ESIHE- and RSESIHE-processed images (Fig. 4i, l),
are giving better details than all others at objects 1 and 2, but they are having loss
of details and noisy in other parts of jet and background. Also, like girl image,
RSESIHE-processed jet image is also having inefficient utilization of gray band. [Out-
put histogram occupies gray from 9 to 255, as lower ET falls at 9. As there is no gray
from 0 to 9 in input histogram, there is no scope to enhance any gray.]

MMSICHE-processed image (Fig. 4j), is having better details and pleasing look
of total jet except at objects 1 and 2. But as like others, it is also having low noise
in background, due to low saturation of intensities in histogram (Fig. 5j). BHE2PL-
processed image (Fig. 4m), even though having pleasing details at objects 1 and 2
along with other parts of jet is introducing low noise at background.

Among all HE methods (HE-BHE2PL), BHE2PL is having low noise in the back-
ground. This is due to low spread of peaks in the gray space (Fig. 5m). RMDPOGM
and RMPOGM-processed images (Fig. 4n, o) are giving natural enhancement in the
objects 1 and 2 along with other parts of jet with all details and are not darkening
the objects Also, they are not producing background noise as there is no intensity
saturation in histograms (Fig. 5n, o) and no steep rise in transformations (Fig. 6m, n).

Gray level analysis Tables 2, 3 of girl and jet images reveal the fact that proposed
methods are retaining all the gray levels in the processed image and hence are able to
retain the entropy and structural details even after enhancement. From this, it can be
said that flattening the output histogram does not guarantee good image quality.

4.5 Observations from theVisual Analysis

1. The HE and RPHE methods (BBHE, DSIHE, RSIHE) methods are having high
intensity saturations in histograms (girl and jet images) or steep rise in transforma-
tions, leading to noisy output images. Among RPHE methods, RMSHE is having
low noise in jet image as there is low intensity saturation in output histogram.

2. Even though CHE (BHEPL, QDHE, ESIHE, MMSICHE and AIEBHE) and
CHEWMP (BHE2PL) methods are intended to avoid intensity saturation and are
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better than HE and RPHE methods, they are introducing low noise for jet and girl
images. This is due to low intensity saturation of gray in output histogram.

3. The proposed methods have neither intensity saturation nor intensity compression
in histograms and have neither steep rise nor flat region in transformation. This
results in neither gray level overlap nor gray level loss in histograms. This assures
uniform degree enhancement of gray levels. It results in good overall image quality
with all details as observed in RPOGM-processed images of girl and jet images.

5 Conclusion

Two novel approaches for gray level mapping, viz., RMDPOGM and RMPOGM for
image enhancement, are proposed in this paper. All the conventional HE methods are
having the problem of gray level loss after transformation, as they are dependent on
CDF. Also, these methods are having non-uniform degree of enhancement of gray
levels, resulting in some of the objects being enhanced well at the cost of others. As
the frequency of gray levels in the processed histograms is altered due to gray level
overlap, the entropy gets reduced. This results in loss of details in the enhanced image,
introducing deviated structural details in the output image and results in high GMSD.

The presented work has addressed the above issues and is having salient features,
viz., (i) assures uniform degree of enhancement of gray, (ii) effectively addresses
intensity saturation and compression problems, (iii) ensures highest entropy as the
mapping is strictly monotonic, and (iv) ensure lower structural deviations of objects
in the processed image, hence are free from false contouring. It has been seen that the
RPOGM methods are giving good results for images with large uniform background
and small non-uniform foreground. As future work, we are looking to implement
an ideal foreground enhancement (where background gray enhancement is zero, i.e.,
background noise is zero) via recursive RPOGM techniques.
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