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Abstract
The kernel least mean square (KLMS) algorithm is the simplest algorithm in kernel
adaptive filters. However, the network growth of KLMS is still an issue for preventing
its online applications, especially when the length of training data is large. The Nys-
tröm method is an efficient method for curbing the growth of the network size. In this
paper, we apply the Nyströmmethod to the KLMS algorithm, generating a novel algo-
rithm named kernel least mean square based on the Nyström method (NysKLMS). In
comparison with the KLMS algorithm, the proposed NysKLMS algorithm can reduce
the computational complexity, significantly. The NysKLMS algorithm is proved to be
convergent in the mean square sense when its step size satisfies some conditions. In
addition, the theoretical steady-state excessmean square error of NysKLMS supported
by simulations is calculated to evaluate the filtering accuracy. Simulations on system
identification and nonlinear channel equalization show that the NysKLMS algorithm
can approach the filtering performance of the KLMS algorithm by using much lower
computational complexity, and outperform the KLMS with the novelty criterion, the
KLMS with the surprise criterion, the quantized KLMS, the fixed-budget QKLMS,
and the random Fourier features KLMS.

Keywords Kernel least mean square · Approximation · Nyström method · Random
Fourier features

1 Introduction

Online kernel learning [13,18,31] is an efficient method for addressing the issues of
classification and regression in nonlinear environments. A class of kernel adaptive
filters (KAFs) is proposed using the online kernel learning method in the reproduc-
ing kernel Hilbert space (RKHS) [3,6,17,28]. The main idea of KAF is to transform
the input data into a high-dimensional feature space and then perform traditional
adaptive filters [30], e.g., the least mean square (LMS) algorithm, affine projection
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algorithm (APA), and recursive least squares algorithm (RLS) in the RKHS. The
reason for choosing the RKHS is that it can provide the linearity, convexity, and uni-
versal approximation capabilities [3,5,28]. To improve the calculation efficiency in the
RKHS, the kernel trick based on theMercer kernel [12,17,24,25,28] is used to calculate
the inner product in the RKHS. The LMS, APA, and RLS algorithms are developed
in the RKHS to generate the kernel least mean square (KLMS) algorithm [24,28],
kernel affine projection algorithm (KAPA) [25,28], and kernel recursive least squares
(KRLS) algorithm [12,28], respectively. The filtering performance of traditional adap-
tive filters in terms of the accuracy and robustness is therefore improved by KAFs.
Among these aforementioned KAFs, the KLMS is simplest in both computational and
space complexities.

However, the filter network of KAF [12,24,25,28] linearly grows with the length
of training data, which incurs large computational burden. A sparsification method
is therefore required to curb the growth of the network size by reserving the chosen
input data as centers of the codebook. The commonly used sparsification methods
include the novelty criterion (NC) [27], the prediction variance criterion (PVC) [10],
the approximate linear dependency (ALD) criterion [12], the surprise criterion (SC)
[23], and the quantized approach [8,9,15,19,22,26]. In these sparsification methods,
redundant data are removed by setting different threshold parameters, thus leading to
different sparsificationnetworks andfilteringperformance.Among these sparsification
methods, the quantized approach is the simplest and the most efficient method for
constructing the filter network. In the quantized approach, only the Euclidean distance
between the current input and the existing centers in the codebook is used as a criterion
for constructing a sparsification network. Therefore, Chen et al. applied the quantized
approach to the KLMS for obtaining the quantized KLMS (QKLMS) [8].

It is interesting to note that the network size based on the aforementioned sparsifi-
cation methods is not fixed. However, in the case of limited computational capability
and storage, the fixed-size network structure is necessary for practical applications.
Generally, the methods based on a fixed-size network include the significancemeasure
[33,38], the random Fourier features [4,36], and the Nyström method [11,21,35,36].
The significancemeasure keeps the codebook size fixed by pruning the least significant
center when a new input is required to be added to the codebook. However, the cal-
culation of significance requires extra computation. Unlike the significance measure,
the random Fourier features and the Nyström method generate a vector representation
of data to approximate the high-dimensional mapping. The random Fourier features
approximate the kernel function using the kernel’s Fourier transform with random
features [14,29], and the Nyström method uses a low-rank matrix to approximate the
kernel matrix. In addition, the chosen random Fourier features are independent of
the input data [4,36]. And the Nyström method samples the inputs from the input
data with some distribution, which is data dependent [11,21,35,36]. Therefore, due
to the dependence of data, the Nyström method can provide a more efficient network
structure than the random Fourier features [36]. The first two methods based on a
fixed-size network have already been successfully applied to KAFs, e.g., the fixed-
budget QKLMS (QKLMS-FB) [38], the simplified QKLMS-FB (SQKLMS-FB) [33],
and the random Fourier features KLMS (RFFKLMS) [4].
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In this paper, we propose a novel kernel least mean square algorithm based on the
Nyström method (NysKLMS) by applying the approximation theory of the Nyström
method to the KLMS. The Nyström method is used to approximate eigenfunctions
in the RKHS with the chosen points [35], and thus, the input is transformed into a
fixed-dimensional space to approximate the mapping in the RKHS. Therefore, the
proposed NysKLMS algorithm provides a fixed network size in advance. To evaluate
the filtering accuracy ofNysKLMS,we also derive the steady-state excessmean square
error (EMSE) theoretically.

2 KLMS

A continuous nonlinear input-output mapping f : RD → R can be described as

d = f (x), (1)

where x ∈ X ⊆ R
D is the input vector and d ∈ R is the corresponding desired output.

The input–output pairs {(x(1), d(1)), (x(2), d(2)), . . . , (x(n), d(n)), . . .} are used to
estimate themapping f (·), and the estimated output y(n) of d(n) is therefore obtained.
An adaptive filter is constructed using a cost function based on the difference between
the desired output and the estimated one.

The cost function of LMS based on the minimum mean square error (MMSE)
criterion is [30]

J = 1

2
e(n)2, (2)

where the estimated error e (n) = d (n) − y (n) at discrete time n is the difference
between d (n) and y (n). The MMSE criterion is a common choice for adaptive filters
due to its simplicity, and the algorithms mentioned in this paper are all equipped
with (2).

Generally, the structurewith the inner productw(n − 1)Tx (n) is used in an adaptive
filter, where w(n − 1) is the weight vector and (·)T is the transpose of a real vector.
According to minimizing the cost function J in (2) at each iteration n, the optimal
weight vector w∗ is finally sought by the LMS. Due to the simpleness and efficiency,
the gradient descent method [30] is used in the LMS to obtain the optimal solution to
J in (2). Therefore, we can obtain the following update form of the weight vector in
the LMS with the gradient descent method:

w (n) = w (n − 1) + μe (n) x (n) , (3)

where μ is the step size.
When the relationship f (·) between the input and the output is highly nonlinear

the KLMS can provide better filtering accuracy than the LMS. Actually, the KLMS
[24,28] can be regarded as the LMS in the RKHS [3,6,17,28]. Assume that the weight
vector at iteration n in the KLMS is denoted by� (n). Similar to (3), the weight vector
update of KLMS can be expressed as:

� (n) = � (n − 1) + μe (n) ϕ (x (n)) , (4)
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where ϕ (x (n)) denotes the transformed input vector x (n). In the following, ϕ (x (n))

is denoted by ϕ (n) for simplicity.
However, it is difficult to calculate ϕ(n) owing to its high dimension. Therefore,

�(n) cannot be computed directly using (4). Given an initial weight �(0) = 0, we
obtain �(n) by iterating

�(n) = �(0) + μ

n∑

i=1

e(i)ϕ(i) = μ

n∑

i=1

e(i)ϕ(i). (5)

Then, the current estimated output can be derived as the following form of the inner
product:

y(n) = �(n − 1)Tϕ(n) = μ

n−1∑

i=1

e(i)ϕ(i)Tϕ(n). (6)

The inner product in the RKHS can be easily computed by the kernel trick [12,24,
25,28], i.e.,

ϕ(n1)
Tϕ (n2) = κ(x(n1), x(n2)), (7)

where κ(·) is a kernel function. The commonly used kernel function in the RKHS is
the following Gaussian kernel [24,28]:

κ(x(n1), x(n2)) = exp

(
−‖x(n1) − x(n2)‖2

2σ 2

)
, (8)

where σ is the kernel width. It can be seen from (8) that the use of kernel function can
avoid the direct calculation in the high-dimensional feature space.

Therefore, (6) can be rewritten using the kernel trick as

y(n) = μ

n−1∑

i=1

e(i)κ(x(i), x(n)). (9)

It can be seen from (9) that the KLMS produces a growing radial basis function
network [12,24,25,28] by adding every new input as a center at each iteration. There-
fore, the linear growth of the network increases the computational burden of KLMS
and thus limits its online applications.

3 Proposed NysKLMS Algorithm

Actually, the transformed input ϕ(x) in the RKHS can be constructed as

ϕ(x) =
[√

λ1φ1(x),
√

λ2φ2(x), . . .
]T

, (10)
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where λi andφi , i = 1, 2, . . ., are the eigenvalues and the eigenfunctions of theMercer
kernel, respectively [28]. The dimension of ϕ(x) is infinite when the Gaussian kernel
is adopted.

To avoid the calculation in an infinite dimension space and thus obtain a fixed-
dimensional network, the Nyström method [11,35,36] is used to approximate the
eigenfunctions with a fixed codebook. The eigenfunction problem can be described
as follows: ∫

κ(x, x′)φi (x
′)dx′ = λiφi (x), (11)

where x, x′ ∈ X. The codebook is composed of the randomly chosen m input vectors,
i.e.,C = {x(1), x(2), . . . , x(m)} [11]. Using the codebook to approximate the integral
yields ∫

κ(x, x′)φi (x
′)dx′ ≈ 1

m

m∑

k=1

κ(x, x(k))φi (x(k)). (12)

Therefore, (11) can be rewritten as

1

m

m∑

k=1

κ(x, x(k))φi (x(k)) ≈ λiφi (x). (13)

It is equivalent to solve the eigenfunction problem in a subspace spanned by the
codebook. Eq. (13) is therefore described in a matrix form

GUm = Um�m, (14)

where G is the kernel matrix constructed by Gi j = κ(x(i), x( j)) (1 ≤ i, j ≤ m),

�m = diag(λ(m)
1 , λ

(m)
2 , . . . , λ

(m)
m ) is the diagonal matrix with the diagonal elements

being the eigenvalues ofG in a descending order, and Um = (u(m)
1 ,u(m)

2 , . . . ,u(m)
m ) is

the matrix constructed by the corresponding eigenvectors of G. Rearranging (13) and
(14), we have the following approximations:

λi ≈ λ
(m)
i /m, (15)

φi (x( j)) ≈ √
mu(m)

i ( j). (16)

Based on (15) and (16), the approximated eigenfunction [11] can be derived from
(13) as

φ̂i (x) =
√

m

λ
(m)
i

m∑

k=1

κ(x, x(k))u(m)
i (k). (17)

Note that (17) canbe regarded as amappingofx into the i th eigenvector. Substituting
(15) and (17) into (10) and using m eigenvalues and eigenvectors, we can derive an
approximated transformation of input x(n)with a fixed-dimensional representation as
follows:
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z(x(n))

=
[√

λ1φ̂1(x(n)),
√

λ2φ̂2(x(n)), . . . ,
√

λm φ̂m(x(n))
]T

= �
− 1

2
m UT

m[κ(x(n), x(1)), κ(x(n), x(2)), . . . , κ(x(n), x(m))]T

= �
− 1

2
m UT

mκ(n)

= Pκ(n),

(18)

where P = �
− 1

2
m UT

m , κ(n) = [κ(x(n), x(1)), κ(x(n), x(2)), . . . , κ(x(n), x(m))]T.
Denote z(n) = z(x(n)) for simplicity. The subspace which z(n) belongs to is spanned
by the codebook and has a fixed dimension. Therefore, the adaptive filter based on the
transformed input z(n) provides a linear filter structure. The approximated degree can
be evaluated by the difference between z(n)Tz(n) and κ(x(n), x(n)) as shown in [21].

Applying the gradient descent method [30] to the transformed input z(n) yields the
weight update of NysKLMS as

w(n) = w(n − 1) + μe(n)z(n). (19)

In the feature space, the estimated output at the nth iteration is derived by

y(n) = w(n − 1)Tz(n). (20)

Compared with (9), the estimated output of NysKLMS shown in (20) is obtained in
a fixed-size network. We summarize the proposed NysKLMS algorithm in Algorithm
1. Considering online applications, we choose the first m input training data as the
codebook, which is reasonable when the inputs are independent identically distributed
(i.i.d.) [21].

Remark 1 The proposed NysKLMS algorithm inherently generates a sparsification
structure due to a small codebook used, which is appropriate for online applications. In
addition, TheNysKLMSonly uses afilter network of afixeddimension and approaches
the filtering performance of the KLMS with no sparsification.

Let N be the length of training data and m be the chosen codebook size, where
m � N . Denote the magnitude of complexity by O(·). There exists the eigenvalue
decomposition with the computational complexity O(m3) in the NysKLMS, which
can be ignored reasonably since the decomposition is calculated once in the whole
training process. Therefore, the computational complexity of NysKLMS is O(m)

which is equivalent to those of the sparsification algorithms, i.e., the QKLMS, the
QKLMS-FB, and theRFFKLMS.Comparedwith theKLMShaving the computational
complexity O(i) (0 < i ≤ N ), the NysKLMS reduces the computational complexity
with m � N , significantly.
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Algorithm 1: Kernel Least Mean Square Algorithm Based on the Nyström
Method (NysKLMS)

Input: {x(n), d(n)}, n = 1, 2, . . . , N

Initialization:

Choose step size μ, kernel width σ , and w(0) = 0; initialize C with m sampled inputs and compute P.

Computation:

while {x(n), d(n)} available do

1) Compute the representation of the input: z(n) = Pκ(n) using (18)
2) Compute the error: e(n) = d(n) − w(n − 1)Tz(n)

3) Compute the weight: w(n) = w(n − 1) + μe(n)z(n)

end while

4 Mean Square Convergence Analysis

Suppose that f ∗ is the unknown mapping required to learn. The desired output can be
modeled by

d(n) = f ∗(x(n)) + v(n), (21)

where v(n) denotes the disturbance noise.
Since z(n) is an approximation of ϕ(n), there exists the optimal weight vector that

lies in the subspace spanned by the transformed input sequence thanks to the universal
approximation property in theRKHS [3,5,7]. For the tractability of theoretical analysis,
we first assume that z(n) approximates ϕ(n) well and the optimal weight vector w∗
exists in the following analysis.

The following reasonable assumptions are used for tractable analysis.
A1: The noise v(n) is zero mean and i.i.d. with variance σ 2

v =E
[
v2(n)

]
.

A2: The noise v(n) is independent of the input data x(n), which can show that v(n)

is independent of the a priori estimation error ea(n).
A3: At steady state, ‖z(n)‖2 is independent of ea(i).
These assumptions are frequently used in adaptive filters [1,7,8,16,20,30,37].

4.1 Stability Analysis

First, we derive the energy conservation relation for the NysKLMS. According to
the optimal weight vector w∗, we have f ∗(x(n)) = w∗Tz(n). Therefore, (21) can be
rewritten as

d(n) = w∗Tz(n) + v(n). (22)
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The estimated error can be derived as

e(n) = d(n) − y(n)

= (w∗Tz(n) + v(n)) − w(n − 1)Tz(n)

= w̃(n − 1)Tz(n) + v(n)

= ea(n) + v(n), (23)

where w̃(n − 1) = w∗ − w(n − 1) denotes the weight error vector and ea(n) =
w̃(n − 1)Tz(n) the a priori error.

Subtracting w∗ from both sides of (19) yields

w̃(n) = w̃(n − 1) − μe(n)z(n). (24)

Let ep(n) = w̃(n)Tz(n) be the a posteriori error. The relation between ep(n) and
ea(n) is derived from (24) as

ep(n) = ea(n) − μe(n)z(n)Tz(n). (25)

Substituting (25) into (24) to eliminate e(n), we get

w̃(n) = w̃(n − 1) + (ep(n) − ea(n))
z(n)

z(n)Tz(n)
. (26)

Squaring both sides of (26) yields

w̃(n)Tw̃(n) =
[
w̃(n − 1) + (ep(n) − ea(n))

z(n)

z(n)Tz(n)

]T

×
[
w̃(n − 1) + (ep(n) − ea(n))

z(n)

z(n)Tz(n)

]

= w̃(n − 1)Tw̃(n − 1) + e2p(n) − e2a(n)

z(n)Tz(n)
.

(27)

Denote the weight error power (WEP) at the nth iteration by ‖w̃(n)‖2 =
w̃(n)Tw̃(n). (27) can be rewritten as

‖w̃(n)‖2 + e2a(n)

‖z(n)‖2 = ‖w̃(n − 1)‖2 + e2p(n)

‖z(n)‖2 . (28)

Taking expectations of both sides of (28), we obtain the energy conservation relation
of NysKLMS by

E
[
‖w̃(n)‖2

]
+ E

[
e2a(n)

‖z(n)‖2
]

= E
[
‖w̃(n − 1)‖2

]
+ E

[
e2p(n)

‖z(n)‖2
]

. (29)
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Combining (25) and (29) to eliminate ep(n) yields

E
[
‖w̃(n)‖2

]
= E

[
‖w̃(n − 1)‖2

]
+ μ2E

[
e2(n)‖z(n)‖2

]

− 2μE [e(n)ea(n)] .
(30)

Substituting (23) into (30), we obtain

E
[
‖w̃(n)‖2

]
= E

[
‖w̃(n − 1)‖2

]
+ μ2E

[
(ea(n) + v(n))2‖z(n)‖2

]

− 2μE [(ea(n) + v(n))ea(n)] .
(31)

In (31), according to Assumptions A1 and A2, we have

2μE [(ea(n) + v(n))ea(n)] = 2μE
[
e2a(n)

]
. (32)

Further, according to Assumptions A2 and A3, we obtain

μ2E
[
(ea(n) + v(n))2‖z(n)‖2

]
= μ2

(
E

[
e2a(n)

]
+ E

[
v2(n)

])
E

[
‖z(n)‖2

]
.

(33)
According to σ 2

v = E[v2(n)], (33) can be rewritten as

μ2E
[
(ea(n) + v(n))2‖z(n)‖2

]
= μ2

(
E

[
e2a(n)

]
+ σ 2

v

)
E

[
‖z(n)‖2

]
. (34)

Therefore, (31) is derived as

E
[
‖w̃(n)‖2

]
= E

[
‖w̃(n − 1)‖2

]
+ μ2

(
E

[
e2a(n)

]
+ σ 2

v

)
E

[
‖z(n)‖2

]

− 2μE
[
e2a(n)

]
.

(35)

To ensure a convergence solution, the WEPs at the nth and (n − 1)th iterations
satisfy

E
[
‖w̃(n)‖2

]
≤ E

[
‖w̃(n − 1)‖2

]
. (36)

Thus, substituting (36) into (35) gives

μ2
(

E
[
e2a(n)

]
+ σ 2

v

)
E

[
‖z(n)‖2

]
− 2μE

[
e2a(n)

]
≤ 0. (37)

Tomake theweight error vectormonotonically decrease, the step size should satisfy

0 ≤ μ ≤ 2E
[
e2a(n)

]
(
E

[
e2a(n)

] + σ 2
v

)
E

[‖z(n)‖2] . (38)
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4.2 Steady-State Mean Square Performance

Tomeasure the steady-state performance ofNysKLMS,we denote excessmean square
error (EMSE) by S = lim

n→∞ E
[
e2a(n)

]
.

Taking limits of both sides of (35) as n → ∞ yields

lim
n→∞ E

[
‖w̃(n)‖2

]
= lim

n→∞ E
[
‖w̃(n − 1)‖2

]

+ μ2
(

S + σ 2
v

)
lim

n→∞ E
[
‖z(n)‖2

]
− 2μS.

(39)

Define the autocorrelation matrix of z(n) by Rzz = E
[
z(n)z(n)T

]
. And we have

the trace ofRzz as Tr(Rzz) = E
[‖z(n)‖2]. Supposing theWEP reaches a steady-state

value, we obtain

lim
n→∞ E

[
‖w̃(n)‖2

]
= lim

n→∞ E
[
‖w̃(n − 1)‖2

]
. (40)

Hence, we have
μ2

(
S + σ 2

v

)
Tr (Rzz) = 2μS. (41)

According to (41), the EMSE of NysKLMS can be derived as

S = μσ 2
v Tr (Rzz)

2 − μTr (Rzz)
. (42)

It can be seen from (42) that S is related to the step size, noise variance, and Tr(Rzz).
For comparison, the EMSE of KLMS in [7] is shown as follows:

S1 = μσ 2
v

2 − μ
. (43)

Comparing (42) with (43), we see that that the NysKLMS can achieve the same
steady-state performance as the KLMS on the condition of Tr(Rzz) → 1.

Remark 2 The derivation of S is based on the assumption that z(n) approximates
ϕ(n) well. We have Tr(Rzz) = 1 due to κ(xn, xn) ≡ 1. It can be seen from (18) that
z(n) is related to the parameters of m and σ . Therefore, m and σ are chosen to satisfy
Tr(Rzz) → 1, and the EMSE of NysKLMS is verified on this condition.

5 Simulation Results

Simulations on system identification and nonlinear channel equalization are conducted
to validate the performance of NysKLMS in the Gaussian and uniform noise environ-
ments. The representative algorithms, i.e., the KLMS-NC [27], the KLMS-SC [23],
the QKLMS [8], the QKLMS-FB [38], the RFFKLMS [4], and the KLMS [24,28],
are chosen for comparison. The KLMS-NC, the KLMS-SC, and the QKLMS are the
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KLMS algorithms with sparsification. The QKLMS-FB and the RFFKLMS are the
KLMS algorithms in the fixed-size network. The KLMS with no sparsification is used
as the reference of performance comparison.

To evaluate the filtering performance, the mean square error (MSE) is defined as

MSE = 1

T

(
T∑

n=1

(d(n) − y(n))2

)
, (44)

where T is the length of testing data. For all simulations, 50 Monte Carlo runs are
performed to reduce the disturbance.

5.1 System Identification

The block diagramof system identificationwith finite impulse response (FIR) is shown
in Fig. 1 [2]. The desired output can be expressed as

d(n) = w∗Tx(n) + v(n), (45)

where x(n) is the input vector including delays of x(n) and w∗ = [w∗
1, w

∗
2, . . . , w

∗
L ]T

denotes the optimal weight vector with L taps of the unknown system.
In the following simulations, the weight vector of the FIR filter is set asw∗=[0.227,

0.460, 0.688, 0.460, 0.227]T with L = 5. The input signal x(n) is a Gaussian process
with zero mean and unit variance.

First, to discuss the parameters selection, the relation between Tr(Rzz) and m and σ

is plotted in Fig. 2, which is calculated by averaging 2000 training data with different
m and σ . In Fig. 2, the x-axis denotesm with the range from 20 to 380 in 40 increments.
The y-axis denotes σ with the range from 1 to 4 in 0.2 increments. The z-axis shows the
value of Tr(Rzz) in a color-mapped form. From Fig. 2, we find that Tr(Rzz) gradually
approaches 1 with the increase in m and σ . When Tr(Rzz) is greater than 0.995, it is
approximately equal to 1. Therefore, from the region of Tr(Rzz) > 0.995, we choose
m = 100 and σ = 3 for the NysKLMS to approximate the KLMS.

To verify the steady-state mean square performance of NysKLMS, the training data
of length 200,000 are used to ensure its convergence, and its EMSE is obtained by the
average over the last 500 iterations.

Fig. 1 System identification based on adaptive filter
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Fig. 2 Tr(Rzz) versus m and σ

Fig. 3 Simulated and theoretical
EMSEs versus μ (σ 2

v = 0.05)

The simulated and theoretical EMSEs of NysKLMS versus step size μ and noise
variance σ 2

v in the Gaussian and uniform noises are shown in Figs. 3 and 4. From
these two figures, we see that the simulated and theoretical EMSEs agree well. With
the increase in μ and σ 2

v , the steady-state EMSEs of NysKLMS is decreasing. The
filtering performance of NysKLMS is decided by the step size and noise variance on
the condition of Tr(Rzz) → 1.

Then, we compare the learning curves of NysKLMS, KLMS-NC, KLMS-SC,
QKLMS, QKLMS-FB, RFFKLMS, and KLMS in the presence of Gaussian noise.
The Gaussian noise is zero mean with variance 0.01. In the simulations, a segment of
5000 points of the input sequence is chosen as the training data and 100 points as the
testing data. The compared results are shown in Fig. 5. To guarantee the same codebook
size and initial convergence rate, the parameters of these algorithms are configured as
follows. The quantization sizes are set as 2.1 and 2 in the QKLMS and the QKLMS-
FB, respectively. The step size and the kernel width are set as μ = 0.1 and σ = 3,
respectively, for all algorithms except for the KLMS-NC and the KLMS-SC with
μ = 0.5 and σ = 1. The thresholds in the KLMS-NC are δ1 = 1.45 and δ2 = 0.08.
The thresholds in the KLMS-SC are T1 = 200 and T2 = 0.55, and the regularization
parameter is set as 0.01. It can be seen from Fig. 5 that the learning curve of NysKLMS
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Fig. 4 Simulated and theoretical
EMSEs versus σ 2

v (μ = 0.5)

Fig. 5 Learning curves in terms of the testing MSE of different algorithms with m = 100

is almost the same as that of KLMS, which validates that the NysKLMS can approach
the filtering performance of the KLMS with appropriate parameters. However, the
NysKLMS only uses 100 centers in the codebook which is much smaller than 5000
centers in the KLMS. Hence, the NysKLMS with lower computational complexity
approaches the filtering performance of the KLMS. In addition, the QKLMS and the
QKLMS-FB also achieve the similar testing MSE to the KLMS and the NysKLMS
and outperform the KLMS-NC and the KLMS-SC. The NysKLMS and the KLMS
have faster convergence rate than the QKLMS, the QKLMS-FB, and the RFFKLMS
in the beginning. The mean consumed time and testing MSEs of all algorithms in the
steady state are shown in Table 1. Note that the numbers in italics in all the tables
indicate the minima among the corresponding columns. It can be seen from this table
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Table 1 Mean consumed time
and testing MSE in the steady
state with m = 100

Algorithm Consumed time (s) Testing MSE

QKLMS 1.71 0.01552

QKLMS-FB 8.60 0.01549

RFFKLMS 0.15 0.01703

NysKLMS 0.18 0.01528

KLMS-NC 0.10 0.11754

KLMS-SC 0.37 0.06183

KLMS 38.72 0.01526

Fig. 6 Learning curves in terms of the testing MSE of different algorithms with m = 20

that the KLMS-NC consumes the least time, but achieves the highest testing MSE
compared with other algorithms. The testing MSE of NysKLMS approaches that of
KLMS. Therefore, on the condition of a fixed network size, the NysKLMS consumes
less time than the QKLMS, the QKLMS-FB, the KLMS-SC, and the KLMS.

Finally, we choose a smaller codebook size m = 20 to observe the filtering per-
formance of the aforementioned algorithms with the same step size and Gaussian
noise. The quantization sizes are set as 5.3 and 5 in the QKLMS and the QKLMS-
FB, respectively. The thresholds in the KLMS-NC are δ1 = 2.4 and δ2 = 0.12. The
thresholds in the KLMS-SC are T1 = 200 and T2 = 2.2. We see from Fig. 6 that the
NysKLMS with 20 centers approaches the filtering performance of the KLMS with
5000 centers. The computational complexity is therefore reduced by the NysKLMS,
significantly. Moreover, the NysKLMS has a smaller testingMSE than the RFFKLMS
with the same codebook size, which means that the NysKLMS is more efficient than
the RFFKLMS in system identification. Comparing the NysKLMS with the QKLMS
and the QKLMS-FB, we see that the NysKLMS generates faster convergence rate but
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Table 2 Mean consumed time
and testing MSE in the steady
state with m = 20

Algorithm Consumed time (s) Testing MSE

QKLMS 1.14 0.0153

QKLMS-FB 3.69 0.0150

RFFKLMS 0.13 0.0286

NysKLMS 0.13 0.0145

KLMS-NC 0.03 0.3904

KLMS-SC 0.27 0.2792

KLMS 39.78 0.0139

a similar testing MSE in the steady state. The KLMS-NC and the KLMS-SC incur
severe performance degradation with a smaller codebook size. The mean consumed
time and testing MSEs of all algorithms are shown in Table 2. It can be seen from
this table that the NysKLMS with the same consumed time as the RFFKLMS con-
sumes less time than other algorithms except for the KLMS-NC and simultaneously
approaches the filtering performance of KLMS.

5.2 Nonlinear Channel Equalization

The nonlinear channel equalization [28,34] is often used in such fields as modeling
digital satellite communication channels and digital magnetic recording channels. As
Fig. 7 shows, this kind of model is a combination of a linear filter and a memoryless
nonlinearity. The aim of the channel equalization is to recover the input signal s(n)

with a low error rate according to the observed output r(n) disturbed by a noise
v(n). p(n) is defined by p(n) = s(n) + 0.5s(n − 1), and r(n) is given by r(n) =
p(n)−0.9p(n)2+v(n). In this simulation, the data points for regression are constructed
as {x(n), d(n)} = {[r(n), r(n + 1), . . . , r(n + 5)]T, s(n − 2)}, where a segment of
5000 points is chosen as the training data and the following 100 points as the testing
data. In the following simulations, the Gaussian noise is zero mean with variance 0.1.

The compared results with the same codebook size m = 200 are shown in Fig. 8.
The parameters of algorithms are configured for the same initial convergence rate and
codebook size. The step size is set as μ = 0.5 for all algorithms. The kernel width is
σ = 0.7 for the KLMS-NC and the KLMS-SC and σ = 2 for others. The quantiza-
tion sizes are set as 1.2 and 1 in the QKLMS and the QKLMS-FB, respectively. The
thresholds are δ1 = 1.1 and δ2 = 0.08 for the KLMS-NC and T1 = 1 and T2 = 0.3
for the KLMS-SC. It can be seen from Fig. 8 that the NysKLMSwith efficient approx-
imation representation of the input, can provide better filtering performance than the
QKLMS, the QKLMS-FB, the KLMS-NC, the KLMS-SC, and the RFFKLMS. And

Fig. 7 Structure of a nonlinear channel
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Fig. 8 Learning curves in terms of the testing MSE of different algorithms with the same codebook size

Table 3 Mean consumed time
and testing MSE in the steady
state with m = 200

Algorithm Consumed time (s) Testing MSE

QKLMS 4.84 0.1251

QKLMS-FB 20.66 0.1235

RFFKLMS 0.20 0.1363

NysKLMS 0.27 0.1173

KLMS-NC 0.34 0.1640

KLMS-SC 0.69 0.2274

KLMS 86.28 0.1159

the NysKLMS using 200 centers achieves similar filtering performance to the KLMS
that has no sparsification. The mean consumed time and testing MSEs of all algo-
rithms are shown in Table 3. It can be seen from this table that the NysKLMS with
less consumed time obtains lower testing MSE than other sparsification algorithms.
The filtering performance of NysKLMS is almost the same as that of KLMS.

In Fig. 9, the parameters of the QKLMS, the QKLMS-FB, the KLMS-NC, the
KLMS-SC, the RFFKLMS, and the NysKLMS are chosen such that almost the same
testing MSEs are obtained. Besides the same step sizes and kernel widths as those in
Fig. 8, the quantization size is set as 0.8 in the QKLMS and the QKLMS-FB. The
thresholds are δ1 = 0.5 and δ2 = 0.37 for theKLMS-NCand T1 = 200 and T2 = −0.2
for the KLMS-SC. The corresponding mean codebook size and the consumed time
of these algorithms are shown in Table 4. We see from this table that the NysKLMS
with the same filtering performance as others consumes the least time and codebook
size among all the compared algorithms. Therefore, from the aspect of sparsification
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Fig. 9 Learning curves in terms of the same testing MSE of different algorithms

Table 4 Mean codebook size
and consumed time with the
same testing MSE

Algorithm Codebook size Consumed time (s)

QKLMS 365 7.25

QKLMS-FB 350 29.52

RFFKLMS 500 0.29

NysKLMS 130 0.22

KLMS-NC 536 1.52

KLMS-SC 921 4.07

of KLMS, the NysKLMS is more efficient than the QKLMS, the QKLMS-FB, the
KLMS-NC, the KLMC-SC, and the RFFKLMS.

6 Conclusion

In this paper, combining the kernel least mean square (KLMS) algorithm with the
Nyström method, we propose a novel sparsification algorithm in a fixed-size network,
named Nyström KLMS (NysKLMS). The Nyström method is used to construct a new
vector representation from the input space to a relatively high-dimensional feature
space. The representation of a fixed dimension can approximate the transformed input
of KLMS, efficiently. The proposed NysKLMS algorithm avoids a growing network
and thus reduces computational complexity with a small codebook size, significantly.
The sufficient condition for the mean square convergence and the theoretical value
of the steady-state EMSE in the NysKLMS are also derived for theoretical analysis.
Analytical results of the NysKLMS are supported by simulations. From the aspect
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of the construction of sparsification network, the NystKLMS provides an efficient
method for approximating the KLMS.
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