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Abstract
In this paper, problems covering finite-time stability and boundedness of switched
systems with finite-time unstable subsystems are researched through the method of
multi-Lyapunov function.On basis of themode-dependent average dwell timemethod,
the systems are required to meet the standards of remaining finite-time stable and
finite-time bounded through the practice of designing the switching signal for finite-
time stable and unstable subsystems respectively. Finally, stabilization conditions for
switched linear systems based on linear matrix inequalities are presented to guarantee
the finite-time stability of the closed-loop system.Numerical examples are put forward
attempting to verify the efficiency through different methodologies.

Keywords Switched nonlinear system · Finite-time stability · Finite-time
boundedness · Mode-dependent average dwell time

1 Introduction

Switched system refers to a typical hybrid system consisting of different subsystems
described by differential, difference equations and a switching law that orchestrates
switching between these subsystems. In accordance with requirements from many
practical applications (for example, flight control systems [20], complex dynamical
network systems [24]), rapid developments of switched systems have been realized
both on theoretical and practical basis in the last decades [7,18,21,25,31]. Based on
Lyapunov stability of switched systems, the researches [6,12,13,30] show the qualita-
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tive behavior of switched systems over an infinite time interval. In order to achieve the
Lyapunov stability of switched systems, time-dependent switching law applied fre-
quently in many researches, such as dwell time (DT) [14], average dwell time (ADT)
[10] and mode-dependent average dwell time (MDADT) method [35]. These methods
restrict the dwell time of each subsystem to achieve desired performance, which are
widely used in various switched systems.

The aforementioned methods mainly focus on the switched systems composed
by stable subsystems. However, on practical basis, the switched systems with both
stable subsystems and unstable subsystems are implemented widely such as controller
failures, sensor faults encountered in termsof engineering, giving rise to systemmodels
with unstable subsystems. For such switched systems, Yin et al. research the Lyapunov
stability and stabilization problems in [28] through a new class of switching signal
based on MDADT which gives upper bounds of dwell time for stable subsystems and
the lower bounds of dwell time for unstable subsystems.

Considering of most practical applications, the main concern lies in behavior of
the system over a fixed finite-time interval. For example, the system state can only be
acceptable under the limitation of saturations [3]. Therefore, it is greatly meaningful
to define the stability of system whose state remains within prescribed bounds in
the given finite-time interval. Under this purpose, finite-time stability was studied in
desirable approaches more from the view of academic in [9,23].

In comparison with Lyapunov stability, finite-time stability (FTS) concentrates
on the transient behavior of a system over a finite time interval. A great number of
researches [2,34] have delivered great attention on the light of linear matrix inequality
theory. In [1,3,4] some conditions suitable for finite-time stability and stabilization of
systems have been provided. In addition, [1,3] have extended the concept of finite-
time stability to that of finite-time boundedness. In [2,34], authors have presented
some results of finite-time stability for the systems with impulsive effects or jumps.
In [8], authors introduced the concept of finite-time stability into the switched linear
systems for the first time. However, it should be pointed out that the definition of
finite-time stability in the above-mentioned literature is equal to the boundedness of
the state within a given bound under a fixed time interval if the initial state condition
is bounded by a prescribed constant. There is another kind of finite-time stability,
requiring that the system be Lyapunov stable and the state converge to equilibrium
point in a finite time interval, see [5,15–17].

Recently, the FTS problem of switched systems composed by stable and unstable
subsystems has been studied. However, these researches aremostly confined to asymp-
totic unstable subsystems, like [11] considering the switched systems with finite-time
unstable subsystems for the first time. To achieve finite-time stability of such switched
systems, they used ADT to obtain the lower bound of stable subsystems dwell time,
and presented a total dwell time for all these unstable subsystems. Without the dwell
time of each subsystem, the result is not convenient to be applied. Therefore, in order
to reduce inconvenience, a dwell time should be required for every subsystem. More-
over, it has been shown in studies [27,29,36] that MDADT switching signal is more
applicable in practice than ADT switching signal, and less conservative. Therefore,
MDADT switching strategy used for analyzing finite-time stability of switched sys-



Circuits, Systems, and Signal Processing (2019) 38:2931–2950 2933

temswith finite-time unstable subsystems ismeaningful to be implemented, promoting
conduction of this research.

Considering of different effects produced by the finite-time stable systems and
the finite-time unstable subsystems, we designed the switching signal for finite-time
stable and unstable subsystems respectively in this paper. Sufficient conditions are
presented, functioning as making the switched nonlinear systems with finite-time
unstable subsystems finite-time stable. In the following section, this paper makes a
further research on the problem of finite-time boundedness of switched nonlinear
systems with disturbance. The FTS and FTB problems of linear systems are studied
as special cases of nonlinear systems. Meanwhile, these results are offered briefly in
the form of corollary. Finally, stabilization conditions of switched linear systems with
finite-time unstable subsystems are given in linear matrix inequalities (LMIs).

To be specific, the structure of this paper is illustrated in the following part. In
Sect. 2, necessary definitions of finite-time stability and boundedness for switched
nonlinear systems are introduced, along with presentation of some problem formula-
tions. As the significant part in this paper, Sect. 3 mainly deals with finite-time stability
problem, finite-time boundedness problem and stabilization problem of switched sys-
tems with finite-time unstable subsystems. Eventually, corresponding conclusions are
presented. Numerical examples are provided in Sect. 4 to demonstrate the feasibil-
ity and effectiveness of the proposed technique while the Sect. 5 points out the final
conclusions.

Notations In this paper, we use P > 0 to denote a symmetric positive definite matrix.
λmax(P) and λmin(P) denote the maximum and minimum eigenvalues of symmetric
positive definite matrix. The identity matrix of order n is denoted as In (or I , if no
confusion arises). N+ denotes the positive integer.

2 Preliminary

Consider the switched nonlinear system as follows:

ẋ(t) = fσ(t)(x(t))
x(0) = x0

(1)

where x(t) ∈ Rn is the state, σ(t) : [0,∞) → M = {1, 2, . . . ,m} is the switching
signal which is a piecewise constant function depending on time t , m ∈ N+. fi (·) for
any i ∈ M is locally Lipichitz continuous, and positive integer m shows the number
of the subsystems.

If fi (x) = Ai x with Ai being the constant real matrices for i ∈ M , system (1)
represents a switched linear system as:

ẋ(t) = Aσ(t)x(t)
x(0) = x0

(2)
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The system with disturbance can be described by following equations:

ẋ(t) = fσ(t)(x(t)) + gσ(t)(ω(t))
x(0) = x0

(3)

where ω(t) ∈ Rr is the exogenous disturbance. σ(t) : [0,∞) → M = {1, 2, . . . ,m}
is the switching signal. fi (·) and gi (·) are locally Lipichitz continuous for any i ∈ M .

If fi (x) = Ai x , gi (x) = Gi x with Ai and Gi are constant real matrices, system
(3) represents a class of switched linear systems with disturbance as:

ẋ(t) = Aσ(t)x(t) + Gσ(t)ω(t)
x(0) = x0

(4)

We only consider the switching signal which has a finite number of switching in
any finite interval time. Based on the switching signal σ(t), the switching sequence
can be described as:

{x0; (i0, t0), . . . , (ik, tk), . . . |ik ∈ M, k = 0, 1, . . .} (5)

where tk denotes the kth switching time, and ik th subsystem is activated at tk .

Assumption 1 The states of switched systems do not jump at the switching instants,
i.e., the trajectory x(t) is everywhere continuous, and there are finitely many switches
in every finite interval.

Assumption 2 The external disturbance ω(t) is time-varying and satisfies

ω ∈ Ω =
{
ω|
∫ T

0
ωT (t)ω(t)dt ≤ d

}
, d ≥ 0. (6)

Next, some necessary definitions are reviewed. As usual, in mode-dependent aver-
age dwell time (MDADT) method, we denote S = {1, 2, . . . , s} as the set of finite-
time stable subsystems with respect to the required parameters (c1, c2, T f , R, σ ),
U = {s + 1, . . . ,m} denotes the set of finite-time unstable subsystems with respect
to the same required parameters (c1, c2, T f , R, σ ), and S ∪ U = M . Based on the
MDADT property, Yin et al. presented the following definitions in [28]:

Definition 1 For a switching signal σ(t) and any t ∈ [0, T ], let Nσ p(T , t) denote the
switching number that the pth subsystem is activated over (t, T ) and Tp(T , t) denotes
the total running time of the pth subsystem over the interval (t, T ), p ∈ S . σ(t) is
called a switching signal with slow mode-dependent average dwell time (SMDADT)
τap if there exist positive numbers N0p (called the mode-dependent chatter bounds)
and τap such that

Nσ p(T , t) ≤ N0p + Tp(T , t)

τap
,∀t ∈ [0, T ]. (7)
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Definition 2 For a switching signal σ(t) and any t ∈ [0, T ], let Nσq(T , t) denote the
switching number that the qth subsystem is activated over (t, T ) and Tq(T , t) denote
the total running time of the pth subsystem over the interval (t, T ), q ∈ U . σ(t) is
called a switching signal with fast mode-dependent average dwell time (FMDADT)
τaq if there exist positive numbers N0q and τaq such that

Nσq(T , t) ≥ N0q + Tq(T , t)

τaq
,∀t ∈ [0, T ]. (8)

Without loss of generality, we let N0p = N0q = 0 as [11,27].

Remark 1 It is easy to noticed the difference between Definitions 1 and 2. We will
apply these different methods to finite-time stable subsystems and finite-time unstable
subsystems respectively, like [28]. Definition 1 is called slow switching. Requiring

Nσ p(T , t) ≤ N0p + Tp(T ,t)
τap

⇔ τap ≤ Tp(T ,t)
Nσ p(T ,t)−N0p

,

∀t ∈ [0, T ]. (9)

Conversely, Definition 2 requires

Nσq(T , t) ≥ N0q + Tq (T ,t)
τaq

⇔ τaq ≥ Tq (T ,t)
Nσq (T ,t)−N0p

,

∀t ∈ [0, T ]. (10)

called fast switching.

The definition of finite-time stability and finite-time boundedness of the switched
system was proposed by Amato in [3].

Definition 3 Given three positive constants c1, c2 and T , with c1 < c2, a positive
definite matrix R, and a given switching signal σ(t), switching system (1) is said to
be finite-time stable with respect to (c1, c2, T , R, σ ), if

xT0 Rx0 ≤ c1 ⇒ xT (t)Rx(t) ≤ c2,∀t ∈ (0, T ]. (11)

Definition 4 Given four positive constants c1, c2, T and d, with c1 < c2, d ≥ 0, a
positive definite matrix R,and a given switching signal σ(t), switching system (3) is
said to be finite-time bounded with respect to (c1, c2, T , R, σ, d), if

xT0 Rx0 ≤ c1 ⇒ xT (t)Rx(t) ≤ c2,∀t ∈ (0, T ],∀ω :
∫ T

0
ωT (t)ω(t)dt ≤ d. (12)
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3 Main Results

3.1 Finite-Time Stability Analysis

First of all, we introduce a class of quasi-alternative switching signals satisfying the
following conditions:

(a) If σ(tk) ∈ S , then σ(tk+1) ∈ M ,σ(tk) �= σ(tk+1).
(b) If σ(tk) ∈ U , then σ(tk+1) ∈ S .

This class of switching signals implies that a switched system cannot switch from a
finite-time unstable subsystem to another finite-time unstable subsystem. (Ifwe change
the condition (a) as: If σ(tk) ∈ S , then σ(tk+1) ∈ U . The switching signal implies
that finite-time stable subsystems and finite-time unstable subsystems can switch to
each other alternately.)

Next, finite-time stability conditions for switched linear system (1) with finite-time
unstable subsystems are given by designing quasi-alternative switching signals with
MDADT property.

Theorem 1 Consider the switched nonlinear system (1), and let γ1, γ2, αr > 0, r ∈ M,
μp > 1, p ∈ S , 0 < μq < 1, q ∈ U be given constants. Suppose that there
are multiply Lyapunov-like functions Vr (x(t)) , r ∈ M such that for σ(tk) = i ,
σ(tk+1) = j , i �= j

γ1(‖x(t)‖2) ≤ Vr (x(t)) ≤ γ2(‖x(t)‖2),∀r ∈ M, (13)

V̇r (x(t)) ≤ αr Vr (x(t)),∀r ∈ M, (14)

Vp(x(tk)) ≤ μpVr (x(t
−
k )),∀p ∈ S ,∀r ∈ M, p �= r , (15)

Vq(x(tk)) ≤ μqVp(x(t
−
k )),∀q ∈ U ,∀p ∈ S , (16)

λmax(R)γ2

λmin(R)γ1
<

c2
c1
e−αpT f . (17)

Then, the switched nonlinear systems (1) is finite-time stable with respect to
(c1, c2, T f , R, σ ) for any switching signal with MDADT

τap ≥ τ ∗
ap = T f lnμp

ln c2λmax(R)γ1
c1λmin(R)γ2

− αpT f

, (18)

τaq ≤ τ ∗
aq = − lnμq

αq
(19)

Proof For any t ∈ [tk, tk+1], we get from (14)that

d

dt
e−ασ(tk )t Vσ(tk )(x(t)) = e−αi t (V̇σ(tk )(x(t)) − ασ(tk )Vσ(tk )(x(t))) ≤ 0. (20)
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Integral on the interval (tk, t),

e−ασ(tk )t Vσ(tk )(x(t)) − e−ασ(tk )tk Vσ(tk )(x(tk)) ≤ 0

Vσ(tk )(x(t)) ≤ eασ(tk )(t−tk)Vσ(tk )(x(tk)) (21)

by (15), we get

Vi (x(t)) ≤ μi e
αi (t−tk)Vj (x(t

−
k ))

σ (tk) = i, σ (t−k ) = j, t ∈ (tk, tk+1) (22)

for t ∈ [0, T f ),

V (x(t)) ≤ μσ(tk )e
ασ(tk )(t−tk)Vσ(tk−1)(x(t

−
k ))

≤ μσ(tk )e
ασ(tk )(t−tk)(μσ(tk−1)e

ασ(tk−1)(tk−tk−1)Vσ(tk−2)(x(t
−
k−1))

=
∏
p

μ
Nσ p(0,t)
i

∏
q

μ
Nσq (0,t)
i exp

⎧⎨
⎩
∑
p

αpTp(0, t) +
∑
q

αqTq (0, t)

⎫⎬
⎭ Vσ(0)(x(0))

≤ exp
∑
p

(
αp + lnμp

τap

)
Tp(0, t) +

∑
q

(
αq + lnμq

τaq

)
Tq (0, t)Vσ(0)(x(0))

(23)

by(13),we have
V (x(t))

γ2
≤ ‖x(t)‖2 ≤ V (x(t))

γ1
(24)

so

xT (t)Rx(t) ≤ λmax(R)‖x(t)‖2 ≤ λmax(R)
V (x(t))

γ1

≤ λmax(R)

γ1
exp

{∑
p

(
αp + lnμp

τap

)
Tp(0, t)

+
∑
q

(
αq + lnμq

τaq

)
Tq(0, t)

}
Vσ(0)(x(0)) (25)

xT (0)Rx(0) ≥ λmin(R)‖x(0)‖2 ≥ λmin(R)
V (x(0))

γ2

Vσ(0)(x(0)) ≤ γ2

λmin(R)
xT (0)Rx(0) (26)

Moreover,

xT (t)RxT (t) ≤ λmax(R)γ2

λmin(R)γ1
exp

{∑
p

(
αp + lnμp

τap

)
Tp(0, t)
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+
∑
q

(
αq + lnμq

τaq

)
Tq(0, t)

}
xT (0)Rx(0) (27)

by (17) and switching signal (18, 19), and notice xT (0)Rx(0) < c1, we get
xT (t)Rx(t) < c2, which completes the proof of Theorem 1. ��

By the virtue of Theorem 1, we can give sufficient conditions under which switched
linear system with finite-time unstable subsystems is finite-time stable by giving the
concrete Lyapunov-like functions, like we did in [19].

Corollary 1 Consider the switched linear system (2), and let αr > 0, r ∈ M, μp > 1,
p ∈ S , 0 < μq < 1, q ∈ U be given constants. Suppose there exists a set of matrices
Pr > 0,r ∈ M such that

Ar Pr + Pr A
T
r − αr Pr ≤ 0, (28)

P
−1
p ≤ μp P

−1
r ,∀p ∈ S ,∀r ∈ M, p �= r , (29)

P
−1
q ≤ μq P

−1
p ,∀q ∈ U ,∀p ∈ S , (30)

and
λ2

λ1
<

c2
c1
e−αpT f , (31)

where

Pr = R− 1
2 Pr R

− 1
2 , (32)

λ1 = min
r

(λminPr ), λ1 = max
r

(λmaxPr ), r ∈ M . (33)

Then, the switched linear systems (2) is finite-time stable with respect to
(c1, c2, T f , R, σ ) for any switching signal with MDADT

τap ≥ τ ∗
ap = T f lnμp

ln c2λ1
c1λ2

− αpT f
, (34)

τaq ≤ τ ∗
aq = − lnμq

αq
. (35)

Proof Choose multiple Lyapunov-like functions

V (x(t)) = Vσ(tk )(x(t)) = xT P
−1
σ(tk )x (36)

We get from (28) that

˙Vσ(tk )(x(t)) = xT (t)(AT
σ(tk )P

−1
σ(tk ) + P

−1
σ(tk )Aσ(tk ))x(t)

≤ xT (t)ασ(tk)P
−1
σ(tk )x(t) = ασ(tk )Vσ(tk )(x(t)) (37)
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By (29, 30), we get

Vp(x(tk)) ≤ μpVr (x(t
−
k )),∀p ∈ S ,∀r ∈ M, p �= r , (38)

Vq(x(tk)) ≤ μqVp(x(t
−
k ),∀q ∈ U ,∀p ∈ S . (39)

Finally, one can conclude by Theorem 1 the switched system (2) is finite-time stable
with respect to (c1, c2, T f , R, σ ) for switching signal with MDADT satisfies (34, 35).

��
Remark 2 The theorem and corollary we presented involve some parameter such as
αr , μp, etc. Paper [26] had provided an approach to find these parameters.

3.2 Finite-Time Bounded Analysis

When the external disturbances are considered, finite-time boundedness of switched
nonlinear systems is worthy to be discussed. In this section, we will pay attention
to finite-time bounded analysis and present a sufficient condition to guarantee the
switched systems finite-time boundedness.

Theorem 2 Consider switched nonlinear system (3), and let γ1, γ2, αr > 0, ρr > 0,
r ∈ M, μp > 1, p ∈ S , 0 < μq < 1, q ∈ U be given constants. Suppose that
there are multiply Lyapunov-like functions Vr (x(t)), r ∈ M such that for σ(tk) = i ,
σ(tk+1) = j , i �= j ,

γ1(‖x(t)‖2) ≤ Vr (x(t)) ≤ γ2(‖x(t)‖2),∀r ∈ M, (40)

V̇r (x(t)) ≤ αr Vr (x(t)) + ρrω
T (t)ω(t),∀r ∈ M, (41)

Vp(x(tk)) ≤ μpVr (x(t
−
k )),∀p ∈ S ,∀r ∈ M, p �= r , (42)

Vq(x(tk)) ≤ μqVp(x(t
−
k )),∀q ∈ U ,∀p ∈ S (43)

γ2c1
λmin(R)

+ ρdeαT f <
γ1c2

λmax(R)
e−αpT f (44)

where
ρ = max

r
(ρr ),∀r ∈ M . (45)

Then, the switched nonlinear system (3) is finite-time bounded with respect to
(c1, c2, T f , R, σ, d) for any switching signal with MDADT

τap ≥ τ ∗
ap = T f lnμp

ln γ1c2
λmax(R)

− ln
(

γ2c1
λmin(R)

+ ρdeαT f

)
− αpT f

(46)

τaq ≤ τ ∗
aq = − lnμq

αq
(47)
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Proof For any t ∈ [tk, tk+1], we get from (41) that,

d

dt
e−ασ(tk )t Vσ(tk )(x(t)) = e−ασ(tk )t (V̇σ(tk )(x(t)) − ασ(tk )Vσ(tk )(x(t)))

≤ e−ασ(tk )tρσ(tk )ω
T (t)ω(t) (48)

Integral on the interval (tk, t),

e−ασ(tk )t Vσ(tk )(x(t)) − e−ασ(tk )tk Vσ(tk )(x(tk)) ≤ ρσ(tk )

∫ t

tk
e−ασ(tk )sωT (t)ω(t)ds

Vσ(tk )(x(t)) ≤ eασ(tk )(t−tk)Vσ(tk )(x(t)) + ρσ(tk )

∫ t

tk
eασ(tk )(t−s)ωT (t)ω(t)ds.

(49)

due to (42, 43), we have

Vσ(tk )(x(t))

≤ μσ(tk )e
ασ(tk )(t−tk )Vσ(tk−1)(x(t

−
k )) + ρσ(tk )

∫ t

tk
eασ(tk )(t−s)ωT (s)ω(s)ds

≤ μσ(tk )e
ασ(tk )(t−tk )(μσ(tk−1)e

ασ(tk−1)(tk−tk−1)Vσ(tk−2)(x(t
−
k−1))

+ ρσ(tk−1)

∫ tk

tk−1

eασ(tk−1)(tk−s)ωT (s)ω(s)ds)

+ ρσ(tk )

∫ t

tk
eασ(tk )(t−s)ωT (s)ω(s)ds

≤ μσ(tk ) · · · μσ(t1)e
ασ(tk )(t−tk ) · · · eασ(t1)(t2−t1)eασ(t0)(t1−t0)Vσ(t0)(x(t0))

+ μσ(tk ) · · · μσ(t1)e
ασ(tk )(t−tk ) · · · eασ(t1)(t2−t1)

∗ ρσ(t0)

∫ t1

t0
eασ(t0)(t1−s)ωT (s)ω(s)ds

+ μσ(tk ) · · · μσ(t2)e
ασ(tk )(t−tk ) · · · eασ(t1)(t3−t2)

∗ ρσ(t1)

∫ t2

t1
eασ(t1)(t2−s)ωT (s)ω(s)ds

+ · · · + μσ(tk )e
ασ(tk )(t−tk )ρσ(tk−1)

∫ tk

tk−1

eασ(t1)(tk−s)ωT (s)ω(s)ds

+ ρσ(tk )

∫ t

tk
eασ(tk )(t−s)ωT (s)ω(s)ds

=
∏
p

μ
Np(0,t)
p

∏
q

μ
Nq (0,t)
q exp

{∑
p

αpTp(0, t) +
∑
q

αqTq(0, t)

}
Vσ(t0)(x(t0))

+ ρ

∫ t

0

∏
p

μ
Np(s,t)
p

∏
q

μ
Nq (s,t)
q eασ(tk )(t−tk )+···+ασ(s)(ts−s)ωT (s)ω(s)ds
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≤
∏
p

μ
Np(0,t)
p

∏
q

μ
Nq (0,t)
q exp

{∑
p

αpTp(0, t) +
∑
q

αqTq(0, t)

}
Vσ(t0)(x(t0))

+
∏
p

μ
Np(0,t)
p ρe

∑
p αpTp(0,t)+∑q αq Tq (0,t)

∫ T

0
ωT (s)ω(s)ds

≤
∏
p

μ
Np(0,t)
p

{
exp

{∑
p

αpTp(0, t) +
∑
q

(
αq + lnμq

τaq

)
Tq(0, t)

}
Vσ(t0)(x(t0))

+ρde
∑

p αpTp(0,t)+∑q αq Tq (0,t)
}

By switching signal (47),

∑
q

(
αq + lnμq

τaq

)
Tq(0, t) < 0 (50)

the above inequalities continue as

≤ exp

(∑
p

(
αp + lnμp

τap

)
Tp(0, t)

)(
Vσ(t0)(x(t0)) + ρde

∑
q αq Tq (0,t)

)

≤ exp

(∑
p

(
αp + lnμp

τap

)
Tp(0, t)

)(
Vσ(t0)(x(t0)) + ρdeαT f

)

by (40), we get

V (x(t))

γ2
≤ ‖x(t)‖2 ≤ V (x(t))

γ1

xT (t)Rx(t) ≤ λmax(R)‖x(t)‖2 ≤ λmax(R)
V (x(t))

γ1

xT (0)Rx(0) ≥ λmin(R)‖x(0)‖2 ≥ λmax(R)
V (x(0))

γ2

Vσ(0)(x(0) ≤ γ2

λmin(R)
xT (0)Rx(0)

This implies

xT (t)Rx(t) ≤ λmax(R)

γ1
exp
∑
p

(
αp + lnμp

τap

)
Tp(0, t)

(
c1γ2

λmin(R)
+ ρdeαT f

)

(51)
by (44), we have

ln
γ1c2

λmax(R)
− ln

(
γ2c1

λmin(R)
+ ρdeαT f

)
− αpT f > 0. (52)
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By switching signal (46),

∑
p

(
αp + lnμp

τap

)
Tp(0, t) < ln

(
γ1c2

λmax(R)
∗ 1

γ2c1
λmin(R)

+ ρdeαT f

)
. (53)

Clearly, xT (t)Rx(t) < c2. This means the switched nonlinear system (3) is finite-time
bounded with respect to (c1, c2, T f , R, σ, d). ��

By giving concrete Lyapunov-like functions, similar result of linear switched sys-
tems can be deduced from Theorem 2, like the result we given in [19].

Corollary 2 Consider switched linear system (4), let αr > 0, r ∈ M, μp > 1, p ∈ S ,
0 < μq < 1, q ∈ U be given constants. Suppose there exists a set of matrices Pr > 0,
Qr > 0, r ∈ M, such that,

[
Ar Pr + Pr AT

r − αr Pr Gr Qr

∗ −γ Qr

]
≤ 0, (54)

P
−1
p ≤ μp P

−1
r ,∀p ∈ S ,∀r ∈ M, p �= r , (55)

P
−1
q ≤ μq P

−1
p ,∀q ∈ U ,∀p ∈ S , (56)

c1
λ1

+ 1

λ
eαT f γ d <

c2
λ2

e−αpT f . (57)

Where

Pr = R− 1
2 Pr R

− 1
2 , (58)

λ1 = min
r

(λminPr ), λ2 = max
r

(λmaxPr ), (59)

λ = min
r

(λminQr ), α = max
r

(αr ),∀r ∈ M . (60)

Then, the switched linear system (4) is finite-time bounded with respect to (c1, c2, T f ,

R, σ, d) for any switching signal with MDADT

τap ≥ τ ∗
ap = T f lnμp

ln c2
λ2

− ln
(
c1
λ1

+ 1
λ
eαT f γ d

)
− αpT f

, (61)

τaq ≤ τ ∗
aq = − lnμq

αq
. (62)

Proof Choose multiple Lyapunov-like functions

V (x(t)) = Vσ(tk )(x(t)) = xT P
−1
σ(tk )x . (63)
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Take derivative to the both sides of the equation,

V̇σ(tk )(x) = xT (t)(AT
σ(tk )P

−1
σ(tk ) + P

−1
σ(tk )Aσ(tk ))x(t) + 2xT (t)P

−1
σ(tk )Gσ(tk )ω(t)

= [xT (t) ωT (t)
] [AT

σ(tk )
P

−1
σ(tk ) + P

−1
σ(tk )Aσ(tk ) P

−1
σ(tk )Gσ(tk )

∗ 0

][
x(t)
ω(t)

]

(64)

Assuming condition (54) is satisfied, then pre-multiplying and post-multiplying by

the positive symmetric matrix

[
P

−1
σ(tk ) 0

0 Q
−1
σ(tk )

]
, we obtain the equivalent condition

[
AT

σ(tk )
P

−1
σ(tk ) + P

−1
σ(tk )Aσ(tk ) − αP

−1
σ(tk ) P

−1
σ(tk )Gσ(tk )

∗ −γ Q
−1
σ(tk )

]
≤ 0 (65)

(64) leads to

V̇σ(tk )(x(t)) ≤ xT (t)ασ(tk )P
−1
σ(tk )x(t) + γωT (t)Q−1

σ(tk)
ω(t),

V̇σ(tk )(x(t)) − ασ(tk )Vσ(tk )(x(t)) ≤ γωT (t)Q−1
σ(tk )

ω(t). (66)

The following proof is similar to that of Theorem 2.We omit it there. ��

3.3 Finite-Time Stabilization of Switched Linear Systems

For some finite-time unstable subsystems, the feedback control algorithm guarantees
that the closed-loop system can be finite-time stable. And then the theorem presented
above can be applied in the closed-loop system. In this section, the problem of con-
troller design for switched linear system with disturbances

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Gσ(t)ω(t), (67)

is studied. Unlike some control methods, we don’t require all the subsystems are
controllable. We assume the {Ap, Bp} are controllable subsystems, {Aq , Bq} are
uncontrollable subsystems. The aim of finite-time stabilization is to design a state
feedback controller

u(t) = Kσ(t)x(t) (68)

to achieve the finite-time stability of the close-loop switched linear system with
MDADT switching.

Theorem 3 Let αr > 0, r ∈ M, μp > 1, p ∈ S , 0 < μq < 1, q ∈ U , γ > 0 be
given constants. Suppose there exists a set of matrices Pr > 0, Qr > 0, Xr , r ∈ M,
such that

[
Ar Pr + Pr AT

r − αr Pr + Br Xr + XT
r BT

r Gr Qr

∗ −γ Qr

]
≤ 0, (69)
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P
−1
p ≤ μp P

−1
r ,∀p ∈ S ,∀r ∈ M, p �= r , (70)

P
−1
q ≤ μq P

−1
p ,∀q ∈ U ,∀p ∈ S , (71)

c1
λ1

+ 1

λ
eαT f γ d <

c2
λ2

e−αpT f . (72)

Where

Pr = R− 1
2 Pr R

− 1
2 , (73)

λ1 = min
r

(λminPr ), λ2 = max
r

(λmaxPr ), (74)

λ = min
r

(λminQr ), α = max
r

(αr ),∀r ∈ M . (75)

Then, under the feedback controller

u(t) = Kσ(t)x(t) = Xσ(t)P
−1
σ x(t) (76)

Switched system (67) is finite-time bounded with respect to (c1, c2, T f , R, σ, d) for
any switching signal with MDADT (61, 62).

Proof Applying Corollary 2 to the closed-loop system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Gσ(t)ω(t)

= (Aσ(t) + Bσ(t)Xσ(t)P
−1
σ )x(t) + Gσ(t)ω(t) (77)

It is no difficult to check the result. ��
Remark 3 As the conditions (31, 57) are not in LMIs, we tackle them by the method
mentioned used in [3], Take (57) as an example. It is guaranteed by the imposing
conditions,

ar I < Pr < br I ,

cr I < Qr ,

c1
ar

+ eαT f γ d

cr
<

c2
br

e−αpT f .

for some positive numbers ar , br , cr , the last inequality can be converted to an LMI
using Schur complements

⎛
⎜⎝

c2
br
e−αT f

√
c1

√
eαT f γ d√

c1 αr 0√
eαT f γ d 0 cr

⎞
⎟⎠ > 0,

and then the feasibility of these conditions can be turned into the LMIs based feasibility
problem. The computational complexity increases with the increase of the size of the
matrix. This is the common problem in the field of matrix computing
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It should be pointed out that the new conditions in LMIs obtained are just sufficient
conditions for the original conditions.

4 Numerical Examples

Example 1 Consider the finite-time stability problem for a switched nonlinear system
as (1), which is consisted two subsystems as follows:

f1(x(t)) = (1 + 0.5 sin(x(t))2)x(t), f2(x(t)) = (2 + cos(x(t))2)x(t).

The corresponding parameters are specified as follows:

c1 = 1, c2 = 100, T f = 1, R = I .

By system state Figs. 1 and 2, we can find that the first subsystem is finite-time stable
and the second subsystem is finite-time unstable.

Choose Multi-Lyapunov-like functions as:

V1 = x2, V2 = 0.9x2.

Taking the derivative of V (x) yields

V̇1(x) ≤ 3V1(x), V̇2(x) ≤ 6V2(x)

So by Theorem 1, we can choose α1 = 3, α2 = 6, μ1 = 1.2, μ2 = 0.9, γ1 = 0.8,
γ2 = 1.1, the MDADT of two subsystems are obtained:

τ ∗
a1 = 0.1298, τ ∗

a2 = 0.0176.

12
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4

2

0
0 0.2 0.4 0.6

time
0.8 1

X
T R

X

Fig. 1 XT RX of first subsystem
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Fig. 2 XT RX of second subsystem
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Fig. 3 XT RX and switching signal

Let τa1 = 0.13, τa2 = 0.015, we generate the switching sequence alternating between
the two subsystems. Figure 3 shows the switching signal and the value of xT Rx for
the switching system we considered.

Example 2 Consider the finite-time stability problem for switched linear systems as
(2) consisted of two subsystems. The corresponding subsystem matrices are given
below:

A1 =
[
0.1 0

−0.5 0.5

]
, A2 =

[
1 1
1 1

]

Corresponding parameters are c1 = 1, c2 = 50, T f = 1, R = I .
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Fig. 4 XT RX and switching signal

It is not difficult to verify that the first subsystem is finite-time stable and the second
subsystem is finite-time unstable. By using Corollary 1, if we choose α1 = 1.25,
α2 = 5, μ1 = 1.9, μ2 = 0.75, the feasible solutions are obtained as follows:

P1 =
[
98.764 49.8608
49.8608 136.68435

]
, P2 =

[
158.6314 81.4113
81.4113 215.9851

]
.

Moreover, we get the MDADT of two subsystems are obtained:

τ ∗
a1 = 0.5282, τ ∗

a2 = 0.0575. (78)

Let τa1 = 0.55 > 0.5282, τa2 = 0.05 < 0.0575, we generate the switching sequence
alternating between the two subsystems. Figure 4 shows the simulation results of the
value of xT Rx for the switching system we considered.

Example 3 Consider the finite-time stabilization problem of switched system (67)

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Gσ(t)ω(t).

The corresponding subsystem matrices and parameters are specified as follows:

A1 =
[
0.01 0
−1 −3

]
, B1 =

[
0
0.5

]
, A2 =

[
1 3
0 −0.25

]
, B1 =

[
1
0

]
,

G1 = G2 = I , ω(t) =
[−0.4 cos(10t + 3)

0.2 sin(3t)

]
,

c1 = 5, c2 = 100, d = 1, T f = 1, R = I .
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Fig. 5 XT RX and switching signal

By Theorem 3, we choose α1 = 0.3, α2 = 0.3, μ1 = 1.2, μ2 = 0.9, γ = 0.5, then
we obtain the matrix solution as:

P1 =
[
145.3431 0

0 39.7138

]
, P2 =

[
168.0789 0

0 45.7954

]
,

Q1 =
[
9.5608 0

0 4.7065

]
, Q2 =

[
4.7065 0

0 7.4526

]
,

X1 = [290.6863 229.0174
]
, X2 = [−153.4567 −137.3863

]
,

Thus, according to the Theorem 3, under the state feedback controllers

u1(t) = (2.0000, 5.7667)x(t), u2(t) = (−0.9130,−3.0000)x(t),

and the switching signal with MDADT

τa1 = 0.38 > 0.3701, τa2 = 0.2 < 0.3512,

close-loop system (67) is finite-time bounded with respect to (5, 100, 1, 1, σ, 1)
(Fig. 5).

5 Conclusions

Finite-time stability and finite-time boundedness problems of switched nonlinear sys-
tems consisting of both finite-time stable and unstable subsystems have been studied
in this paper. Through an MLF approach, a class of switching signals with MDADT
property has been designed to achieve the purpose. Corresponding corollaries have
also been deduced for switched linear systems with finite-time unstable subsystems.
For the stabilization problem, the case of linear systems has been considered in order
to present controller gain matrix. The feedback controller has been designed to guar-
antee the closed-loop system to be finite-time stable. Corresponding future researches
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are still confronted with a great number of challenges. Considering of switched linear
systems, implementation of Lyapunov function may lead to some conservativeness on
the bound of dwell time, and themethod proposed in [32] is likely to be the solution for
this problem. In addition, adaptive control embraced in [22,33] is also a prospective
research problem.
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