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Abstract
Fractional delay filters modeling non-integer delays are digital filters that ideally have
flat group delays. This paper proposes a simple design method of fractional delay FIR
filter based on binomial series expansion theory. First, the design technique is based on
the binomial series expansion method which is applied to a discrete fractional system
to obtain a closed form FIR digital filter which approximates the digital fractional
delay operator z−m (m ∈ �+). Then, the principal differentiation is used to design
fractional delay FIR filter with a broader group delay bandwidth. Finally, numerical
examples of fractional delay FIR filter design show that the proposed approach yields
better performance compared to the existing techniques.

Keywords Fractional delay FIR filters · Binomial series expansion · Discrete
fractional system · Broader bandwidth

1 Introduction

In recent years, fractional order signal processing has received considerable inter-
est in many engineering applications including the implementations of the fractional
delay/forward filters, the fractional integrators/differentiators, the fractional Fourier
transform and the fractional wavelet transform [1, 4, 5, 15, 18].
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In digital signal processing and communications, the main function of some types
of digital filters is to delay an input digital signal by a fractional amount of the sam-
pling period. This type of filter is known as fractional delay filters. There are many
applications in which the signal delay value is required, and examples of such systems
are: speech coding and synthesis [14], beam steering [17], time adjustment in digital
receivers [23], time delay estimation [16], modeling of music instruments [21] and
analog-to-digital transform [2].

The transfer function of the ideal digital fractional delay is given by:

H (z) � z−m, (m ∈ �+) (1)

where m is the delay amount that can be split into integer part D and fractional part d.
Despite its apparent simplicity, the above transfer function is not easy to imple-

ment. For this reason, many digital finite impulse response (FIR) and infinite impulse
response (IIR) filter design techniques have been proposed to approximate the ideal
digital fractional delay transfer function of (1). In the literature, some techniques to
design fixed digital fractional delay filters such as window method, Lagrange inter-
polation method, discrete Fourier transform method [2–4, 13, 14, 17, 19, 20, 22–25]
and to design digital variable fractional delay filters have been developed. Techniques
such weighted least-square, minimax and maximally flat methods have been used for
the design of variable fractional delay filters [6–9, 11, 12, 26]. In Ref. [14], we can
find a good introductory material of the topic.

In this brief, the binomial series expansionmethod is proposed to design a fractional
delay FIR filter. Recently, the Taylor seriesmethodwas used to design this type of filter
in a maximally flat mode at low frequencies. The maximally flat FIR filter approxima-
tion is equivalent to the Lagrange interpolationmethod [24]. This last method provides
its most satisfactory frequency response when it is deployed to implement m=D+d
samples of delay, where L is the filter order,D�L/2, and d is a fractional amount. The
main contribution of this work is that the obtained FIR digital filter approximation
of the ideal digital fractional delay operator z−m is a discrete system with a wider
group delay bandwidth. In addition, the obtained FIR digital filter coefficients have an
explicit formula; so the computation speed to accomplish this design is very fast.

In our previous work [1, 2] and [4, 5], we have considered the design of the digital
fractional delay operator z−m (0< m < 1) and the digital fractional forward opera-
tor zm (0 < m < 1) using digital infinite impulse response (IIR) filters based on the
approximation, respectively, of the analog fractional power pole 1(

1+ s
ωc

)m and of the

analog fractional power zero
(
1 + s

ωc

)m
and the analog-to-digital transform forward

difference generating function (s � 1−z−1

T z−1 , where T is the sampling period). We have

also designed the fractional order integrator s−m and differentiator sm (0<m <1) using
an adjustable fractional order digital FIR filters and the Tustin generating function for
the analog-to-digital transform (s � 2

T
1−z−1

1+z−1 ). The design of the fractional delay z
−α

(0<α <0.5) has also been considered using digital infinite impulse response (IIR)
filter based on the approximation of analog fractional order systems and the Tustin
generating function for analog-to-digital transform (s � 2

T
1−z−1

1+z−1 , where T is the sam-
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pling period). The designed fractional delay z−α (0<α <0.5) has been used in the

implementation of the fractional Euler analog-to-digital transform s � (1−z−α)
αT (0<α

<0.5) which is the regular Euler transform when α �1. The main idea of the current
work is the design of the fractional delay operator z−m (m ∈ �+) using digital FIR
filter by applying the binomial series expansionmethod to a discrete fractional system.

The rest of the work is structured as follows: the design method of the digital
fractional delay FIR filter will be explained in Sect. 2. In Sect. 3, this design method
is manipulated to obtain a filter with a wider group delay bandwidth. The proposed
design has closed form coefficient formulas. Section 4 contains the simulation results,
comparisons and discussion of the proposed technique, followed by Sect. 5 where the
conclusions are given.

2 Proposed DesignMethod

The proposed design method of the fractional order delay z−m (m ∈ �+) is derived
using the binomial series expansion of xm (m ∈ �+), for −1<x <1. This binomial
series expansion is defined by the following expressions [10]:

xm ∼�
∞∑
n�0

(
m
n

)
(x − 1)n ∼�

∞∑
n�0

�(m + 1)

�(n + 1) · �(m − n + 1)
(x − 1)n (2)

(x − 1)n ∼�
∞∑
k�0

(−1)n−k
(
n
k

)
xk ∼�

∞∑
k�0

(−1)n−k �(n + 1)

�(k + 1) · �(n − k + 1)
xk (3)

where �(.) is the Gamma function.
Then, Eqs. (2) and (3) are linked together by substituting the third equation into the

second one and after some manipulations, we can have:

xm ∼�
∞∑
k�0

∞∑
n�0

(−1)n−k
(
m
n

)(
n
k

)
xk

∼�
∞∑
k�0

∞∑
n�0

(−1)n−k �(m + 1)

�(k + 1) · �(n − k + 1) · �(m − n + 1)
xk (4)

Let the function H(z) of (1) be H (z) � (
z−1

)m
. Hence, by replacing x by z−1 in

the expression of (4) the ideal digital fractional delay H(z) can be approximated by
the following expression:

H (z) � z−m ∼�
∞∑
k�0

∞∑
n�0

(−1)n−k
(
m
n

)(
n
k

)
z−k

∼�
∞∑
k�0

∞∑
n�0

(−1)n−k �(m + 1)

�(k + 1) · �(n − k + 1) · �(m − n + 1)
z−k (5)
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The truncated version of expression (5) to L terms of the approximation of H(z) of
(5) will lead to its FIR digital filter approximation as follows:

H (z) � z−m ∼�
L∑

k�0

L∑
n�0

(−1)n−k
(
m
n

)(
n
k

)
z−k

∼�
L∑

k�0

L∑
n�0

(−1)n−k �(m + 1)

�(k + 1) · �(n − k + 1) · �(m − n + 1)
z−k (6)

Let i � (n −k) then n � (i +k); the expression of (6) becomes:

H (z) � z−m ∼�
L∑

k�0

L−k∑
i�0

(−1)i
(

m
i + k

)(
i + k
k

)
z−k

∼�
L∑

k�0

L−k∑
i�0

(−1)i
�(m + 1)

�(k + 1) · �(i + 1) · �(m − i − k + 1)
z−k

�
L∑

k�0

h1(k)z
−k (7)

where L is the FIR filter order and the terms h1(k) are its coefficients which are given
by the following expressions:

h1(k) �
⎧⎨
⎩

L−k∑
i�0

(−1)i
(

m
i + k

)(
i + k
k

)
�

L−k∑
i�0

(−1)i �(m+1)
�(k+1)·�(i+1)·�(m−i−k+1) , 0 ≤ k ≤ (L)

0, otherwise
.

(8)

Hence, the proposed approximation of the ideal fractional order delay z−m (m ∈ �+)
is a closed form digital FIR filter.

3 Differentiation of the Proposed Fractional Delay FIR Filter

Our second contribution in this paper is the application of the principle of differentia-
tion to design a fractional delay FIR filter withwider group delay bandwidth. Applying
the derivative of the frequency response of Eq. (7) leads to the following expression:

dH (e− jω)

dω
� d

dω

[
e− jωm

]
� d

dω

[
L∑

k�0

h1(k) e
− jωk

]
. (9)
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By taking the derivative of both sides of Eq. (9), we will get:

− jm
[
e− jωm

]
�

L∑
k�0

− jk
[
h1(k) e

− jωk
]

(10)

We can write then:

e− jωm �
L∑

k�0

k

m

[
h1(k) e

− jωk
]

(11)

Therefore, the transfer function of Eq. (7) of this proposed design is given as:

z−m �
L∑

k�0

k

m
h1(k)z

−k �
L∑

k�0

h(k)z−k (12)

where the coefficients h(k) of the proposed digital FIR filter design of the ideal frac-
tional order delay z−m (m ∈ �+) are given in closed form in terms of the coefficients
h1(k) of Eq. (8) and the fractional delay m as follows:

h(k) �
{

k
m h1(k), 0 ≤ k ≤ L
0, otherwise

(13)

The implementation in direct form structure of the digital fractional delay operator
z−m in terms of its approximation by the digital FIR filter of Eq. (13) is shown in
Fig. 1.

4 Simulation Results and Comparison

In this section, the design is implemented in MATLAB. Numerical examples are
presented to demonstrate the effectiveness of the proposed design method. First, we

Z-1 Z-1 Z-1

⊕ ⊕⊕

h(0) h(1) h(2) h(L)

Input

Output

Fig. 1 Direct form implementation of the proposed (L +1)th order fractional delay FIR filter
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use an example to compare the behavior of the proposed method with the conven-
tional Lagrange maximally flat method in [22] and the Fourier transform interpolation
method in [19]. In this comparison, we have adopted the same design parameters
for the proposed method and the two other methods to design the digital FIR filter
equivalent to the ideal digital fractional delay H (z) � z−15.5. The chosen parameters
are: L=30, m=15.5 and a design frequency band of [0, 0.8π]. In addition, to evaluate
the performance and the effectiveness of the proposed method, the magnitude and
the group delay (GD) absolute error functions defined, respectively, by the following
equations were used:

Ea �
∣∣∣
∣∣∣H (e jω)

∣∣∣ −
∣∣∣e− jωm

∣∣∣
∣∣∣, Eg �

∣∣∣GD
[
H (e jω)

]
− GD

[
e− jωm

]∣∣∣ (14)

Before comparing the behavior of the proposed method with the methods in [22]
and in [19], we will first compare the magnitude and the group delay responses of the
designed digital FIR fractional delay filters defined by Eqs. (8) and (13) equivalent
to the ideal digital fractional delay H (z) � z−15.5 to highlight the benefits of the
application of the principle of the differentiation of the frequency response to design
a fractional delay FIR filter with wider group delay bandwidth. Figure 2 shows the
magnitude and the group delay responses of the designed digital FIR fractional delay
filters equivalent to the ideal digital fractional delay H (z) � z−15.5 before and after
applying the differentiation of the frequency response defined, respectively, by Eqs. (8)
and (13).

From Fig. 2, we note the improvement in the group delay response realized after
applying the differentiation of the frequency response to design the digital FIR frac-
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Fig. 2 Magnitude and group delay responses of the proposed designed digital FIR fractional delay filters
before (dotted line) and after (solid line) applying the differentiation of the frequency response
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Fig. 3 Magnitude responses of the ideal fractional delay z−15.5 (dotted line), the proposed digital FIR filter
(solid line), the Lagrangemaximally flatmethod of [22] (dashed line) and the Fourier transform interpolation
method of [19] (dash-dot line)

tional delay filter defined by Eq. (13) equivalent to the ideal digital fractional delay
H (z) � z−m(m > 0).

Figures 3 and 4 show, respectively, the magnitude and the group delay responses
of the ideal fractional delay and its digital FIR filter version that was obtained by
the proposed method, the Lagrange maximally flat method of [22] and the Fourier
transform interpolation method of [19]. Figure 5 shows the magnitude and the group
delay absolute error functions Ea and Eg of Eq. (14) of the ideal fractional delay, the
proposed design method, the Lagrange maximally flat method [22] and the Fourier
transform interpolation method [19].

From Fig. 3, we remark that, in the frequency band [0, 0.8π], the magnitude
responses of the proposed method and Lagrange method of [22] are almost equal
and smoother than the oscillatory magnitude response in the interpolation method
of [19]. From Fig. 4, we can also see that the group delay response of the proposed
method is almost the ideal one and it is much better than the group delay responses
of the methods of [22] and [19]. These remarks are quantified in Fig. 5 where, in the
frequency band [0, 0.8π], the magnitude absolute error function Ea of the proposed
method and Lagrange maximally flat method of [22] are smaller than the magnitude
absolute error function Ea of the transform interpolation method of [19]. But, in the
frequency band [0.8π,π], both magnitude absolute error functions Ea of the proposed
method and Lagrange maximally method of [22] are higher than the magnitude abso-
lute error function Ea of the transform interpolation method of [19]. However, in the
full frequency band [0, π], the group delay absolute error function Eg of the proposed
method is almost zero and it is much smaller than the group delay absolute error func-
tion of both methods of [22] and [19]. Hence, we conclude that the proposed design
outperforms the other two designs of [22] and [19] and realizes a wider group delay
bandwidth system.
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Fig. 4 Group delay responses of the ideal fractional delay z−15.5(dotted line), the proposed digital FIR filter
(solid line), Lagrange maximally flat method of [22] (dashed line) and the Fourier transform interpolation
method of [19] (dash-dot line)
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Fig. 5 Magnitude and group delay absolute error functions Ea and Eg of the proposed method (a), Lagrange
maximally flat method of [22] (b) and the Fourier transform interpolation method of [19] (c)
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Fig. 6 Mean absolute errors of the magnitude Ea(m) (a) and the group delay Eg(m) (b) of the digital FIR
filter design of the ideal fractional delay of the proposed method (solid line) and the method of [19] (dotted
line), for different values m

To compare the accuracy of the proposed method and the method of [19], for
different values of the fractional delay m, the mean absolute errors Ea(m) of the
magnitude and Eg(m) of the group delay are used. These mean absolute errors are
given by the following expressions:

Ea(m) � 1

Np

Np∑
i�1

∣∣∣
∣∣∣H (e jωi )

∣∣∣ −
∣∣∣e− jωi m

∣∣∣
∣∣∣ (15)

Eg(m) � 1

Np

Np∑
i�1

∣∣∣Group Delay
[
H (e jωi )

]
− Group Delay

[
e− jωi m

]∣∣∣ (16)

where Np is the number of points ωi in the frequency band [0, 0.9π].
Figure 6 shows the mean absolute errors Ea(m) of the magnitude and Eg(m) of

the group delay of the proposed method and the method of [19] the digital FIR filter
design of the ideal fractional delay for different values of the fractional delay m in the
range of [15.1, 15.9].

From Fig. 6, we can easily see that the mean absolute errors Ea(m) of the magnitude
and Eg(m) of the group delay of the digital FIR filter design of the ideal fractional
delay of the proposed method are smaller than the ones of the method of [19]. This
result shows that the effectiveness of the proposed digital FIR filter design of the ideal
fractional delay is not restricted to only one fractional delay m.

To show the merits and the efficiency of the proposed method, the obtained results
are also compared to those of the method proposed by Tseng in [20] where the opti-
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Table 1 Different errors of the magnitude and group delay of the four designs

Method em,mag em,gd Ea(m) Eg(m)

Proposed method 0.08 1.6×10−9 0.02 4.55×10−10

Least squares method with
fractional derivative
constraints [20]

0.01 0.04 0.002 0.01

Lagrange method [22] 0.08 0.18 0.02 0.055

Fourier transform
interpolation method [19]

0.05 2 0.019 0.387

mal least squares method with fractional derivative constraints has been used. The
comparison with the work of Tseng of [20] is made because the author has done a
lot of work in the last decade and his work in [20] is his most recent work on digital
FIR filter design of the fixed ideal fractional delay. In this comparison, the design
parameters L �30, m �15.5 and the frequency band [0, 0.9π] of example (1) of [20]
are adopted. The magnitude mean absolute error Ea(m) of (15), the group delay mean
absolute error Eg(m) of (16), the maximum magnitude response error em,mag and the
maximum group delay error em,gd are used as comparison performances of the digital
FIR filter design of the fixed ideal fractional delay using the proposed method, the
least squares method with fractional derivative constraints of [20], Lagrange maxi-
mally flat method of [22] and Fourier transform interpolation method of [19]. The
obtained comparison results are reported in Table 1.

As shown in Table 1, the magnitude response errors for all methods are approxi-
mately the same,whereas the group delay error for the proposedmethod is significantly
lower than the other designs used in the comparison. Hence, we conclude that the pro-
posed method has achieved a design with an acceptable higher accuracy compared to
the methods of Table 1.

To show the relationship between the length L of the fractional delay FIR filter
design of the fixed ideal fractional delay and the approximation accuracy of the pro-
posed method, the mean relative errors Ea(L) and Eg(L) versus L, for different values
of the order m for T �1 s in the frequency band [0, 0.9π] are, respectively, plotted in
Fig. 7a–d.

From Fig. 7, we note that the errors Ea(L) and Eg(L) have the smallest values for the
values of the length L around 2 m. These observations confirm the compatibility of the
proposed method with the Lagrange interpolation method [22] where the authors have
stated that their proposed design provides the best approximation when the fractional
delay m is close to L/2.

Figure 8 depicts the magnitude and the group delay absolute errors functions Ea
and Eg of the proposed designed digital FIR fractional delay filters before and after
applying the differentiation of the frequency response for L �30 and m �15.5.

From Fig. 8, we can easily see the amelioration in the group delay absolute error
function Eg and the deterioration of the magnitude absolute error function Ea after the
application of the differentiation of the frequency response of the proposed digital FIR
fractional delay filter. To highlight the trade-off between the amelioration of the group
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Fig. 7 Plots of the mean relative errors Ea(L) and Eg(L) versus the FIR filter length L for different values
of the fractional order m

delay absolute error function Eg and the deterioration of the magnitude absolute error
function Ea after the application of the differentiation of the frequency response of
the proposed digital FIR fractional delay filter, the maximum magnitude error em,mag
and the maximum group delay error em,gd of the proposed digital FIR fractional delay
filter before and after applying the differentiation of the frequency response for L �
30 and m �15.5 are reported in Table 2.



Circuits, Systems, and Signal Processing (2019) 38:3356–3369 3367

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

Normalized Frequency ω /π

A
bs

ol
ut

e 
er

ro
r E

a

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Normalized Frequency ω /π

A
bs

ol
ut

e 
er

ro
r E

g

Fig. 8 Magnitude and group delay absolute error functions Ea and Eg before (dotted line) and after (solid
line) applying the differentiation of the frequency response of the digital FIR fractional delay filters

Table 2 Maximum magnitude
and group delay errors em,mag
and em,gd before and after
differentiation of the frequency
response of the digital FIR
fractional delay filters

Proposed FIR
fractional delay filter

em,mag em,gd

Before
differentiation

0.075 0.183

After differentiation 0.08 1.6×10−9

From Table 2, we note that a very small maximum group delay error is achieved
after applying the differentiation of the frequency response of the proposed digital FIR
fractional delay filter. However, the very good improvement realized in the group delay
is obtained at the cost of the increase in the proposed digital FIR fractional delay filter
maximum magnitude error. Thus, it is interesting to extend the proposed technique to
design a digital FIR filter fractional delay with a broader magnitude bandwidth.

5 Conclusion

In this paper, the binomial series expansion formula has been used to design a new
fractional delay FIR filter to approximate the ideal fractional delay operator. Further,
the differentiation principle is applied to obtain a fractional delayFIRfilterwith awider
group delay bandwidth. The filter coefficients are in closed form formulas leading to
an easy computation. Numerical design example has been presented to demonstrate
the performance and the effectiveness of the proposed digital FIR fractional delay filter
design method. Errors functions have also been used to compare the obtained results
with the ideal digital fractional delay operator. The obtained results have confirmed
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the superior performance of the proposed method compared to the some recent and
efficient digital FIR fractional delay filter design methods.
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