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Abstract
In this paper, a recently developed metaheuristic water cycle algorithm (WCA)
is coupled with Masi entropy (Masi-WCA) to perform color image segmentation
over the optimal threshold value selection process. Masi entropy gives the non-
extensive/additive information that exists in an image by a tunable entropic parameter.
The water cycle algorithm is a newly established population-based method which has
been employed to exploit an optimal value of weighing factors for enforcement of con-
straints on individual components. The idea behind WCA is grounded on thought of
water cycle and how streams and rivers flowdownward toward the sea in the real world.
The key feature of this paper is to exploit the modern optimization techniques such
as water cycle algorithm, monarch butterfly optimization, grasshopper optimization
algorithm, bat algorithm, particle swarm optimization, and wind-driven optimization
for the color image segmentation purpose. In this paper, two objective (fitness) func-
tions are exploited which are Tsallis and Masi entropy for a fair comparison of the
proposedmethod. The proposed scheme is examined intensively regarding quality, and
a statistical graph is included to compare the outcomes of the proposed Masi-WCA
method against similar algorithms. Different to other recently developed optimization
algorithms used for color image multilevel thresholding operations, WCA presents
a better performance in terms of superior quality and fast convergence rate. Experi-
mental evidence encourages the use of WCA for multilevel thresholding with Masi
entropy, while it concludes that Tsallis entropy does not outperform over the proposed
scheme.
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1 Introduction

Color image segmentation is the process of splitting a digital image into distinct non-
overlapping homogenous regions according to the similarity in some image features
such as color, pattern, intensity value, regional statistics. Segmentation methods are
involved as a preprocessing step in various computer vision systems and pattern recog-
nition applications such as edge detection, medical imaging, object detection, video
surveillance, classification, industrial production, traffic control system and agricul-
ture fields [1, 5, 12, 15, 22]. Based on the general principle of image segmentation,
the taxonomy of different segmentation algorithms can be built which distinguishes
the following categories: thresholding methods, edge-based techniques, and region-
based techniques. Image segmentation using multilevel thresholding (MT) is one of
the leading methods, and thresholding methods play a vital role to accomplish image
segmentation. However, most of the techniques are based on the image histogram
due to its simplicity, effectiveness, easy to implement, and rapidness. Generally, the
thresholding approaches are categorized as bi-level and multilevel thresholding. The
easiest one is bi-level thresholding, but for daily-life color images and remote sensing
images [9], it does not give optimum results. Among all the remarkable thresholding
methods, thresholding based on information entropy theory is a fascinating subject.
Entropy-based image segmentation methodology has enticed the devotion of numer-
ous researchers [2, 6, 13, 32, 35] and is considered as one of the prominent global
thresholding methods.

Sezgin et al. [42] presented an analysis of image thresholding algorithms and
reported that due to the advancements in the information theory, entropy-based thresh-
olding methods have an excessive influence on image segmentation. Pun et al. [34]
introduced the concept of entropy-based thresholding for the image segmentation.
Afterward, Otsu et al. [3] proposed a method that uses the optimum threshold val-
ues by using maximum values of the inter-class variance of gray levels. Kittler and
Illingworth have presented a method that optimizes Bayes risk factor to perform
thresholding-based segmentation [21]. Kapur et al. [10] proposed a technique that
uses the concept of entropymaximization to determine the homogeneousness between
classes. A moment preservation principal-based image segmentation approach was
developed by Tsai [44] in 1985. In 2015, Bhandari et al. [11] utilized Tsallis entropy,
which reports that the information in the image can be treated as either additive or non-
additive. Amaximum entropymethod has been proposed on the basis of non-extensive
Tsallis entropy [11] whose entropic parameter q enables the Tsallis entropy to han-
dle the nonadditive information. However, this technique is analogous to maximum
entropy method developed by Kapur et al. [10].

In 2006, Sahoo et al. [39] proposed a two-dimensional Tsallis–Havrda–Charvat
entropy-based thresholding selection technique. Furthermore, Sahoo [40] has pro-
posed a method for thresholding based on Renyi entropy and this entropy can handle
the additive property using the tunable entropic parameter α [20, 37]. The value of α

and q can be varied to maximize the Renyi’s and Tsallis entropies, respectively. The
thresholding approaches have used optimum threshold values by using maximum val-
ues of the inter-class variance of gray levels, and based onmoment preserving principle
[11], cross entropy [23], fuzzy approach [26], and Renyi entropy [39] have also been
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successfully used in the segmentation of images. Masi et al. [27] have introduced a
new entropic measure, which is based on the analysis of thermodynamic entropies that
utilizes the complete probability distribution for image segmentation. Masi entropy
has an entropic parameter r, when the value of r is taken to be 1, the Masi entropy [27,
29] reduces to the Shannon entropy [36] which is also known as Boltzmann–Gibbs
entropy.

The entropy-based thresholding can be designed as a non-convexmultifaceted opti-
mization problem. If the multiple thresholds are treated as the spatial dimensions of
the metaheuristics, their parallelism can efficiently address the issue of computational
cost of segmented color images by using multilevel color image thresholding-based
segmentation. The fitness function of the metaheuristics technique is a standard for
choosing the optimum solution. In recent years, entropy is used as a fitness function for
the optimization techniques which has drawn the attention of numerous researchers.

In this contexture, several optimization algorithm-based thresholdingmethods have
been developed which use varieties of evolutionary techniques such as artificial bee
colony (ABC) motivated from the searching behavior of swarm of honey bees [7, 10],
differential evolution [43], genetic algorithm (GA) which is motivated from the notion
of survival of the fittest given by Darwin [38], PSO inspired by the public behavior of
fish schooling or bird flocking [13, 14], FA which is based on flashing phenomenon
of fireflies of tropical areas during summer season [19], WDO other optimization
methodology which is grounded on the atmospheric behavior of earth [4, 6], electro-
magnetism optimization (EMO) which has been inspired by the attraction–repulsion
mechanism of the electromagnetism theory [30]. In the recent years, a modified PSO
[25]-based multilevel thresholding is applied for the segmentation of medical image
segmentation. Recently, a new color image segmentation method has been proposed
using entropy thresholding and bat algorithm [28]. The bat algorithm is based on the
echolocation of the bats.

In 2017, a new color image multilevel thresholding has been proposed by exploit-
ing backtracking search algorithm (BSA) for satellite images [17]. In favor of color
image multilevel thresholding, another new approach has been given [33] through the
modification of fuzzy entropy, and further the proposed modified entropic parameters
are optimized by Levy flight firefly algorithm to get more accurate results for satellite
image segmentation. On the other hand, a new gray-level co-occurrence matrix has
been introduced, first time as an objective function to get accurate multilevel thresh-
olding for multiband remote sensing images as well as natural color images [31].
Cuckoo search (CS) [6, 8] and differential evolution (DE) [16] have been reported
to solve many multilevel color image segmentation problems for the estimation of
optimal threshold values.

Motivated by the successful results in the aforementioned literature, this paper
applies different multilevel thresholding approaches for challenging real-life image
segmentation problem by using water cycle algorithm (WCA) [18], grasshopper opti-
mization technique (GOA) [41], monarch butterfly optimization (MBO) [46], bat
algorithm (BAT) [47], particle swarm optimization (PSO) [24], and wind-driven opti-
mization (WDO) and examines their feasibility for color image thresholding. The
WCA, GOA, and MBO are the latest and unexploited optimization techniques for the
color image segmentation; these optimization algorithms are inspired by nature. This
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paper has been exploited by two objective functions such as Tsallis and Masi entropy
criterion for color image segmentation.

Rest of the paper is organized as follows: In Sect. 2, related works are presented
through the formulation of Tsallis entropy and different optimization algorithms such
as BAT, PSO, WDO, MBO, and GOA. Section 3 presents a detail description of the
proposed Masi-WCA-based segmentation approach. Section 4 reports the visual and
quantitative results of the proposed technique which are supported by ME, MSE,
PSNR, SSIM, FSIM, and entropy. Finally, Sect. 5 concludes the paper by highlighting
the main contribution and future scope of the proposed work.

2 RelatedWorks

2.1 Thresholding Criterion for Multilevel Thresholding

Let I denote a test imagewith an extreme of L gray levels {0, 1…L −1} and dimension
of the image beM×N . Let G={0, 1…L −1} designates the set of intensity values of
the image. The count of pixels with gray level i is denoted by ni, and the dimension
of the image represents a total number of pixels. The pixels of a grayscale or colored
image are classified into regions or sets on account of their intensity level (L). This
system of arranging the pixels defines the thresholding. For the selection of fitting
neighborhoods in a test image, the optimum threshold value (th) should be obtained
in a routine, which obeys the simple law of following equations:

C0 ← i if 0 ≤ i ≤ th
C1 ← i if th + 1 ≤ i ≤ L − 1

(1)

where i represents the intensity values of the grayscale image with L, which brings
the maximum intensity level. C represents the class of the image.

C0 ← i if 0 ≤ i < th1
C1 ← i if th1 + 1 ≤ i < th2
C2 ← i if th2 + 1 ≤ i < th3
Cn ← i if thn + 1 ≤ i < L − 1

(2)

where {th1, th2, th3,…, thn} represents multiple thresholds.
Segmentation of pixels in their respective classes is done using Eqs. (1) and (2) for

bi-level and multilevel thresholding, respectively. In the image, the probability of gray
level i is estimated by the number of pixels representing the intensity level (frequency
of gray level i) occurred in the image, given by Eq. (3):

hi � ni
M × N

where, hi ≥ 0 and
L−1∑

0

hi � 1. (3)
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The complete probabilistic distribution H of gray levels can be formulated as
H={h0, h1, h2…hL−1}. The pixels in the image are separated into two classes (which
is bi-level segmentation) asC0 andC1 given by Eq. (1), and the pixels in the image are
divided into more than two classes (which is multilevel segmentation) as C0, C1,…,
Cn is given by Eq. (2), Each of the C0, C1, C2, and Cn corresponds to the different
object class and background class. Now, the probability of the classes defined for bi-
level can be extended for multilevel thresholding, which is formulated by following
the equations:

For bi-level thresholding,

w0 �
th∑

i�0

hi , w1 �
L−1∑

i�th+1

hi . (4)

For multilevel thresholding,

w0 �
th1∑

i�0

hi , w1 �
th2∑

i�th1+1

hi , w2 �
th3∑

i�th2+1

hi , . . . , wn �
L−1∑

i�thn

hi . (5)

The above-defined probability distributions are further normalized. Consequently,
a vector of optimal thresholds {T ∗

1 , T ∗
2 , . . . , T ∗

n } is determined using:

{T ∗
1 , T ∗

2 , . . . , T ∗
n } � arg max{ f i t(T1, T2, . . . , T n)}

Subject to 0 ≤ T0 < T1 < · · · < Tn ≤ L − 1. (6)

where fit (T1, T2,…,Tn) represents the optimization criterion or objective function,
which determines the optimum thresholds for performingmultilevel thresholding. Two
objective functions used in this paper to compute the optimum threshold values have
been discussed in this section.

2.2 Tsallis ThresholdingMethod

Albuquerque et al. proposed a concept based on Tsallis entropy [11, 39]. The function
of thresholding is represented by Eqs. (7) and (8), and the concept of Tsallis entropy
has been proposed by Constantino Tsallis. Discrete probabilities make up the notion
of Tsallis entropy where the sum of all discrete probabilities is 1. Tsallis entropy
is capable of handling nonadditive or non-extensive information [2]. This degree of
nonadditivity is represented by the variable q which behaves as an entropic parameter.
When the value of q is taken to be 1, the Tsallis entropy reduces to the Shannon entropy
which implies that the Tsallis entropy is derived from Shannon entropy. In this paper,
the value of q is considered as 0.8 to maximize the Tsallis entropy.

Eq(I/th) � Eq(C0/th) + Eq(C1/th) + (1 − q) Eq(C0/th) Eq(C1/th) (7)
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where

Eq(C0/th) � 1

1 − q

[
th∑

i�0

(
hi
wo

)q

− 1

]

Eq(C1/th) � 1

1 − q

[
L−1∑

i�th+1

(
hi
w1

)q

− 1

]
(8)

The maximized Tsallis entropy can be achieved by using Eq. (9) which can be
presented as

ET � ET0 + ET1 + ET2 + · · · + ETn + (1 − q) ETn ET1ET3 . . . ETn (9)

where

ET0 � 1

1 − q

[ th1∑

i�0

(
hi
w0

)q

− 1

]
, w0 �

th1∑

i�0

hi

ET1 � 1

1 − q

⎡

⎣
th2∑

i�th1+1

(
hi
w1

)q

− 1

⎤

⎦, w1 �
th2∑

i�th1+1

hi

ET2 � 1

1 − q

⎡

⎣
th3∑

i�th2+1

(
hi
w2

)q

− 1

⎤

⎦, w2 �
th3∑

i�th2+1

hi

ETn � 1

1 − q

⎡

⎣
L−1∑

i�thn+1

(
hi
wn

)q

− 1

⎤

⎦, wn �
L−1∑

i�thn+1

hi (10)

where ETi represents the Tsallis entropy of ith class and the optimal multilevel seg-
mentation problem is solved by assuming n-dimensional problem of optimization. The
values of Eq. (10) give the Tsallis entropy of each region (or class), and these values
are used in Eq. (9) to get the maximum entropic value. Now, to solve multilevel thresh-
olding problem, n-dimensional optimal thresholds are obtained by Eq. (11), which is
used for the maximization of objective function:

(T∗) � arg max

(
n∑

i�0

ETi

)
(11)

2.3 Bat Algorithm

Xin-She Yang proposed the bat algorithm which is used as a metaheuristic approach
for optimization at a global scale. This optimization method is stimulated from the
echolocation of micro-bats. The bats use the notion of SONAR echoes to detect their
prey and avoid obstacles. The bats transmit the sound waves in the presence of an
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object; these waves are reflected back. The time period between the reflection and
transmission of the wave impacts the movement of the bats. After the reception of
reflected wave, bats use their own pulse to determine the space between them and the
prey. The pulse rate ranges from 0 till 1, where 1 represents emission at maximum
level and 0 indicates no emission. The loudness of the sound wave and the distance of
bat from prey are proportional to each other. In other words, the loudness and pulse
rate are inversely proportional to one another [47].

2.4 Particle SwarmOptimization

Particle swarm optimization (PSO) improves the candidate solutions iteratively to
get the optimized solution for a problem. It has a population of dubbed particles (or
candidate solutions) where these particles are moved in and around in the search space
in accordance with few simple formulae which includes the position of the particle and
particle’s velocity. Themovement of each particle is judged by its best-known localized
position which is updated when other particles find better positions. This gives high
expectation that the swarm is moving toward the optimum solutions. In PSO, search
space (possible set of solutions) and possible solution are called as particle position
and swarm, respectively. The position representing the best fitness is given as ‘Pbest,’
and ‘Gbest’ defines the best solution of all the particles [24].

2.5 Wind-Driven Optimization

WDO is motivated from the atmosphere of earth, where blowing wind attempts to
balance the horizontal air pressure. It is a nature-inspired global optimization method
that is created on the ideology of atmospheric motion [4]. It has been shown that wind-
driven optimization can be executed easily and is effective in solving the optimization
problems. In general terms, WDO has an ability to put in effect the constraints in the
search domain. This method is operational on the population-based recursive heuristic
global optimization algorithm formultimodal alongwithmultidimensional challenges.

2.6 Monarch Butterfly Optimization

Monarch butterfly optimization (MBO) is a new type of metaheuristic algorithm and
inspired from nature; all these butterflies individually are placed in two distinct lands
(areas). In the paper [46], the locations of the monarch butterflies are modernized
in two techniques. Initially, the offsprings are produced or position-modernized by
migration operator and it is adjusted by the migration ratio. This migration behavior
of monarch butterflies addresses numerous optimization problems, and it is monitored
by some rules. Subsequently, the location of the butterflies is changed by the worth of
butterfly adjusting operation [46].
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2.7 Grasshopper Optimization Algorithm

Saremi proposed grasshopper optimization algorithm in 2016 which imitates the
swarming behavior of grasshoppers. Three components affect the flying route of
grasshopper in a swarm. They are a social relationship, gravity, and the horizontal
movement of wind. In the GOA algorithm, the most important searching mechanism
is a social relationship and the swarming behavior changes significantly when the
parameters are changed. The authors have proposed the mathematical model search
for grasshopper’s interaction and move the swarm closer to the target. In the GOA
algorithm, it is estimated that the target is the best solution. While the grasshoppers
interact and chase the target, the best solution gets updated if a better solution is found
[41].

3 The ProposedMethod

In this section, the proposed Masi-WCA approach is demonstrated. Alfred Renyi
proposed a definition for the measure of information that preserves expansively for
independent events which later termed as Renyi entropy. This entropy quantifies the
randomness, uncertainty, or diversity of a system. Renyi entropy is used as a diversity
index in statistics and ecology and also essential in quantum information where it is
used to measure entanglement [20, 40]. The entropic parameter α defines the amount
of extensive information that is present in the image. In a system, the value of α

determines which events contribute in the calculation of Renyi entropy. For example,
if the value of α tends to 0, almost all the events are weighted equally by Renyi entropy
and if a value of α tends to infinity, Renyi entropy is evaluated using the events that
have the highest probability. Similarly, in the case of image processing, the events
represent the classes of the image whose probabilities are used to determine Renyi
entropy. When the value of α is closer to zero, regardless of the probability of each
class, Renyi entropy weighs all possible events more equally and when α is one, Renyi
entropy reduces to Shannon entropy. This entropy yields maximum result when the
value of α is taken to be 0.8.

The property of Tsallis entropy is examined when considering two systems with
different temperatures to be in contact with each other and to reach the thermal
equilibrium. It is verified that the total Tsallis entropy of the two systems cannot
decrease after the contact of the systems. It leads to a generalization of the principle of
entropy increase in the framework of non-extensive statistical mechanics. Therefore,
a maximum entropy method was proposed based on non-extensive Tsallis entropy
[11]. Tsallis entropy is the generalization of Shannon entropy. The pseudo-additivity
property of Tsallis entropy with entropic parameter q can handle the non-extensive
information for statistically independent subsystems. Sahoo et al. [40] has proposed
a method for thresholding based on Renyi entropy. Renyi entropy can handle the
additive property using the tunable entropic parameter α [20, 40]. However, Renyi’s
and Tsallis entropies cannot handle the additive and nonadditive information simul-
taneously. In the subsequent part, the illustration of the proposed scheme’s concept
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is done using flowchart in Fig. 1. A complete explanation of each step is presented
thereafter.

3.1 Masi’s ThresholdingMethod

Masi entropy combines the additivity of Renyi entropy and the non-extensivity of
Tsallis entropy. The main argument which deviates Renyi and Tsallis entropies from
the Masi entropy is the concordant parameter r. Unlike probability functions of Renyi
entropy and Tsallis entropy, where each state probability is raised to the power of
their entropic parameters α and q, respectively, in case of Masi, the entire probability
function is raised to the power r [27, 29, 36]. The parameter r represents the measure
of the degree of extensivity/non-extensivity that might be existent in the system. The
entropy-based thresholding methodology is developed on the entropic measure, which
is further presented by Masi [27] for gray-level images [29]. Successively, all the
entropies directly or indirectly are the generalization of well-established Shannon
entropy. The entropic parameter gives the flexibility to achieve different results as the
demand entertains. According to the concept of Masi entropy, to obtain an optimal
threshold value th, for the bi-level thresholding-based image segmentation is expressed
by Eqs. (12) and (13):

Er (I/th) � Er (C0/th) + Er (C1/th) (12)

where

Er (C0/th) � 1

1 − r
log

[
1 − (1 − r )

th∑

i�0

(
hi
w0

)
log

(
hi
w0

)]
,

Er (C1/th) � 1

1 − r
log

[
1 − (1 − r )

L−1∑

i�th+1

(
hi
w1

)
log

(
hi
w1

)]
(13)

The entropy between the two classes C0 and C1 is maximized, and the gray level at
which this holds true is treated to be the optimal threshold. The complete procedure of
the optimal multilevel color image thresholding task is addressed. Basically, entropy is
defined as ameasurement of randomness,which follows the concept that homogeneous
regionswill haveminimal unpredictability and the non-homogeneous regionswill have
maximum unpredictability. The higher the value of entropy, the better is the separation
between objects and background. The information which exists in pixels of an image
has either the additive property or the nonadditive property. In this paper, the value of
r is considered as 1.18 to maximize the Masi entropy.

The Masi entropy algorithm is selected for several thresholds that are multilevel
thresholding (MT) by maximizing the Masi entropy, and the maximized Masi entropy
can be achieved by using Eq. (14) which can be presented as

ErT � ErT0 + ErT1 + ErT2 + · · · + ErTn , (14)
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Fig. 1 Flowchart of the
Masi-WCA approach for the
multilevel (thresholding)
segmentation
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where

ErT0 � 1

1 − r
log

[
1 − (1 − r )

th1∑

i�0

(
hi
w0

)
log

(
hi
w0

)]
, w0 �

th1∑

i�0

hi

ErT1 � 1

1 − r
log

⎡

⎣1 − (1 − r )
th2∑

i�th1+1

(
hi
w1

)
log

(
hi
w1

)⎤

⎦, w1 �
th2∑

i�th1+1

hi

ErT2 � 1

1 − r
log

⎡

⎣1 − (1 − r )
th3∑

i�th2+1

(
hi
w2

)
log

(
hi
w2

)⎤

⎦, w2 �
th3∑

i�th2+1

hi

ErTn � 1

1 − r
log

⎡

⎣1 − (1 − r )
L−1∑

i�thn+1

(
hi
wn

)
log

(
hi
wn

)⎤

⎦, wn �
L−1∑

i�thn+1

hi (15)

where ErTi represents the Tsallis entropy of ith class and the optimal multilevel seg-
mentation problem is solved by assuming n-dimensional problem of optimization. The
values of Eq. (15) give the Masi entropy of each region (or class), and these values are
used in Eq. (14) to get the maximum entropic value. Now, to solve multilevel thresh-
olding problem, n-dimensional optimal thresholds are obtained by Eq. (16), which is
used for the maximization of objective function:

(T∗) � arg max

(
n∑

i�0

ErTi

)
. (16)

3.2 Water Cycle Algorithm

Water cycle algorithm (WCA) [18] is a recently proposed metaheuristic technique
for optimizing constrained functions and is used for engineering problems. The key
objective of WCA is to introduce a new global optimization approach for finding the
constrained optimization complications. Hence, a new population-based algorithm is
proposed named as the water cycle algorithm (WCA) method and the idea behind
the WCA is grounded on a thought of water cycle and how streams and rivers flow
downward toward the sea in the realworld.WCA ismotivated by nature, and it includes
four important sub-parts, e.g., create the initial population, a stream flow to the rivers
or sea, evaporation condition, and raining process.

3.2.1 Create the Initial Population

For solving an optimization problem via population-based metaheuristic techniques,
the values of problem variables are designed as an array. This array is known as
‘Raindrop’ for a single solution. For a Mvar dimensional optimization problem, the
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values are represented as an array for a raindrop of 1×Mvar. This array is expressed
in Eq. (17).

Raindrop � [y1, y2, y3, . . . , yM ]. (17)

For the optimization approach, a matrix of raindrops of sizeMpop ×Mvar is created
that is represented as the population of raindrops. Therefore, the matrix Y is produced
randomly, where rows and column are given as the population size (Mpop) and the
design variable size (Mvar), respectively.

Population of raindrops �

⎡

⎢⎢⎢⎣

raindrop1
raindrop2

...
raindropMpop

⎤

⎥⎥⎥⎦ �

⎡

⎢⎢⎢⎢⎣

y11 y12 . . . y1Mvar

y21 y22 . . . y2Mvar
...

...
...

...

y
Mpop
1 y

Mpop
2 . . . y

Mpop
Mvar

⎤

⎥⎥⎥⎥⎦
. (18)

The values of each decision variable (y1, y2, . . . , yMvar ) are signified as floating
point number, that is, real values or a predefined set for discrete and continuous prob-
lems, respectively. A raindrop cost is achieved by the calculation of cost function (C)
expressed in Eq. (19).

C j � Cost j � f
(
x j
1 , x j

2 , . . . , x j
Nvar

)
j � 1, 2, 3, . . . ,Mpop. (19)

The best individuals are chosen from rivers and sea that gives a number of Msr,
and the raindrops contained minimum value among others that is considered as a sea,
where Msr is the summation of user parameter, that is, the number of rivers and a
single sea. The remaining population, that is, raindrops from the streams which flow
to the rivers or may directly flow to the sea, is obtained and represented in Eq. (21).

Msr � Number of Rivers + 1︸︷︷︸
Sea

(20)

MRaindrops � Mpop − Msr. (21)

The assigned raindrops to the sea and rivers depend on the flow intensity and are
expressed in Eq. (22).

NSn � round

{∣∣∣∣∣
Costm

∑Msr
j�1 Cost j

∣∣∣∣∣ × MRaindrops

}
, m � 1, 2, . . . ,Msr, (22)

where NSn represents the number of streams which flow to the specific rivers or sea.

3.2.2 A Stream Flow to the Rivers or Sea

The streams are formed by the raindrops, and these streams are connected to each
other to form new rivers. Some of the streams may also flow directly to the sea, and
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all streams and rivers finish in a sea that gives best optimal solution (point). The
connecting line of a stream flows to river and uses randomly chosen distance, which
is defined as follows in Eq. (23).

Y ∈ (0,C × d), C > 1, (23)

where d is represented as the current distance between stream and river. The value of
Y in Eq. (23) corresponds to a distributed random number between 0 and (C ×d). A
value of C is between 1 and 2; for the best solution, it should be 2 or near to 2. The
C value greater than 1 enables streams to flow in altered directions toward the rivers.
Hence, the new position for rivers and streams is defined as:

Y j+1
Stream � Y j

Stream + rand × C ×
(
Y j
River − Y j

Stream

)
(24)

Y j+1
River � Y j

River + rand × C ×
(
Y j
Sea − Y j

River

)
, (25)

where the value of the function rand is a generated random number between 0 and 1
that is uniformly distributed. The solution of the stream is better than its connecting
river, the locations of stream and river are swapped, and this criterion is also applied
for rivers and sea.

3.2.3 Evaporation Condition

The most important factor of the WCA is evaporation that prevents the method from
rapid convergence or the immature convergence. The evaporated (vaporized) water
is carried into the atmosphere to produce clouds and then condenses in the colder
atmosphere, liberating the water back to earth in the form of rain. This rain generates
the new streams and follows the conditions which have been mentioned above. The
complete process or cycle is called water cycle. The pseudocode gives an idea about
how to define whether or not river flows to the sea.

if
∣∣∣Y j

Sea − Y j
River

∣∣∣ < dmax

j � 1,2,3, . . . ,Msr − 1

Evaporation and raining process

end

where the value of dmax is close to zero (small number). The distance between sea and
a river is less than dmax. This condition specifies that the river has linked the sea, and
the evaporation and raining process are applied. Otherwise, it reduces the search and
a small value inspires the search intensity near the sea. The value of dmax adaptively
decreases as:

d j+1
max � d j

max − d j
max

max iteration
. (26)
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3.2.4 Raining Process

In this part, the new raindrops formed streams in the different positions or location.
The new positions of the recently formed streams can be found exactly and clearly
with the help of the following equation.

Y new
Stream � LB + rand × (UB − LB), (27)

where LB and UB are represented as lower and upper bounds, respectively. Equa-
tion (29) is described only for streams which directly flow to the sea, and the core idea
of this equation is to inspire the generation of the stream to improve the exploration
near the sea in the possible state for difficulties.

Y new
stream � Ysea +

√
μ × randn(1, Mvar), (28)

where μ represents a coefficient which gives the range of searching states (region)
near the sea, randn defines a random number which is normally distributed, and the
value for µ is set to 0.1. From this equation, the created individuals with variance µ
are distributed around the best-obtained optimum point.

The detailed steps of the proposed Masi-based color image multilevel thresholding
operation are described, and the flowchart of the pseudocode of Masi-WCA method
is shown in Fig. 1.

Step 1 An input image I is taken, if I is a color image then it is separated into three
bands (Red–Green–Blue) and grayscale image is directly used.

Step 2 Compute the histogram of each band of the color image.

Step 3Allocate the control parameters ofWCAsuch as population size (Mpop), number
of design variable (Mvar), number of iterations (stopping criterion), objective function,
threshold levels.

Step 4 Generate the optimum thresholds by maximizing an objective function (or
minimizing the negative of the entropy value) following the below pseudocode of
WCA:
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Step 5 The search intensity near the sea (the optimum solution) is used. The current
best solution (optimum solution) for each of the color channels represents the set of
optimal threshold values (TR, TG, and TB,) with best maximum objective function
value.

Step 6 Each color channel is segmented individually using the corresponding threshold
values. The segmented color channels are then concatenated to form the segmented
color image.

4 Experimental Results and Discussion

In this section, experiment results have been discussed to evaluate the performance of
the proposed Masi-WCA method over other methods for multilevel thresholding of
the color images. The segmented results have been evaluated over 10 daily-life color
images, and each color image is a multidimensional image with multimodal nature
due to the presence of different bands (RGB). Input images and histogram plots of
each band are shown in Fig. 2. Moreover, the presence of dense and complex features
requires a sophisticated and accurate multilevel thresholding algorithm for the detec-
tion and identification of the region of interest. Each of the test images is segmented
into four different thresholding levels: 3-level, 5-level, 8-level, and 12-level thresh-
olding to achieve segmentation. All the algorithms are implemented using MATLAB
R2017a on a personal computer with 3.4 GHz Intel Core-i7 CPU, 8 GB RAM running
on Windows 10 system. Each of the test images is independently run 50 times using
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Fig. 2 Test color images (IMG1, IMG2, IMG3, IMG4, IMG5, IMG6, IMG7 IMG8, IMG9, and IMG10) and
corresponding histogram plot of each frame (R–G–B) of the color images (Color figure online)

all algorithms to avoid any stochastic discrepancy due to the random nature of the
optimization algorithm. For all the optimization algorithms, the population size and
the number of iterations are set as 15 and 200 to provide fairness and convenience for
performance comparison betweenWCA and other compared optimization algorithms.

4.1 Image Quality Measures

The objective function value depends on the mathematical modeling of the objective
function and the architecture and search strategy of the optimization algorithms. The
objective function value indicates toward the best or worst segmentation quality of
the algorithm. The computation time of an algorithm depends on the complexity of
the method. The complexity of the method depends upon the mathematical structure
of its objective function and the structure of the optimization algorithm. Therefore,
to test the efficiency of any algorithm, computation time is an important parameter to
be computed. The time taken by any technique to perform the segmented output is
directly proportional to the complexity of that algorithm. The computation time also
increases as the number of thresholding level increases.
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Table 1 Fidelity parameters considered to test the efficiency of the proposed method with other algorithms

S. No. Parameters Formula Remarks

1. Misclassification error
(ME) [29]

ME � 1 − |BO∩BT |+|FO∩FT |
|BO |+|FO | ME relates to the wrong

assignment of
foreground pixels to the
background or
background pixels to
the foreground

2. Mean square error
(MSE) [10]

MSE �
∑M

i�1
∑N

j�1
(
I (i, j)−I ′(i, j))2
MN Calculates the difference

between expected value
and the actual value

3. Peak signal-to-noise
ratio (PSNR) [11]

PSNR(in dB) � 20 log10
(
255/

√
MSE

)
It is the ratio of maximum
power of a signal to the
power of noise

4. Structural similarity
index (SSIM) [45]

SSIM(I , I ′) � (2μIμI ′+l1)(2σI I ′+l2)
(μ2

I +μ2
I ′+l1)(σ

2
I +σ2

I ′+l2)
Evaluates the similarity
between the segmented
image and the original
image

5. Feature similarity index
(FSIM) [48]

FSIM �
∑N

c�1 SD (c)PCmax(c)∑N
c�1 PCmax(c)

Calculates the feature
similarity of segmented
image and the original
image

6. Entropy [29] Entropy � ∑
i Pi log2 Pi Indicates the average

information of an image

To provide a comprehensive performance assessment of each algorithm, different
fidelity parameters such as best objective function values, computation time (in sec-
onds), misclassification error (ME), peak signal-to-noise ratio (PSNR), mean square
error (MSE), feature similarity index (FSIM), structural similarity index (SSIM), and
entropy are included in Table 1. A comprehensive discussion of the experimental
results has been presented in this section. Therefore, the computed segmented results
for each test image using Tsallis andMasi entropies as fitness function have been eval-
uated using BAT, PSO, WDO, MBO, GOA, and WCA. Keeping the view of Tables 2,
3, 4, 5, 6, 7, 8, and 9,Masi-WCAhas outperformed in comparisonwith other optimiza-
tion techniques (BAT, PSO, WDO, MBO, and GOA) as well as Tsallis entropy-based
fitness function.

4.2 Experiment 1: Tsallis Entropy

The results achieved for each test image by using Tsallis entropy as an objective (or
fitness) function are discussed and evaluated in this section. In the case of Tsallis
entropy, it is easy to confirm which optimization technique has produced superior per-
formance due to an optimal value of ME, MSE, PSNR, SSIM, FSIM, and entropy for
the maximum number of cases. The metaheuristic methods are stochastic in behaviors
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or nature; the best solution or result created at each run may not be same or identi-
cal. The complete analysis of the Tsallis-based optimization techniques has revealed
that the WCA technique produces optimal value for a maximum number of fidelity
parameters among all the techniques for almost every image. The objective function of
Tsallis method is maximized to determine the thresholding results. The performance
of different objective functions has been compared by using the quantitative results
such as best objective function andME values obtained by Tsallis which is reported in
Table 2. Tables 4, 6, 8, and 9 depict the statistical evaluation of the quality parameters
such as MSE, PSNR, SSIM, FSIM, entropy, and computational time, respectively.
Figure 3 depicts the segmented results for all the images obtained at 3-level, 5-level,
8-level, and 12-level thresholding for each optimization algorithm (BAT, PSO, WDO,
MBO, GOA, and WCA) (Fig. 4). Figures 5, 6, 7, 8, 9, and 10 show the plots of ME,
MSE, PSNR, SSIM, FSIM, and entropy of 8-level MT using Tsallis entropy corre-
spondingly, and it can be clearly noticed from the plots that the Tsallis-WCA method
outperforms all other optimization (BAT, PSO, WDO, MBO, and GOA) techniques.

4.3 Experiment 2: Masi Entropy

In this section, several experimental results are reported using WCA, BAT, PSO,
WDO, MBO, and GOA based on Masi entropy for multilevel color image threshold-
ing segmentation. The ME and fitness function values using Masi entropy scheme are
presented in Table 3. It has been tested that the misclassification error evaluated by
the WCA coupled with Masi entropy harvests the lowest value among all the tech-
niques for the maximum number of cases. The architecture of the algorithm explores
the search space more efficiently and locates the thresholding values accurately, and
fitness function value is influenced by the architecture and complexity of the methods.
The proposed Masi-WCA method has generated optimum value and the second best
value with a very small margin for the fitness function as shown in Table 3. Compari-
son of PSNR and MSE values obtained by BAT, PSO, WDO, MBO, GOA, and WCA
with Masi entropy is depicted in Table 5. Masi entropy-based method has reported
best performance in comparison with Tsallis entropy, whereas WCA has found best
among BAT, PSO,WDO,MBO, and GOA. Table 7 compares the similarity in features
of the original image and segmented image from the results obtained by using BAT,
PSO, WDO, MBO, GOA, and WCA with Masi entropy, respectively. Tables 8 and
9 compare the entropy and computational time (seconds) for the Tsallis entropy and
Masi entropy coupled with optimization techniques. Figure 4 depicts the segmented
results of each image at threshold level L=3, 5, 8, and 12 acquired for Masi-BAT,
Masi-PSO, Masi-WDO, Masi-MBO, Masi-GOA, and Masi-WCA. The main limita-
tion of the proposed Masi-WCA method is that it takes more processing time for
segmentation as compared to Masi-MBO methods, but Masi entropy coupled with
different optimization techniques (Masi-BAT, Masi-PSO, Masi-WDO, Masi-MBO,
Masi-GOA, and Masi-WCA) is always faster than Tsallis entropy-based optimization
techniques (Tsallis-BAT, Tsallis-PSO, Tsallis-WDO, Tsallis-MBO, Tsallis-GOA, and
Tsallis-WCA) which is reported in Table 9. However, Masi-WCA computes the best
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L-3                 L-5                 L-8                L-12                  L-3                 L-5                L-8 L-12

BAT-Tsallis

PSO-Tsallis

WDO-Tsallis

MBO-Tsallis

GOA-Tsallis

WCA-Tsallis

BAT-Tsallis

PSO-Tsallis

WDO-Tsallis

MBO-Tsallis

GOA-Tsallis

WCA-Tsallis

Fig. 3 Results showing 3-level, 5-level, 8-level, and 12-level segmented images usingTsalli-basedmultilevel
thresholding approaches

quality of segmented images over Masi-MBO. In some cases, the proposed Masi-
WCAmethod is not produced best or optimal values, but it has maintained the second
best value of those cases. The entropy value of the segmented image of the proposed
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L-3                L-5                L-8                 L-12                 L-3                 L-5                  L-8                L-12

BAT-Tsallis

PSO-Tsallis

WDO-Tsallis

MBO-Tsallis

GOA-Tsallis

WCA-Tsallis

BAT-Tsallis

PSO-Tsallis

WDO-Tsallis

MBO-Tsallis

GOA-Tsallis

WCA-Tsallis

Fig. 3 continued

Masi-WCA method is a maximum value for 5-level, 8-level, and 12-level threshold-
ing, whereas it holds the best and the second best value for 2-level thresholding for
almost all cases.
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PSO-Tsallis
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Fig. 3 continued

Figures 11, 12, 13, 14, 15, and 16 depict the plots of the ME, MSE, PSNR, SSIM,
FSIM and entropy of 8-level MT using Masi entropy, respectively, from which it can
confirm that the performance of the proposed Masi-WCA approach is superior among
BAT, PSO, WDO, MBO, GOA when coupled with Masi entropy. Figures 3 and 4
show the segmented results of each test image at 3-level, 5-level, 8-level, and 12-level
of thresholding from which it can be visually investigated that proposed Masi-WCA
method surpasses the Tsallis-WCA-based results. From Tables 2, 3, 4, 5, 6, 7, 8, and
9, it can be clearly identified that Masi entropy overcomes the Tsallis entropy-based
methods and the statistical analysis of the proposed algorithm outclasses with respect
to all methods.

4.4 Comparison ofWCA-Masi with Other Algorithms

The accuracy of the proposed Masi-WCA multilevel thresholding algorithm is the
highest among all other compared algorithms in terms of image segmentation process.
Moreover, compared methods are not very effective to perform the optimal thresholds.
The Masi-MBO method is an average method where the accuracy is a major concern,
but Masi-GOA method is the second best approach for the multilevel thresholding
of the color image segmentation. WCA, MBO, and GOA are the recently introduced
optimization techniques which are not exploited for the image segmentation purpose.

However, Tsallis entropy is a very efficient algorithm but has slightly lower per-
formance than Masi entropy (objective function). Since the objective function holds
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L-3             L-5                 L-8   L-12            L-3            L-5             L-8            L-12

BAT-Masi

PSO-Masi

WDO-Masi

MBO-Masi

GOA-Masi

WCA-Masi

BAT-Masi

PSO-Masi

WDO-Masi

MBO-Masi

GOA-Masi

WCA-Masi

Fig. 4 Results showing 3-level, 5-level, 8-level, and 12-level segmented images usingMasi-based multilevel
thresholding approaches

the major importance in determining the threshold values, the mathematical model of
Masi entropy is able to provide better thresholded results because of the non-extensive
or additive information properties. WDO has fairly better results than PSO and BAT.
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Fig. 4 continued

This is due to the poor capability of these algorithms in searching the accurate thresh-
olding levels to separate the image pixels into homogenous regions. BAThas generated
poorly segmented outputs at the lower and higher thresholding levels; GOA produces
better outputs but not as better than WCA. In few cases, the GOA gives similar results
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L-3                L-5                 L-8                L-12        L-3            L-5           L-8               L-12
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GOA-Masi

WCA-Masi

Fig. 4 continued

Fig. 5 Plots of 8-level ME using
Tsallis

as the WCA. In some cases, WDO, PSO, and MBO optimization techniques have
achieved better segmentation. But, the BAT and MBO are not very efficient in deter-
mining the threshold values accurately. The results of Masi-GOA have followed the
performance of Masi-WCA, and Masi-GOA approach is fair at classifying pixels at
high thresholding levels.
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Fig. 6 Plots of 8-level MSE
using Tsallis

Fig. 7 Plots of 8-level PSNR
using Tsallis

The results presented in this paper by proposed algorithm are superior in almost all
the cases followed by some of the other recently developed metaheuristics algorithm.
This action occurs because each image contains diverse features that characterize a
particular optimization problem. Besides, the randomness of metaheuristic algorithms
(ECA) produces some fluctuations in the results. For instance, if a threshold value is
chosen through the metaheuristic that is not suitable, the segmented image probably
will be not the best. Such condition merely can be identified by PSNR, MSE, SSIM,
FSIM, and entropy because the objective function (Tsallis and Masi entropies) only
offer information about how the intensities values are distributed in different regions.
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Fig. 8 Plots of 8-level SSIM
using Tsallis

Fig. 9 Plots of 8-level FSIM
using Tsallis

The analysis of convergence rate of IMG1 and IMG7 images using BAT, PSO, WDO,
MBO, GOA, and WCA based on Tsallis and Masi entropies is shown in Figs. 17, 18,
19, and 20 for each R-G-B color channel individually. It is concluded that WCA con-
vergence is faster as compared to other algorithms with respect to maximum objective
values.

One of the advantages of the proposed Masi-WCA method is that the function
values are reduced to near-optimum point in the early iterations. Thismay be due to the
searching criteria and constraint handling approach ofWCAwhere it initially searches
a wide region of problem domain and rapidly focuses on the optimum solution. In
general, the WCA offers competitive solutions compared with other metaheuristic
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Fig. 10 Plots of 8-level entropy
using Tsallis

Fig. 11 Plots of 8-level ME using
Masi

optimizers. However, the computational efficiency and quality of solutions given by
theWCAdepend on the nature and complexity of the underlined problem. This applies
to the efficiency and performance of numerous metaheuristic methods. The WCA
is used for solving the real-world optimization problems, in terms of the optimum
solution; it provides better or close to the best value compared with BAT, PSO, WDO,
MBO, and GOA. In terms of the convergence function evaluations, the WCA reached
the best solution faster than other algorithms. Therefore, the use ofWCA in multilevel
thresholding adds more accuracy and flexibility in determining the optimal threshold
values that can vibrantly distinguish different objects present in the image and produces
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Fig. 12 Plots of 8-level MSE
using Masi

Fig. 13 Plots of 8-level PSNR
using Masi

high-quality segmented color images. The proposed algorithm effectively deals with
the uncertainties in color images with high randomness andmultiple small targets with
full of inherent uncertainty.

5 Conclusion

In this paper, a new color image multilevel thresholding method based on water cycle
algorithm is proposed for segmentation. In this work, recently proposed optimization
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Fig. 14 Plots of 8-level SSIM
using Masi

Fig. 15 Plots of 8-level FSIM
using Masi

algorithms such as BAT, PSO, WDO, MBO, GOA, and WCA have been employed to
maximize Tsallis and Masi entropies to solve the problem of image segmentation by
determining the optimum multilevel threshold values. From the results, it can be con-
cluded that the proposedMasi-WCAmethod can be efficiently and effectively be used
in color image thresholding operation. The qualitative and quantitative illustrations for
almost all test images exhibit that the WCA outperforms the BAT, PSO, WDO, MBO,
and GOA. The study also reports about the performance of the two entropy-based
objective functions with each optimization technique, which confirms the superiority
of the Masi over Tsallis entropy. In order to measure the performance of the pro-
posed approach, entropy, MSE, ME, SSIM, FSIM, and PSNR have been utilized to
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Fig. 16 Plots of 8-level entropy
using Masi

Fig. 17 Convergence plots of 12-level MT using Tsallis entropy for each R-G-B channel of the color IMG1

Fig. 18 Convergence plots of 12-level MT using Masi entropy for each R-G-B channel of the color IMG1

assess the quality of segmentation by considering the coincidences among the original
images and respective segmented images. Even if individual entropies are considered,
WCA outperforms all other optimization techniques considered in this paper. Hence,
WCA has been proven to be superior to the rest of algorithms and also the Masi-WCA
beats Tsallis-WCA in terms of efficiency and robustness. The experimental outcomes
are encouraging and motivate futuristic research areas to apply WCA to other image
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Fig. 19 Convergence plots of 5-level MT using Tsallis entropy for each R-G-B channel of the color IMG7

Fig. 20 Convergence plots of 5-level MT using Masi entropy for each R-G-B channel of the color IMG7

processing applications such as image enhancement, image denoising, image classifi-
cation, and various computer-related problems. Furthermore, the performance of other
traditional entropies can be estimated using WCA concept for multilevel color image
segmentation.
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