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Abstract
In this paper, we propose an approximate Kalman filter of measurements following
Student’s t-distribution by using the variational Bayes approach. This approach can
decompose the estimation of multivariate parameters into a univariate estimation. The
recursive formula for the approximate posterior densities of parameters and states
is derived in detail. Then, the asymptotic Bayesian Cramer–Rao lower bounds are
derived for the proposed filter. Numerical simulations verify both the performance
of the proposed filter and the variance lower bounds under time-varying noise. The
efficiency of the proposed filter is also demonstrated in a real application, namely an
integrated strapdown inertial navigation system/Doppler velocity log shipborne test
for navigation.

Keywords Kalman filter · Variational Bayes · Cramer–Rao lower bound · Parameter
estimation

1 Introduction

The classical Kalman filter (KF) is aminimummean-square-error (MSE) estimator for
linear systems under Gaussian noise. ImprovedKFs are extensively studied tomeet the
demand of current, more complex systems. For instance, KF with noise correlation at
one-epoch apart outperforms the classical KF when the measurement is dependent on
the previous state [9]. In applications such as navigation, target tracking and location,
noise plays an important role to KF, but its statistics are usually unknown and outliers
may appear. Huang et al. [11] found that the KF is suboptimal for non-Gaussian pro-
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cesses or measurement noise with outliers, as the required Gaussian assumptions are
not satisfied. To overcome this problem, the contaminated Gaussian distribution [18]
considers outliers for noise modeling, and recursion is based on the Bayesian frame-
work with first-order approximation of the prior distribution of the state. Another
approach to model the effect of outliers is to use the Student’s t-distribution [19],
which has longer tails than the Gaussian distribution assigning non-negligible proba-
bilities to outliers and enabling filters to deal with outliers natively [1]. A linear filter
based on the Student’s t-distribution has been proposed assuming that the predicted
state and measurement are both Student’s t-distributions, and the posterior probability
density function (PDF) is approximately a Student’s t-distribution by adjusting matrix
parameters and the degrees of freedom (DOF) [15]. However, this scheme is limited to
a specific noise model with process and measurement t-distributions having the same
number of DOF. Huang and Zhang [8] propose a robust stochastic cubature filter based
on the Student’s t-distribution by modeling a heavy-tailed process and measurement
noises as t-distributions with varying DOF, thus extending the stochastic numerical
integral based on the Gaussian assumption.

Recently, estimation using a Student-t noise model has been combined with the
expectation maximization algorithm [10] and variational Bayes (VB) approach [11,
24]. Expectation maximization iteratively determines the maximum likelihood esti-
mates of parameters for models with some latent variables. The estimation accuracy
is related to the number of observations available and often considered as a special
case of the VB approach when the approximate density q(θ) of parameter θ satisfies
q(θ) � δ(θ − θ∗), with θ∗ being the true value and δ representing a delta function
[21]. In fact, the VB approach is an advanced Bayes estimator in the presence of latent
variables [11, 24]. Compared with expectation maximization, in which only the single
most probable value is estimated by maximum likelihood [4], the VB approach can
provide estimation of a posterior distribution of parameters and the posterior distri-
bution of latent variables [13], being an effective alternative to traditional Bayesian
methods and expectation maximization [22]. Huang et al. [11] derive a hierarchical
Gaussian estimation algorithm based on the Student’s t-distribution in the presence
of heavy-tailed process and measurement noise. They combine VB principles with
the conventional KF, consider the coupling relation of state and noise variance, and
estimate the state and parameters online by alternating recursion and updating. The
VB approach has been successfully used inmany other research fields like continuous-
discrete stochastic dynamic systems [2] and nonlinear dynamical systems [3, 16].

The mean values of parameters are also important for determining Gaussian dis-
tribution or Student’s t-distribution, and for applications such as navigation [7] and
odometry [14], it is usually nonzero and time varying by factors such as sensor offset.
Mean estimation has been exploited and theoretically developed using approaches
such as maximum a posteriori with one-step smoothing [7] and the VB approach [25].
In [25], a Gaussian mixture measurement model is utilized but details on the deriva-
tion are not presented. From the perspective of Bayesian inference, the mean is treated
as a random variable and coupled with the state and variance, and thus the posterior
distribution deduced from the VB approach is different from the previous expressions
without mean, as detailed in [11, 24].



Circuits, Systems, and Signal Processing (2019) 38:2445–2470 2447

On the other hand, lower bounds indicate performance limitations, and hence they
can be used to determine whether performance requirements can be satisfied [20, 26].
Specifically, the Bayesian Cramer–Rao lower bounds (CRLBs), also called posterior
CRLBs, are used for evaluating performance limitations for unknown random parame-
ters with known prior distribution. Although several variations of the Bayesian CRLBs
are available, lower bounds for linear approximate estimation with the VB approach
have been seldom studied.

Motivated by the above-mentioned aspects, in this paper we use the Student’s t-
distribution to model non-Gaussian measurement noise considering mean parameters.
First, the VB approach estimates the distributions of the parameters and state of a
linear system,where the conjugate prior PDFs ofmean and scalematrix aremodeled as
Gaussian–Wishart distributions. Then, asymptotic BayesianCRLBs forVB estimators
of the linear filter under the Student-t measurement noise are derived to establish the
lower bound of error variance for multivariate linear estimation. Both the state and
parameters are considered random, and the hybrid derivation rule of the CRLB is
employed.

The rest of this paper is organized as follows. The problem formulation is detailed
in Sect. 2, and the estimation of parameters and state under Student-t measurement
distribution is derived in Sect. 3. Then, the asymptotic Bayesian CRLBs for the esti-
mated parameters and state are provided in Sect. 4. Simulation and comparison results
on the stochastic resonator model and the integrated strapdown inertial navigation
system (SINS)/Doppler velocity log (DVL) shipborne test are presented in Sect. 5.
Finally, we draw conclusions in Sect. 6.

2 Problem Formulation

Consider the following state-space model, which is applicable to integrated navigation
and target tracking [7]:

{
xk � Fk−1xk−1 + Gk−1wk−1
zk � Hkxk + vk

, (1)

where xk ∈ Rn is system state, zk ∈ Rm is the measurement data, Fk ∈ Rn×n

is the state transition matrix, Gk ∈ Rn×p is the system noise matrix, wk ∈ Rp is
the process noise with distribution p(wk) � N

(
wk
∣∣0p×1, Qk

)
, where N

(·∣∣μk,
∑

k

)
denotes the Gaussian PDF with mean vector μk and covariance matrix

∑
k , whose

inverse is called the scale matrix. In addition, Hk ∈ Rm×n is the measurement matrix,
and all the matrices in Eq. (1) are assumed to be known. Initial state x0 follows
Gaussian distribution p(x0) � N

(
x0
∣∣x̂0|0 , P0|0

)
, and x0, wk , and vk are mutually

independent. We model measurement noise vk ∈ Rm as a symmetrical Student’s
t-distribution, whose PDF is given by [6]

p(vk) � S
(
vk
∣∣μk ,Λk , νk

) � �
(
(νk + m)

/
2
)

�
(
νk
/
2
) |Λk |1/ 2

(πνk )m/ 2

[
1 +

1

νk
(vk − μk )

TΛk (vk − μk )

]−(νk+m)/ 2

,

(2)
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where S
(·∣∣μk,�k, νk

)
denotes the PDF of the Student’s t-distribution with mean vec-

torμk , scale matrix�k , νk denotes the DOF, and |·| and�(·) represent the determinant
of square matrix and Gamma function, respectively. Note that (�k)

−1 is the nominal
covariance of the t-distribution.

As the Student’s t-distribution can be expressed as an infinite mixture of Gaussian
distributions with common mean and variances scaled by the Gamma distribution,
likelihood PDF p(zk |xk ) is expressed as [8]

p(zk |xk ) �
+∞∫
0

N
(
zk
∣∣∣Hkxk + μk, (ukΛk)

−1
)

× G
(
uk
∣∣νk/2, νk/2 )duk, (3)

where uk is an introduced latent variable, G(·|α, β ) is the Gamma distribution PDF
with shape parameter α and rate parameter β, and the PDF of uk is given by

p(uk) � G(uk |α, β ) � βα

�(α)
(uk)

α−1 exp{−ukβ}. (4)

Likelihood PDF p(zk |xk ) can be rewritten in the hierarchical Gaussian form:

p
(
zk
∣∣xk,μk, uk,Λk

) � N
(
zk
∣∣∣Hkxk + μk, (ukΛk)

−1
)
,

p(uk |νk ) � G
(
uk
∣∣νk/2, νk/2 ). (5)

Parameter estimation under the Student-t measurement model can thus be formu-
lated under the Bayesian inference framework. One-step predicted PDF p(xk |z1:k−1 )

is assumed to follow a Gaussian distribution:

p(xk |z1:k−1 ) = N
(
xk
∣∣x̂k|k−1 , Pk|k−1

)
. (6)

The prior distribution for DOF νk is assumed to follow a Gamma distribution [11]:

p(νk) � G
(
νk
∣∣ak|k−1 , bk|k−1

)
. (7)

As given in [23], the joint conjugate prior distribution for mean vector μk and
scale matrix �k follows a Gaussian–Wishart distribution and is factorized as their
constituting distributions:

p
(
μk,�k

) � p
(
μk |�k

)
p(�k) � N

(
μk

∣∣∣ηk ,(βk|k−1�k
)−1
)
W
(
�k
∣∣λk|k−1 ,Uk|k−1

)
,

(8)

where βk|k−1 is the precision factor, W (·|λk,Uk ) denotes the Wishart distribution
with λk|k−1 DOF and scale matrix Uk|k−1 [6]. In the sequel, we investigate a VB
approach to approximate the posterior densities of the measurement parameters and
state for the system in Eq. (1) to minimize the Kullback–Leibler divergence.
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3 Estimation Using VB Approach

VB is an iterative approach commonly studied in machine learning and statistics and
approximates the posterior distribution as a factored distribution. The parameters of the
approximated factored distribution are adjusted by minimizing the Kullback–Leibler
divergence between the selected density and the true density. Approximate posterior
density q(θk) of parameter θk is determined by [6]

q(θk) � exp
(
Eq(θl ��k)[ln p(X ,Θ)]

)
, (9)

where Eq(θl ��k)[·] denotes the expectation with respect to each θl such that l �� k, ln(·)
denotes the natural logarithm, and q(θk) is the variational posterior distribution (VPD)
of θk .

Given that VB requires the joint distribution of measurements and parameters, their
joint PDF is given and factorized as

p
(
xk,μk, uk,�k, νk |z1:k

)
∝ p (xk |z1:k−1 ) p

(
μk |�k

)
p (�k) p (uk |νk ) p (νk |z1:k−1 ) p

(
zk
∣∣xk,μk, uk,�k

)
.

(10)

Considering Eqs. (5), (6), and (7), joint posterior PDF p
(
xk,μk , uk,�k, νk |z1:k )

in Eq. (10) has no analytical solution. Thus, a variational method is utilized. Let

p
(
xk,μk, uk,�k, νk |z1:k

) ≈ q(xk)q
(
μk
)
q(uk)q(�k)q(νk), (11)

where q(xk), q
(
μk
)
, q(uk), q(�k), and q(νk) denote, respectively, the approximate

posterior PDFs of state xk , mean μk , auxiliary parameter uk , scale matrix �k , and
DOF νk . These VPDs are coupled to each other and cannot be directly derived from
Eq. (11), but fixed-point iteration [11] can be used to solve them.

3.1 State and Parameter Estimation Under Student-tMeasurement Noise

The optimal solution in Eq. (9) and the PDF decomposition in Eq. (11) allow to
calculate the approximate posterior PDF of xk as

(12)

ln qi (xk) � −1

2
Eqi−1(μ)qi−1(�)

[
ξ Tk

(
u(i−1)
k �k

)
ξ k

]

− 1

2

(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)
+ Cx,

where ξ k � zk − Hkxk − μk , u
(i−1)
k � Eqi−1(uk )[uk], and qi−1(·) represents the

posterior density at the (i − 1)-th iteration. Taking expectations with respect to the
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parameters enclosed in square brackets in Eq. (12) and expressing the terms indepen-
dent from xk as constant Cx results in the simplified expression:

(13)

ln qi (xk) � 1

2
ζ T
k

(
u(i−1)
k Eqi−1(�k ) [�k]

)
ζ k

− 1

2

(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)
+ C,

where ζ k � zk − Hkxk − Eqi−1(μ)

[
μk
]
. Equation (13) is quadratic in xk , and hence

qi (xk) is Gaussian, i.e., qi (xk) � N
(
xk
∣∣∣x̂(i)

k|k , P
(i)
k|k
)
, with x̂(i)

k|k , P
(i)
k|k being the first

two moments of the distribution obtained as

x̂(i)
k|k � x̂k|k−1 +Kk

(
zk − Hk x̂k|k−1 − Eqi−1(μk)

[
μk
])

, (14)

P (i)
k|k � Pk|k−1 − KkHk Pk|k−1 , (15)

with Kalman gain

Kk � Pk|k−1 HT
k

((
u(i−1)
k Eqi−1(�k )[�k]

)−1
+ Hk Pk|k−1 HT

k

)−1

. (16)

To derive the VPD of �k , the logarithm of the joint VPD of
(
μk,�k

)
is first

computed as

ln qi
(
μk ,�k

) � Eqi−1(uk ) qi−1(νk )qi (xk )
[
ln p

(
zk
∣∣xk ,μk , uk ,�k

)
+ ln p

(
μk |�k

)
+ ln p(�k)

]
+ C

� 1

2
Eqi−1(uk )

[
umk
]
ln|�k | + 1

2
ln
∣∣∣βk|k−1 u

(i−1)
k �k

∣∣∣ + λk|k−1 − m − 1

2
ln|�k |

− u(i−1)
k

2
Eqi (xk )

[
ξTk �kξ k

]
− 1

2
Tr
[(
Uk|k−1

)−1
�k

]

− 1

2

(
μk − ηk|k−1

)T(
βk|k−1 u

(i−1)
k �k

)(
μk − ηk|k−1

)
+ Cμk ,Λk . (17)

Then, approximate densities qi
(
μk
)
and qi (�k) are derived, and by the conditional

PDF of �k in Eq. (8), the approximate logarithm of the posterior distribution of μk is
given by
ln qi (μk |�k) � Eqi−1(uk ) qi−1(νk )qi (xk )

[
ln p

(
zk
∣∣xk,μk, uk,�k

)
+ ln p

(
μk |�k

)]
+ C

� − u(i−1)
k

2
Eqi (xk )

[
ξ Tk �kξ k

]
+
1

2
Eqi−1(uk )[ln|uk�k |] + 1

2
ln
∣∣βk|k−1�k

∣∣
− 1

2

(
μk − ηk|k−1

)T(
βk|k−1 u

(i−1)
k �k

)(
μk − ηk|k−1

)
+ C

� −1

2
μT
k

(
u(i−1)
k + βk|k−1 u

(i−1)
k

)
�kμk

+ μT
k �k

[
u(i−1)
k

(
zk − HkEqi (xk )[xk]

)
+ βk|k−1 u

(i−1)
k ηk|k−1

]
+ Cμ,

(18)
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which is quadratic in μk , and qi
(
μk |�k

)
is Gaussian:

qi
(
μk |�k

) � N

(
μk

∣∣∣∣η(i)
k|k ,

(
β

(i)
k|k �k

)−1
)

, (19)

with parameters

β
(i)
k|k � βk|k−1 + u(i−1)

k , (20)

η
(i)
k|k � ηk|k−1 + u(i−1)

k

(
β

(i)
k|k
)−1(

zk − Hk x̂
(i)
k|k − ηk|k−1

)
. (21)

Note that if u(i−1)
k ≡ 1 in Eqs. (20) and (21), these equations become a recur-

sive formula for the mean parameter deduced by VB under Gaussian measurement
distribution.

The posterior distribution of ln qi (�k) is obtained as the difference between
Eqs. (17) and (18):

ln qi (�k) � − m

2
ln
∣∣βk|k

∣∣− 1

2
ln|�k | − λk|k−1 − m − 1

2
ln|�k |

− 1

2
u(i−1)
k Tr

{[
Eqi (xk )

[
ξ kξ

T
k

]
+
(
Uk|k−1

)−1 + βk|k−1

·(μk − ηk|k−1
)(

μk − ηk|k−1
)T − β

(i)
k|k
(
μk − η

(i)
k|k
)(

μk − η
(i)
k|k
)T]

�k

}
+ C�. (22)

By conjugate prior, the VPD of �k can be conveniently written as a Wishart distri-
bution:

qi (�k) � W
(
�k

∣∣∣λ(i)
k|k ,U(i)

k|k
)
, (23)

where the hyperparameters are obtained by substituting Eqs. (20) and (21) into
Eq. (22):

(24)λ
(i)
k|k � λk|k−1 + 1,

(
U(i)
k|k
)−1 � (Uk|k−1

)−1 + u(i−1)
k Hk P

(i)
k|k H

T
k

+u(i−1)
k

(
1 −

(
β
(i)
k|k
)−1

u(i−1)
k

)(
zk − Hk x̂

(i)
k|k − ηk|k−1

) (
zk − Hk x̂

(i)
k|k − ηk|k−1

)T
.

(25)

Note that if u(i−1)
k in the right-hand side of Eq. (25) equals one, this equation

becomes a recursive form for the scale matrix of the corresponding Gaussian distri-
bution.
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VPD qi (uk) is obtained as

ln qi (uk) � Eqi (μk) qi (Λk )qi (xk )qi−1(νk )

[
ln p

(
zk
∣∣xk ,μk , uk ,Λk

)
+ ln p(uk |νk )] + Cu

�
(
Eqi−1(νk )[νk ]

2
− 1

)
ln uk − Eqi−1(νk )[νk ]

2
uk +

m

2
ln uk

+
1

2
ln|Λk | − 1

2
Eqi (μk) qi (Λk )qi (xk )

[
ξ Tk (ukΛk)ξ

T
k

]
+ Cu

�
(
Eqi−1(νk )[νk ] − 2 + m

2

)
ln uk − Eqi−1(νk )[νk ]

2
uk

− 1

2
Eqi (μk) qi (Λk )qi (xk )

[
ξ Tk (ukΛk)ξ

T
k

]
+ Cu . (26)

By conjugate prior, qi (uk) is Gamma distribution qi (uk) � G
(
uk
∣∣∣ν1(i)k , ν

2(i)
k

)
,

where

ν
1(i)
k � 1

2

(
Eqi−1(νk )[νk] + m

)
, (27)

ν
2(i)
k � 1

2

(
Eqi−1(νk )[νk] + Eqi(μk) qi (Λk )qi (xk )

[
ξ Tk Λkξ

T
k

])
. (28)

The computation of Eqi(μk) qi (Λk )qi (xk )

[
ξ Tk Λkξ

T
k

]
is given by

Eqi(μk) qi (Λk )qi (xk )

[(
zk − Hkxk − μk

)T
Λk
(
zk − Hkxk − μk

)]

= Tr

[
Eqi (Λk )[Λk]

(
yk y

T
k − yk

(
x̂(i)
k|k
)T

HT
k − Hk x̂

(i)
k|k y

T
k

+ Hk

(
Dqi (xk )[xk] + x̂(i)

k|k
(
x̂(i)
k|k
)T)

HT
k

)]
+ m
(
β

(i)
k|k
)−1

, (29)

where yk�zk − η
(i)
k|k and Dqi (xk )[·] denotes the variance of xk .

Next, we derive approximate density qi (νk) by using the conditional PDF of uk in
Eq. (5) and the prior distribution in Eq. (7):

ln qi (νk) � Eqi (uk )[ln p(uk |νk ) + ln p(νk)] + Cνk

� νk

2
ln

νk

2
− ln�

(νk

2

)
+
(νk

2
− 1
)
Eqi (uk )[ln uk] − νk

2
Eqi (uk )[uk]

+
(
ak|k−1 − 1

)
ln νk − bk|k−1 νk + Cνk . (30)

Using Stirling’s approximation ln�
(

νk
2

) ≈ νk−1
2 ln νk

2 − νk
2 in Eq. (30), the varia-

tional estimator of DOF νk follows Gamma distribution qi (νk) � G
(
νk

∣∣∣a(i)
k|k , b(i)

k|k
)
,

where

a(i)
k|k � ak|k−1 +

1

2
, (31)

b(i)
k|k � bk|k−1 +

1

2
u(i)
k − 1

2
Eqi (uk )[ln uk] − 1

2
. (32)
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As indicated above, the approximate posterior distribution of each variable depends
on the expected values of some of the others. The expectations of the parameters are
given by

Eqi (Λk )[Λk] � λ
(i)
k|kU

(i)
k|k ,

Eqi(μk)

[
μk
] � η

(i)
k|k ,

Eqi (uk )[uk] = u(i)
k � ν

1(i)
k

/
ν
2(i)
k ,

Eqi (uk )[ln uk] � �
(
ν
1(i)
k

)
- ln ν

2(i)
k ,

E[νk] � a(i)
k|k
/
b(i)
k|k , (33)

where Ψ ( · ) denotes the digamma function, i.e., the first derivative of the natural
logarithm of the gamma function.

The selection of number of iterations N is discussed next, as this parameter deter-
mines the estimation accuracy and implementation time. Here, we use a stopping
criterion based on the difference in values from two consecutive estimates:

δk �
{

< 10−6 terminate process
otherwise continute iterative process

, (34)

where the difference is given by δk ∼
∥∥∥x̂(i)

k|k − x̂(i−1)
k|k

∥∥∥2.
3.2 Hyperparameter Update

State update is the same as that of the standard KF. Considering only the update of
unknown parameters, similar to [16, 24], we introduce factor ρ that indicates the
statistics of fluctuation. Uncertainty reduces as ρ approaches to zero more, and hence
we considered a value of ρ not very small for consistency. The updating of noise
parameters is expressed as

λk|k−1 � ρλk−1|k−1 ,

βk|k−1 � ρβk−1|k−1 ,

ak|k−1 � ρak−1|k−1 ,

bk|k−1 � ρbk−1|k−1 ,

ηk|k−1 � ρηk−1|k−1 ,

Uk|k−1 � 1

ρ
Uk−1|k−1 . (35)

3.3 Filter Algorithm

We summarize the estimation process of the proposed filter in Algorithm 1 and illus-
trate the hierarchical Gaussian model in Fig. 1.
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kη kβ kλ kU ka kb

Prior Parameters

( )kp ν( )kp μμ ( )kp Λ

( )kp u

( ),k k kp uz x ( )k kp z x

( )1: -1k kp x z

( )1:k kp x z

Fig. 1 Diagram of proposed Student-t hierarchical Gaussian state-space model

Note that if latent variable uk ≡ 1 and the recursive expression for νk are omitted,
the proposed algorithm degenerates into the estimation under Gaussian measurement
noise. In addition, if the recursive expressions forβk|k and ηk are omitted, the proposed
algorithm degenerates into the estimation without mean under Student-t measurement
noise [24].

4 Error Bounds of VB Estimator

The fundamental CRLB sets a lower limit on the MSE for any estimator θ̂ (z). Specif-
ically, the Bayesian Cramer–Rao inequality [12, 20] shows that the MSE of any
estimator θ̂ (z) is lower bounded by

Ep(z,θ)

{(
θ̂ (z) − θ

)(
θ̂ (z) − θ

)T} ≥ J−1, (36)

where θ is an r -dimensional estimated random parameter and θ̂ (z) is an estimate of
θ . For square matrices A and B, A ≥ B indicates that A − B is a positive definite
matrix. J is the r × r (Fisher) information matrix that is computed by expectation to
joint density p(z, θ) and can be written as

J� E
[
−∇Z∇T

Θ log pz,θ (Z,Θ)
]
, (37)

where∇Θ �
[

∂
∂Θ1

, . . . , ∂
∂Θr

]T
. As p(Z) is the integral of pz,θ (Z,Θ) overΘ , depen-

dency on Θ is removed, and therefore we obtain the following alternative expression
for the information matrix:
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J � E
[
−∇Θ∇T

Θ log pθ |z (Θ|Z )
]
. (38)

The traditional Bayesian CRLB for sequential estimation requires a double inte-
gration over the parameter and every measurement at each iteration, thus being
computationally intensive. A posterior CRLB and a conditional posterior CRLB were
investigated in [20] and [26], respectively, for a general multidimensional discrete-
time filtering problem, providing a recursive approach for calculating the sequential
Bayesian CRLB.

We now introduce the VB-CRLB to set the lower bound on the performance of
the VB estimator given past measurement Zk up to time k. As the Bayesian approach
considers random state x and parameter θ , the joint logarithm PDF for xk and θk is
computed using VB and factorized as

ln p(θk, xk |Zk ) ≈ ln q(θk |Zk ) + ln q(xk |θk, Zk ), (39)

where qi (xk |Zk ) and qi (θk |Zk ) are not exact marginal distributions of joint PDF
p(xk, θk |Zk ) but factors whose product is an approximate joint PDF, as indicated

in Eq. (11). Assume that parameter θ is decomposed into two parts as
[
θTα θTβ

]T
,

information matrix J can be decomposed as the corresponding block matrix:

J �
[
Jαα Jαβ

Jβα Jββ

]
. (40)

For clarity, Student-t nominal covariance (Λk)
−1 should be expressed in terms of

Gaussian covariance 	k by introducing multiplier 1
/
u(i)
k :

	k � (�k)
−1
/
u(i)
k , (41)

with expectation

	̂
(i)
k � Eqi (	k )[	k] � (Eqi (Λk )[�k]

)−1
/
u(i)
k . (42)

For parameters μ and 	, by Eqs. (19), (23), and (41), joint VPD qi
(
μk,	k

) �
NW

(
μk,	k

∣∣∣β(i)
k|k , η

(i)
k|k , λ

(i)
k|k ,U(i)

k|k
)
is given by

qi
(
μk,	k

) ∝
∣∣∣(	k)

−1
∣∣∣
(
λ

(i)
k|k −m

)/
2

exp

{
−1

2

[(
u(i)
k

)−1
(	k)

−1 ·
((

U(i)
k|k
)−1

+ β
(i)
k|k
(
μk − η

(i)
k|k
)(

μk − η
(i)
k|k
)T)]}

.

(43)
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Let parameters θ1 � μk and θ2 � 	k . By Eqs. (38) and (40), we have

J11,k(i) � −Eqi(μk ,	k)

[
∇μT

k

[∇μk ln qi
(
μk,	k

)]]
, (44)

and omitting terms independent of μ, entry J11,k(i) can be rewritten as

J11,k(i) � −Eqi(μk ,Σk)

[
∇μT

k

[
∇μk

(
−1

2

(
μk − η

(i)
k|k
)T(

β
(i)
k|k �k

)(
μk − η

(i)
k|k
))]]

,

(45)

which is simplified as

J11,k(i) � Eqi(μk |Λk )

[
Eqi (Λk )

[
β

(i)
k|k �k

]]
. (46)

Substituting Eqi (Λk )[�k] � λ
(i)
k|kU

(i)
k|k into Eq. (46) yields

J11,k(i) � β
(i)
k|k λ

(i)
k|kU

(i)
k|k , (47)

indicating that the derived asymptotic Bayesian CRLB for μk is ABCLBi
(
μk
) �(

J11,k(i)
)−1.

Next, the first non-diagonal entry is computed by

J21,k(i) � −Eqi(μk ,	k)

[
∇μT

k

[∇	k

(
ln qi

(
μk,	k

))]]
, (48)

which is simplified by omitting terms unrelated to 	k as

J21,k(i) � −Eqi(μk ,	k)

⎡
⎣∇μT

k

⎡
⎣∇	k

⎛
⎝
(
λ

(i)
k|k − m

)
2

ln
∣∣∣	−1

k

∣∣∣

−1

2
Tr

([(
U(i)
k|k
)−1

+ β
(i)
k|k
(
μk − η

(i)
k|k
)(

μk − η
(i)
k|k
)T ](

u(i)
k

)−1
	−1

k

))]]
.

(49)

Let us recall some rules on derivatives and traces of matrices that facilitate the
calculation of derivatives of function ln qi

(
μk,	k

)
presented in Eq. (49). Let A and

B be invertible matrices and X a column vector, then [5]

∂

∂A
ln
∣∣∣A−1

∣∣∣ � − ∂

∂A
ln|A| � − 1

|A|
∂|A|
∂A

� −
(
A−1

)T
,

Tr(AB) � Tr(BA),

∂

∂A
Tr
(
BA−1

)
� −

(
A−1BA−1

)T
. (50)
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The derivative of a matrix product with respect to a vector is given by

∂A(X)B(X)

∂X
� ∂A(X)

∂X
B(X) + [In ⊗ A(X)]

∂B(X)

∂X
, (51)

where ⊗ denotes the Kronecker product and In denotes the identity matrix of dimen-
sion n.

Using Eqs. (50), (49) is computed as

J21,k(i) � 1

2
Eqi(μk ,	k)

[
∇μT

k

[
T(	k) + 	−1

k ·
(
u(i)
k

)−1
β

(i)
k|k S

(
μk
) · 	−1

k

]]
, (52)

where T(	k) �
(
m − λ

(i)
k|k
)(

	−1
k

)T
+
(
u(i)
k

)−1
	−1

k

(
U(i)
k|k
)−1

	−1
k and S

(
μk
) �(

μk − η
(i)
k|k
)(

μk − η
(i)
k|k
)T

denote the statistics about 	k and μk , respectively. Using

the matrix rule in Eqs. (51), (52) is obtained as

J21,k(i) � 1

2
Eqi (	k )

((
u(i)
k

)−1
β

(i)
k|k
(
Im ⊗ 	−1

k

)
mm×mm

· Eqi(μk |	k )

[(
(vec(Im))mm×1 ⊗

((
μk − η

(i)
k|k
)T)

1×m

+
(
Im ⊗

(
μk − η

(i)
k|k
))

mm×m

)]
·	−1

k

)
, (53)

where subscript a×b denotes the dimension of the corresponding matrix and vec(Im)

is a column vector obtained by stacking the consecutive columns of Im . Note that

Eqi(μk |Σk )

[(
μk − η

(i)
k|k
)T] � Eqi(μk |	k )

[(
μk − η

(i)
k|k
)]

� 0, and J12,k(i) has a

similar term. Hence, the non-diagonal entries are both zeros, i.e., J21,k(i) � 0mm×m

and J12,k(i) � 0m×mm . As a result, information matrix J is a block diagonal matrix,
and the asymptotic Bayesian CRLB is its inverse.

As entry J22,k(i) is mathematically intractable for a general matrix	k , we consider
	k to be a diagonal matrix, and hence �k is also diagonal:

(�k)
−1 � diag

([
σ̄ 2
k,1, σ̄ 2

k,2, · · · , σ̄ 2
k,m

])
, (54)

where the prior distribution of element σ̄ 2
k, j follows inverse Gamma distribution

p
(
σ̄ 2
k, j

)
= IG

(
σ̄ 2
k, j

∣∣κ̄k|k −1, j ,γ̄k|k−1 , j

)
, which leads to the VPD being inverse Gamma

distribution

qi
(
σ̄ 2
k, j

)
= IG

(
σ̄ 2
k, j

∣∣∣κ̄ (i)
k|k , j ,γ̄

(i)
k|k , j

)
(55)
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with parameters

κ̄
(i)
k|k , j � κ̄k|k −1, j +

1

2
,

γ̄
(i)
k|k , j � γ̄k|k−1 , j +

u(i−1)
k

2

[
Hk P

(i)
k|k H

T
k

]
j j
+
u(i−1)
k

2

[
1 −

(
β

(i)
k|k
)−1
]

×
[(

zk − Hk x̂
(i)
k|k − ηk|k−1

)(
zk − Hk x̂

(i)
k|k − ηk|k−1

)T ]
j j

, (56)

and predictions κ̄k+1|k , j � ρκ̄k|k , j and γ̄k+1|k , j � ργ̄k|k , j . In this case, the mean of
individual parameter μk, j follows distribution

qi
(
μk, j

∣∣∣σ̄ 2
k, j

)
� N

(
μk, j

∣∣∣∣η(i)
k|k , j ,

(
β

(i)
k|k
)−1

σ̄ 2
k(i), j

)
, (57)

resulting in J11,k(i), j � β
(i)
k|k
(
E
[
σ̄ 2
k(i), j

])−1 �β
(i)
k|k
(
κ̄

(i)
k|k , j − 1

)/
γ̄

(i)
k|k , j . The lower

bound for the estimation variance associated with the mean of individual parameter
μk, j is given by

ABCLBi
(
μk, j

) � J−1
11,k(i), j � γ̄

(i)
k|k , j

/(
β

(i)
k|k
(
κ̄

(i)
k|k , j − 1

))
, (58)

and the lower bound on the variance of the individual parameter is computed from

J22,k(i) � −Eqi(μk ,Σk)

[∇Σk

[∇Σk

(
ln qi

(
μk,	k

))]]
mm×mm, (59)

with joint variational posterior distribution being

qi
(
μk,	k

) ∝
⎡
⎣ m∏

j�1

(
σ 2
k, j

)−
(
κ

(i)
k|k , j+

3
2

)⎤
⎦

× exp

⎧⎪⎪⎨
⎪⎪⎩

− 1

2u(i−1)
k

m∑
j�1

β
(i)
k|k
(
μk − η

(i)
k|k
)2
j
+ 2γ̄ (i)

k|k , j

σ 2
k, j

⎫⎪⎪⎬
⎪⎪⎭

, (60)

where σ 2
k, j is the jj-th element of diagonal matrix 	k distributed according to

qi
(
σ 2
k, j

)
= IG

(
σ 2
k, j

∣∣∣κ(i)
k|k , j ,γ

(i)
k|k , j

)
, with κ

(i)
k|k , j � κ̄

(i)
k|k , j and γ

(i)
k|k , j � γ̄

(i)
k|k , j

/
u(i−1)
k .
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As J22,k(i) is a block diagonal matrix involvingm subblocks, the nonzero jj-th element
of the j-th subblock is

J j j
22,k(i) � E

qi
(
μk, j ,σ

2
k, j

)
⎡
⎢⎢⎣∇σ 2

k, j

⎡
⎢⎢⎣∇σ 2

k, j

⎛
⎜⎜⎝
(

κ
(i)
k|k , j +

3

2

)
ln σ 2

k, j

+
1

2u(i−1)
k

β
(i)
k|k
(
μk − η

(i)
k|k
)2
j
+ 2γ̄ (i)

k|k , j

σ 2
k, j

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (61)

� E
qi
(
σ 2
k, j

)
⎡
⎢⎢⎣Eqi

(
μk, j

∣∣∣σ 2
k, j

)
⎡
⎢⎢⎣−2κ(i)

k|k , j + 3

2
(
σ 2
k, j

)2 +

(
β

(i)
k|k
(
μk − η

(i)
k|k
)2
j
+ 2γ̄ (i)

k|k , j

)

u(i−1)
k

(
σ 2
k, j

)3

⎤
⎥⎥⎦

⎤
⎥⎥⎦

� −1

2
E
qi
(
σ 2
k, j

)
⎡
⎢⎣2κ(i)

k|k , j + 3(
σ 2
k, j

)2
⎤
⎥⎦ + E

qi
(
σ 2
k, j

)
⎡
⎢⎢⎣Eq

(
μk, j

∣∣∣σ 2
k, j

)
⎡
⎢⎢⎣

(
β

(i)
k|k
(
μk − η

(i)
k|k
)2
j
+ 2γ̄ (i)

k|k , j

)

u(i−1)
k

(
σ 2
k, j

)3

⎤
⎥⎥⎦

⎤
⎥⎥⎦.

(62)

Using the conditional covariance of μk, j in Eq. (57), we obtain

E
q
(
μk, j

∣∣∣σ 2
k, j

)
[
β

(i)
k|k
(
μk − η

(i)
k|k
)2
j

]
� β

(i)
k|k D

[
μk, j

] � u(i−1)
k σ 2

k(i), j , (63)

which substituted into (62) simplifies J j j
22,k(i) as

J j j
22,k(i) � −1

2
E
qi
(
σ 2
k, j

)
⎡
⎢⎣2κ(i)

k|k , j + 1(
σ 2
k, j

)2
⎤
⎥⎦ + E

qi
(
σ 2
k, j

)
⎡
⎢⎣ 2γ (i)

k|k , j(
σ 2
k, j

)3
⎤
⎥⎦. (64)

Note that if random variable α follows inverse Gamma distribution IG(α|c, d ), where
c and d are shape and scale parameters, respectively, the following general result about
expectation is obtained:

EIG(α)

[
1

αn

]
� d−n�(c + n)

/
�(c). (65)

If α � σ 2
k, j , c � κ

(i)
k|k , j , d � γ

(i)
k|k , j , and n � 2 we obtain

E
qi
(
σ 2
k, j

)
⎡
⎢⎣ 1(

σ 2
k, j

)2
⎤
⎥⎦ � �

(
κ

(i)
k|k , j + 2

)/
�
(
κ

(i)
k|k , j

)/(
γ

(i)
k|k , j

)2

� κ
(i)
k|k , j

(
κ

(i)
k|k , j + 1

)/(
γ

(i)
k|k , j

)2
. (66)
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Similarly, for n � 3 we obtain

E
qi
(
σ 2
k, j

)
⎡
⎢⎣ 2γ (i)

k|k , j(
σ 2
k, j

)3
⎤
⎥⎦ �

2κ(i)
k|k , j

(
κ

(i)
k|k , j + 1

)(
κ

(i)
k|k , j + 2

)
(
γ

(i)
k|k , j

)2 . (67)

Substituting Eqs. (66) and (67) into Eq. (64) and performing simple algebraic
manipulation, we obtain

J j j
22,k(i) � κ

(i)
k|k , j

(
κ

(i)
k|k , j + 1

)(
2κ(i)

k|k , j + 7
)/

2
(
γ

(i)
k|k , j

)2
. (68)

Hence, the asymptotic Bayesian CRLBon σ 2
k, j is ABCLBi

(
σ 2
k, j

)
�
(
J j j
22,k(i)

)−1
.

To determine the asymptotic Bayesian CRLB of parameter ν, we use the logarithm
of the VPD in Eq. (30). By Eq. (38), the VB information value of ν is

VBIk(i)(νk) � −Eqi (νk )

[
∂2 ln qi (νk)

∂ν2k

]
. (69)

Omitting the term not containing νk , the first derivative of ln q(νk) is given by

∂ ln qi (νk)

∂νk
� 1

2
ln νk − �′(νk/2)

�
(
νk
/
2
) +

ak|k−1 − 1

νk
, (70)

and its second derivative by

∂2 ln qi (νk)

∂ν2k
� 1

2

1

νk
+
1 − ak|k−1

ν2k
− � ′(νk

2

)
, (71)

where � ′( · ) denotes the first derivative of the digamma function. Then, a(i)
k|k from

Eq. (31) is replaced into Eq. (71) for Eq. (69) to become

VBIk(i)(νk) � −1

2
Eqi (νk )

[
1

νk

]
− Eqi (νk )

[
3
/
2 − a(i)

k|k
ν2k

]
+ Eqi (νk )

[
� ′(νk

2

)]
. (72)

Using the expectation of the Gamma distribution, we obtain

Eqi (νk )

[
1

νk

]
� b(i)

k|k
/(

a(i)
k|k − 1

)
Eqi (νk )

[
1

ν2k

]
�
(
b(i)
k|k
)2/[(

a(i)
k|k − 1

)(
a(i)
k|k − 2

)]
, (73)

which substituted into Eq. (72) results in

VBIk(i)(νk) � Eqi (νk )

[
� ′(νk

2

)]
− 1

2

b(i)
k|k(

a(i)
k|k − 1

) −
(
b(i)
k|k
)2(

3
/
2 − a(i)

k|k
)

(
a(i)
k|k − 1

)(
a(i)
k|k − 2

) . (74)
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Hence, the asymptotic Bayesian CRLB on ν is ABCLBi (νk) � 1
/
VBIk(i)(νk).

For parameter xk , when its posterior distribution q(θ |Z ) becomes p(θ |Z ), x̂(i)
k|k

asymptotically attains the asymptotic Bayesian CRLB corresponding to the following
Fisher information matrix:

J xx
k(i) � −Eqi (x)qi−1(θ)

[
∂2 ln q(θk, xk, zk)

∂xk∂xTk

]
� −Eqi (x)qi−1(θ)

[
∂2 ln q(xk |θk, zk )

∂xk∂xTk

]
,

(75)

which is only function of qi (θk) given the quadratic nature of ln q(xk |θk, zk ) in xk ,
and by Eq. (15) we obtain

J xx
k(i) � Eqi−1(θ)

[(
P (i)
k|k (θk)

)−1
]
, (76)

where θk includes uk and �k as shown in Eq. (16). Then, we obtain ABCLBi (xk) �(
J xx
k(i)

)−1
, which is identical to the derived covariancematrix of xk , indicating that the

VB update for xk is an extension of the minimum MSE estimation when the estimate
is intractable for model parameter inaccuracies.

5 Results and Discussion

We conducted a numerical simulation to test the performance of the proposed method
and verify the derived asymptotic Bayesian CRLB. Then, SINS/DVL integrated nav-
igation was tested to further evaluate the proposed filter algorithm.

5.1 Stochastic Resonator Model

For the first simulation, we used a randomly drifting stochastic resonator [17], which
is a typical signal detection model widely used in the field of sensor measurements
in areas such as navigation information acquisition, spread spectrum communication,
and biological instruments. The state–state model is expressed as

⎡
⎣ xk,1
xk,2
xk,3

⎤
⎦ �

⎡
⎣ 1 0 0
0 cos(ω�t) sin(ω�t)

ω
0 −ω sin(ω�t) cos(ω�t)

⎤
⎦
⎡
⎣ xk−1,1
xk−1,2
xk−1,3

⎤
⎦ + wk, (77)

and the measurement model as

zk � [0 0 1
]⎡⎣ xk,1

xk,2
xk,3

⎤
⎦ + vk, (78)
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Fig. 2 True mean and estimated mean by applying the proposed filter to a stochastic resonator model

where wk � [wk,1 wk,2 wk,3
]T, measurement noise vk is an unknown random vari-

able, sampling time �t � 0.4 s, and angular velocity ω �0.05 rad/s. The initial
state was assumed to follow Gaussian distribution x0,i ∼ N (0, 1) for i � 1, 2, 3. In
addition, process noise was considered as a Gaussian distribution with zero mean and
covariance matrix Q0 � diag

([
0.01 0.01 0.01

])
, and the measurement noise was

modeled as a Student’s t-distribution.
We evaluated the robustness of the proposed algorithm considering Gaussian

measurement noise with varying mean and variance over time. Specifically, for
t ∈ [1 s, 100 s] and t ∈ [601 s, 1000 s], v(t) ∼ N (0, R) with R � 1, whereas for
t ∈ [101 s, 600 s], v(t) ∼ N (6, 25 × R). Then, we performed state and parameter
estimation for the mean and variance of the measurement noise using the proposed
algorithm. We set the number of iterations for convergence to 10.

Figure 2 shows the estimated and true mean, indicating that the proposed filter can
gradually track the true value from 100 to 600 s. Moreover, when the distribution
changes at 600 s, the filter quickly adapts. Figure 3 depicts the variance estimate
and compares it with that obtained from the VB-KF proposed in [17]. When the
true variance changes, estimation using the proposed filter follows this change more
quickly than VB-KF. However, when the variance remains unchanged from 100 to
600 s, the estimation of the proposed filter shows more intense oscillations than that of
the VB-KF, indicating the lower consistency of the algorithm in this aspect compared
to the VB-KF.

Figure 4 and Table 1, respectively, show the estimation error curves and root MSE
(RMSE) of the states. For constant Gaussian noise, the state estimation results using
the VB methods outperform those using the conventional KF, and the performance of
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Fig. 4 State error from applying the proposed filter and similar methods to a stochastic resonator model

proposed filter is superior to that of VB-KF, which can be attributed to the inclusion
of all noise parameters in the estimation of the proposed filter.

Figures 5 and 6 show the calculated RMSE of mean and variance, respectively, and
their theoretical

√
ABCLB. The results verify that the asymptotic Bayesian CRLB
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Table 1 RMSE of states by applying the proposed filter and similar methods to a stochastic resonator model

Algorithm 1st RMSE 2nd RMSE 3rd RMSE

KF 2.9489 196.036 2.2248

Proposed algorithm 1.4577 69.0639 1.5864

VB-KF 2.9038 94.6053 2.0831
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Fig. 5 Mean and corresponding
√
ABCLB of simulations

is very close to the lower bounds of variance estimation for the posterior distributions
of mean and variance under Gaussian and even non-Gaussian noise. Note that ABCLB
provides the MSE performance bound of parameter estimation online.

5.2 Experiments on Navigation Data

We also evaluated the proposed filter on a SINS/DVL shipborne test for velocity
estimation and compared it to the conventional KF and VB-KF. The experimental
platform is composed of a SINS, a DVL, and a GPS receiver. The body angular rate
and specific force were measured by gyroscopes and accelerometers, respectively, at
a rate of 100 Hz, and GPS data were sampled at 1 Hz to provide accurate position and
velocity information for the integrated SINS/DVL.

The filter was indirectly applied by considering navigation parameter errors as
system state variables and using output correction to modify the SINS parameters.
The dynamic model of the SINS/DVL navigation error is given by

Ẋ(t) � A(t)X(t) + B(t)w(t), (79)
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Fig. 6 Variance and corresponding
√
ABCLB of simulations

where state vector X is composed of seven navigation error variables, A is the state
transition matrix of the system, and B is the noise matrix, as detailed in [7]. Variable
w represents the Gaussian process noise with zero mean and covariance matrix Q,
representing the inertial sensor bias consisting of accelerometer and gyroscope biases,
which are given by

X(t) � [ δL δλ δVe δVn ϕe ϕn ϕu
]T

w(t) � [0 0 wax way wgx wgy wgz
]T

, (80)

where δL and δλ are the latitude and longitude errors, respectively, δVe and δVn are
velocity errors, subscripts e, n, and u denote the east, north, and up components in the
navigation frame,ϕe,ϕn , andϕu are the pitch, roll, and heading errors, respectively, and
x, y, and z denote the right, front, and up components in the body frame, respectively.
The transformation from the body frame to the navigation frame is given by direction
cosine matrix Cn

b in [7].
The measurement model utilizes a loosely coupled method. Hence, measurements

are determined from the level velocity errors between the DVL and SINS, from which
the measurement model is formulated as

z(t) � Hx(t) + v(t) �
[

vSINSe
vSINSn

]
−
[

vDVLe
vDVLn

]
, (81)

where z is the measurement vector, H � [
02×2 I2×2 02×3

]
is the measurement

matrix, and v is the measurement noise. The discretized form of dynamic Eq. (79)
has the same form as the model in Eq. (1). The diagram of the SINS/DVL integrated
navigation is shown in Fig. 7.

When measurements were available, we used the output of the filter to correct the
solutions of the SINS. The voyage data from the sea vehicle were collected in the
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Fig. 7 Diagramof integrated navigation system for evaluating the proposedfilter (IMU, inertialmeasurement
unit)
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Fig. 8 Tracking of SINS of sea vehicle for filter experiments

East China Sea for a trajectory of a long endurance test over 7 h. The SINS trajectory
and velocities from the DVL are shown in Figs. 8 and 9, respectively. Further, the
performance parameters of the gyroscope and accelerometer are listed in Table 2.

We tested only the SINS for the first 2 h and then integrated the DVL and GPS data.
The DVL provides velocities with±1% accuracy of the speed and updates at 10 Hz,
which was the filter update rate when measurements were available. In addition, the
sea status during hours 4–5 of the voyage was rough, leading to the oscillations in
velocity measurements shown in Fig. 9, where non-Gaussian noise appears.
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Fig. 9 Velocity from DVL after 2-h sailing for filter experiments

Table 2 Parameters of gyroscopes and accelerometers used to obtain data for testing the proposed filter

Parameter (Unit) Value

Gyroscope constant drift (°/h) 0.05

Accelerometer zero offset (µg) 100

The initial latitude and longitude of the sea vehicle were 31.25°N and 121.76°E,
respectively. The initial east and north velocity were 6 and −5.6 m/s (i.e., head-
ing south). The iterative update of the VB-KF and proposed algorithm were
set to N � 10. The initial filter parameters were selected as x̂0|0 � 07×1,
P0|0 � diag

{
(1000m)2 (1000m)2 (0.1m/s)2 (0.1m/s)2 (0.1◦)2 (0.1◦)2 (0.1◦)2

}
,

μ0 � 02×1, R0 � diag
{
(0.5m/s)2 (0.5m/s)2

}
, Q �

diag
{
(100µg)2 (100µg)2 (0.01◦/h)2 (0.01◦/h)2 (0.01◦/h)2

}
. For the pro-

posed filter and VB-KF, the initial hyperparameters were set to λ0|0 � 0.1,

U0|0 � diag
{
(1m/s)2 (1m/s)2

}
, a0|0 � b0|0 � 0.12, η0|0 � [

0.1m/s 0.1m/s
]T,

β0|0 � 2, and forgetting factor was set to ρ � 1 − exp(−4). The velocity errors
compared with the other two methods are shown in Fig. 10, and the corresponding
RMSE values and running times are listed in Table 3.

FromFigs. 9 and 10 and Table 3, we can see that for Gaussian noise, the standardKF
shows the best performance for velocity estimation. However, the RMSE in hours 4–5
shows that KF is sensitive to noise outliers and tends to diverge over some periods. In
contrast, the two methods based on VB are more stable and show higher performances
than KF under outliers. For estimation of east velocity, the proposed filter slightly
outperforms VB-KF, whereas for north velocity, the VB-KF is slightly superior to
the proposed filter. Regarding average running time (Table 3), the proposed algorithm
takes approximately 2–3 times the running time of theVB-KF and 7–8 times that of KF
for all the methods executed on a computer with Intel Core i3-4170 CPU at 3.70 GHz.
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Fig. 10 Velocity error comparison of evaluated methods applied on navigation data

Table 3 State RMSE and average running time of evaluated methods applied on navigation data

Algorithm RMSE of east velocity RMSE of north velocity Running time (s)

KF 0.7691 0.6289 6.9 × 10−5

Proposed algorithm 0.6259 0.6369 5.5 × 10−4

VB-KF 0.6903 0.6036 1.9 × 10−4

6 Conclusion

We propose a linear approximate filter with parameter estimation under Student-t
measurement model. Specifically, we derive a variational recursive formula to deter-
mine state and noise parameters. Then, the sequential variational CRLB is derived
for the estimation variance of the proposed algorithm. Two numerical simulations,
on a theoretical model and measurement data, were performed and demonstrate that
under varying parameters of measurement noise, the proposed method shows better
performance than comparison methods, and the derived CRLB agrees with the lower
bound of the estimation variance.
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