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Abstract
This paper is aimed at developing a two-stage language identification (LID) system
for Northeast Indian languages. In the first stage, languages are pre-classified into
tonal and non-tonal categories, and in the second stage, individual languages are iden-
tified from languages of the corresponding category. In this work, new parameters
to model the prosodic characteristics of the speech signal have been proposed for
pre-classification as well as individual language identification. Also, the effectiveness
of spectral features, namely Mel-frequency cepstral coefficient (MFCC) and their
combination with prosodic features, has been studied for pre-classification task. The
usefulness ofMFCCwith their delta and acceleration coefficients in combination with
prosodic features has been investigated for individual language identification. The per-
formance of the system is analyzed for the features extracted of different analysis units,
such as syllable, disyllable, word, and utterance. Comparative performance analysis
of three different classifiers, namely artificial neural network (ANN), Gaussian mix-
ture model–Universal background model (GMM–UBM), and i-vector based support
vector machine (i-vector based SVM), has been made for pre-classification as well
as individual language identification. A new database, NIT Silchar language database
(NITS-LD), has been developed for seven NE Indian languages using All India Radio
broadcast news. The experimental analysis suggests that the parameters proposed to
represent the prosodic characteristics help to improve the performance of both the
stages and show improvements over existing parameters by as much as 7.4%, 11.9%,
and 9.1% for 30 s, 10 s, and 3 s test data, respectively, in the pre-classification stage.
Of the baseline single-stage systems, GMM–UBM provides the highest accuracies
of 80%, 76.8%, and 72% for 30 s, 10 s, and 3 s test data, respectively. In the pro-
posed system, the combination of the ANN model in pre-classification stage and the
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GMM–UBM model in individual language identification stage provides the highest
accuracies, and it shows the improvements over the baseline system by 7.2%, 7%, and
4.9% for 30 s, 10 s, and 3 s test data. For OGI-Multilingual (OGI-MLTS) database,
improvements of 8.1%, 7.4%, and 5.7% for 30 s, 10 s, and 3 s test data, respectively,
are observed over the baseline LID system.

Keywords Language identification · Pre-classification of tonal and non-tonal
languages · Syllables · Features · Classifiers · Database
1 Introduction

Themain objective of automatic LID systems is to identify the language correctly from
a given speech sample [4]. An ideal LID system should accurately utilize different
aspects of speech information which are useful for distinguishing languages from a
huge number of target languages. In the practical scenario, performance of an LID
system largely depends on the number of target languages. In order to get higher
accuracy for system involving large number of target languages, pre-classification of
languages into different sub-language families or into different categories can be done.
Also, to identify closely related languages or the languages of same origin, a highly
accurate pre-classification module is required.

In order to address this aspect, Wang et al. [44] outlined a novel system for pre-
classifying languages into tonal and non-tonal categories at utterance level, using
different parameters of pitch contour and durations features and ANN as classifier.
They have extended their work further to show the impact of the pre-classification
task on performance of the system [45]. Here they showed that the performance of the
system improves by 4–5% when pre-classification of languages into tonal and non-
tonal category is done before doing individual language classification. Additionally,
they reported that computation time of CPU reduces for the prosody-based two-level
language identification systems. However, this system has several disadvantages. The
main drawback of this system is that the use of phonetically labeled data makes the
system unusable where either any linguistic expert or phonetically labeled data are
not available. Also, extending such a system to include a new language would be a
nontrivial task. In [44, 45], researchers studied the effectiveness of pre-classification
module in distinguishing world’s distinct languages. However, no work has so far
studied the usefulness of such a system in distinguishing closely related Indian lan-
guages. Also, in [44, 45] feature parameters are first extracted from each of the voiced
segments constituting an utterance, and then feature representation of that utterance is
estimated. However, the literature confirms that for tonal languages, the tonal events
are aligned with segmental events [5]. The peak and valley of pitch contour are aligned
to the onset and offset of a segment [46], and therefore, pitch can be utilized to seg-
ment the continuous speech into smaller analysis units, which closely correspond to
syllable-like units [24]. Accordingly, either open or sonorant closed syllables can be
considered as tone bearing units of tonal languages [51]. Thus, for tonal/non-tonal
classification of languages, syllable-level analysis may lead to more discriminative
feature representation. Besides, the NE Indian languages are known to be syllable
centric [39], that is, the language-specific cues are more evident at syllable level itself.
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This paper therefore proposes a syllable-level tonal/non-tonal pre-classification based
LID system for NE Indian languages that may not depend on the use of phonetic
engine.

Attributes like pitch, duration, and energy render the naturalness of speech collec-
tively called prosody, are less affected by noise. Prosodic features cannot be derived
from the phoneme structure of human utterance and is also very difficult to replicate.
Even in speech recognition, human being makes use of prosodic information also to
discern the distinctness in the perceived sounds [33]. Also, in several LID task [24,
32], prosodic features have been used as a complementary information with vocal
tract information. Literature reveals that a vast population (almost half) of world lan-
guages is tonal [6, 13, 22]. For tonal languages, pitch is an important phonological
cue, and it changes in a regular manner within a tone bearing unit. Moreover, tone
has an effective correlation with other prosodic features like energy profile and dura-
tion [31]. However, the parameters of prosodic features proposed in [24, 32] are not
sufficient for tonal and non-tonal language discrimination task. Effective parameter-
ization of prosody can prove to be a viable way to improve the performance of the
pre-classification system even though prosody-only based LID system is still far from
the state-of the art cepstral feature-based LID system.

On the other hand, spectral features, namely MFCC, persist as a de facto feature
for any language identification system. It has also been identified to be quite useful for
carrying tone information [21, 37]. Also in two-stage language identification system,
MFCC persisted as the most useful features probably due to their admissible perfor-
mance. It has been proven to be quite useful for identification of Indian languages [42].
In [17], also, Jothilakshmi et al. reported a hierarchical LID system for nine Indian
languages using MFCC, MFCC along with delta and double delta coefficients (Δ and
Δ−Δ), and shifted delta coefficient (SDC) features, and noticed that GMM–UBM
model with MFCC along with Δ and Δ−Δ features provides the highest accuracy
among the other features. They also noticed the usefulness of two-level LID system for
identifying the languages from same origin. Also, in [2], authors usedMFCC and SDC
features to identify four under-resourced and closely related South-Asian languages.
They reported a good accuracy in identifying the languages from 3 s test utterance. In
another approach, Yin et al. [50] proposed a hierarchical LID system (HLID) where
a tree structure is followed to identify languages with higher accuracy. Here, instead
of using a two-level identification system, a test utterance is classified level by level,
depending on themost distinguishing information at each level. Also, they showed that
because of hierarchy, system performance improves upon not only baseline system,
but also likelihood score fusion-based system. However, the authors did not study the
impact of hierarchy-based approach for identification of closely related NE Indian lan-
guages. Moreover, in [2, 17, 50], researchers extract MFCC features from the frames
constituting an utterance. This type of representation may not be the most suitable
way to represent the tonal characteristics that generally lie at the syllable level. In
order to overcome these difficulties, this work proposes a syllabic-level representation
of MFCC features by fitting individual coefficient of the MFCC vectors across all
the frames of a syllable using Legendre polynomial. The existing literatures [2, 17,
21, 37, 42, 50] did not study the effectiveness of MFCC features for tonal/non-tonal
language classification and also, pre-classification-based LID task. This paper also
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studies the complementarity of MFCC features with prosody at syllable level for pre-
classification and proposes the use of MFCC with their Δ and Δ−Δ coefficients in
combination with prosodic features for pre-classification based LID task.

The systems [25, 32] process the language-specific information lying at differ-
ent levels (sub-segmental, segmental, and supra-segmental) using individual models
and then combine the scores to generate the final decision. In contrast, the proposed
syllabic-level MFCC representation enables us to explore feature-level combination
of spectral and prosodic features.

As per literature study, both generative and discriminative modeling approaches
have been used for LID task [23, 24, 32]. In this study, ANN, a discriminative clas-
sifier; GMM–UBM, a generative one, and i-vector based SVM, which exploits the
goodness of both the approaches, have been explored. In [23], researchers reported a
system where they divided the whole utterance into fixed length segments, and then i-
vector corresponding to that utterance is obtained from spectral and prosodic features
extracted from the segments constituting that utterance. This approach to segmen-
tation does not consider the actual syllable boundaries and may lead to inaccurate
representation of acoustic events within a segment. As tonal events are prominently
characterized at syllable level [28], features should preferably be extracted from syl-
lable or syllable-like units. This work thus explores using syllable-level framework
with all the three classifiers, namely ANN, GMM–UBM, and i-vector-based SVM.

In this paper, focus has been laid on closely related languages of NE India. The
ethnic mix of this region affects the languages that they share to communicate among
each other. The language diversity is one of the interesting phenomena in NE states
of India. The influence of one language on other as well the languages of bordering
countries is very high inNE India, and therefore, distinguishing among these languages
with a higher accuracy is difficult as compared to other distinct languages. In India,
available language resource hardly includes theNE Indian languages. This necessitates
the preparation of a database including NE Indian languages to be used for building a
good LID system, and this is quite a challenging task.

The contributions of this paper are as follows:

• An automatic tonal/non-tonal language pre-classification based LID system has
been proposed for closely related NE Indian languages without using any phonetic
information.

• Amore effective way of parameterization of prosodic features has been proposed so
that it helps boost the performance at pre-classification stage as well as individual
language identification stage. Syllable-level representation of MFCC features using
Legendre coefficients has been proposed. Complementarity of MFCC and prosodic
features extracted at syllable level, and also their combination has been explored
for pre-classification based LID task.

• The syllables are known to be the most appropriate tone bearers for tonal lan-
guages. This work therefore explores using syllable-level feature representation for
tonal/non-tonal pre-classification based LID system.

• NIT Silchar language database (NITS-LD) has been prepared, covering seven NE
Indian languages to carry out our experiment. The seven languages are Assamese,
Bengali, Indian English, Hindi, Manipuri, Mizo, and Nagamese. The data have
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been collected from All India Radio news, and a total of 4 h of data for each of the
languages is considered. These languages are closely related, and speakers from the
regions are usually multilingual.

• A comparative performance analysis has been done for pre-classification and
individual language identification among three different classifiers, namely
GMM–UBM, ANN, and i-vector based SVM using syllable-level features. Experi-
ments have been carried out for the combination of ANNmodel in pre-classification
stage and each one of the threemodels in the individual language identification stage
to obtain the best possible performance of the system.

The rest of the paper is organized as follows: Section 2 describes the proposed
system for language identification. Section 3 discusses about the development of the
language identification system to perform the experiments. Experimental results and
analysis of the proposed system are given in Sect. 4, and Sect. 5 concludes the work
by mentioning the future works.

2 Proposed System for Language Identification

This section describes the workings of the proposed pre-classification-based LID sys-
tem. It consists of a tonal/non-tonal language pre-classification stage, followed by two
parallel modules in the second stage, one for identification of tonal languages and
the other for non-tonal languages. To make performance analysis, experiments have
been carried out considering three different cases, namely Case I, Case II, and Case
III. Case I represents the baseline system, where language identification is done in a
way similar to a conventional LID system. Here, in training stage, either a separate
model (L1, L2, …, LM ) is built for each of the M number of languages, or a single
discriminative model, like a neural network, is trained to distinguish among different
languages. At testing, identification is done by comparing likelihood scores of the trial
utterancewith respect to the all different models, or simply based on the decision of the
discriminative model. The front-end features considered for this system are prosody+
MFCC and its Δ and Δ−Δ coefficients.

In Case II and Case III, firstly, languages are pre-classified into tonal and non-tonal
categories, and then, individual languages are identified at the next stage. Further, for
Case II, irrespective of whether the test trial gets correctly categorized or not at the
pre-classification stage, it is processed to the next stage of classification. However, in
Case III, only the correctly categorized test trials (separated manually) are processed
by the individual language identification stage.

In Case II and Case III, combination of prosody and MFCC is used as front-end
feature at pre-classification stage, and the combination of prosody, MFCC, and its Δ

and Δ−Δ coefficients is used at individual language identification stage. The block
diagram representations of Case II and Case III are shown in Fig. 1.

Figure 2 illustrates the two-stage LID system, highlighting the distinct features
used at the different stages. Here, L1 (Assamese), L2 (Bengali), L3 (Indian English),
L4 (Nagamese), L5 (Hindi), L6 (Mizo), and L7 (Manipuri) are the languages involved
in the experiment. The details of the pre-classification module are in Sect. 2.1.
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Fig. 1 Block diagram representation of the proposed system
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Fig. 2 Use of different features at different stages of the proposed system

2.1 Tonal and Non-tonal Language Pre-classification System

Block diagram representation of the language pre-classification system using prosodic
and spectral features extracted from syllables of the speech signal is shown in Fig. 3.
Syllables can be treated as context dependent unit, and also it has the ability to capture
some co-articulation which is useful for language discrimination [20]. Syllables, in
general, follow a common structure like vowel (V ), vowel consonant (VC), consonant
vowel consonant consonant (CVCC), and vowel consonant consonant (VCC). In case
of Indian languages, most of the syllables are CV types [18]. Sometimes, the tonal
properties can be associated with the onset or/and offset of the syllables [5, 47]. In



2272 Circuits, Systems, and Signal Processing (2019) 38:2266–2296

In
pu

t s
pe

ec
h

si
gn

al
Calculation of

pitch and
energy

contours

Syllable
segmentation

VOP
detection

Non-speech
frames
removal

Smoothening
of pitch and

energy
contours

Association of
pitch and energy

contours with
syllables

Parameterization
of pitch and

energy contours
and duration

Duration
calculation

Contour
modeling /

parameterization

Non-speech
frames
removal

Spectral
features

extraction

Id
en

tif
ie

d
l a

ng
ua

ge
s

In
pu

tt
o

cl
as

si
fie

rs

C
om

bi
ni

ng
pa

ra
m

et
er

s

Fig. 3 Block diagram representation of the tonal and non-tonal language pre-classification module

order to get prosodic features corresponding to each syllable-like units, firstly, the pitch
and energy contours of whole utterances are obtained. In this study, pitch is calculated
through autocorrelation method using robust algorithm for pitch tracking (RAPT)
algorithm [43]. It detects the unvoiced frames of an utterance of the speech signal.
Energy values calculated from each 10 ms frame of an utterance constitute the energy
contour of that utterance. The contours are then smoothened using fifth-order median
filter, after which the identified vowel onset points (VOPs) [30] are associated with the
smoothened pitch and energy contours. The pitch and energy contours between every
consecutive VOPs are obtained and then parameterized to obtain the feature vectors.
However, the contours whose lengths are less than 50 ms are not considered.

Here, duration of each syllable has been calculated by considering the number
frames between two consecutive VOPs. Duration is then parameterized by rhythm
parameter and is taken as another feature. Spectral features are then extracted from
the overlapping frames of each syllable. The feature vectors for all the frames corre-
sponding to a syllable are stacked together. In the next step, voiced/unvoiced algorithm
is used to identify the frames where speech is present and features corresponding to
only the voiced frames are retained. In this experiment, contours corresponding to
each dimension of the spectral features for a syllable are parameterized. Parameters
of prosodic and spectral information, thereby obtained, are then concatenated to form
the final feature vector of a syllable. These combined feature vectors are then fed into
the classifiers.

3 Development of Language identification System

In this work, a pre-classification based language identification system has been
proposed for Northeast Indian languages. Generally, a language identification sys-
tem consists of two important components: feature set and classifiers. This section
describes the features and classifiers considered in this work.

3.1 Extraction and parameterization of different features for language
identification

Here, pitch contour, energy contour, duration of the speech segments, and MFCC are
used as front-end features for the two-stage LID task. Different parameters of these
features are discussed in this section.
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3.1.1 Parameterization of Prosody for Language Identification

Existing parameters for tonal and non-tonal language classification:
The existing parameters of prosody, such as,A1:mean pitch [44],A2: pitch changing

speed [44], A3: pitch changing level [44] are calculated from each syllables of the
speech signals. For utterance-level analysis, these parameters are obtained using the
same process as discussed in paper [44].

Proposed prosody parameters for tonal/non-tonal pre-classification based LID sys-
tem

• Parameterization of pitch contour

In this work, following parameters are used to parameterize the pitch contour.

A4: Amplitude tilt for pitch contour (F At).
A5: Duration tilt for pitch contour (FDt).

Level tones, namely the high (H) or low (L) tones, and contour tones, such as rise,
fall, fall–rise or rise–fall tones, dictate the lexical meaning in case of tonal languages.
However, in case of non-tonal languages, the lexical meaning does not change with
change of pitch contours. Besides, the different tonal languages have their own fixed
set of tones. For example, Mizo language is known to have four tones, Manipuri has
two tones, Mandarin has four tones, and Vietnamese has six tones. These contours can
therefore help characterize the different languages. To represent the dynamics of these
contours, generally, amplitude tilt (A5) and duration tilt (A6) parameters are used [1].
These quantities are defined as:

F At � |Ar| − |Af|
|Ar| + |Af| (1)

F Dt � |Dr| − |Df|
|Dr| + |Df| (2)

where Ar and Af are the rise and fall and fall of the pitch contour, respectively, with
respect to the peak of the contour. Similarly, Dr and Df are the duration corresponding
to rise and fall, respectively.

A6: Change in pitch (�F0)

Several researchers have investigated the relation of tone height (height of the peak
of the pitch contour) with lingual articulation and the jaw’smovements and their role in
expressing different degrees of emphasis. In case of non-tonal languages, pitch can be
freely varied, while, in a tonal language, pitch is phonemically contrastive. Therefore,
tone height which will be different for tonal and non-tonal languages and hence can
be used as a feature for this system. It is estimated from the difference between the
pitch values of peak (F0p) and valley point (F0v)

�F0 � F0p − F0v (3)

A7: Distance of peak of pitch contour with respect to VOP (Dr)
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Literature shows that [32] the alignment of the peak of the pitch contour has bearing
on the perceptual prominence [31]. For non-tonal languages, like English, Greek, the
peak is consistently aligned with the onset of the accented syllable, while, for tonal
languages, likeMandarin, it is aligned to the offset of the tone bearing syllables. There-
fore, peak locations of the pitch contour with respect VOPs (Dr) may help characterize
different languages.

A8: Distance of 60% of the peak value of the pitch contour with respect to VOP

Researchers observed significant effect of place features of consonants and the
manner of articulation of consonants on the tonal onset for languages, like Dimasa
and Mizo, of the Tibeto-Burman family [38]. And the effect permeates to a great
extent into the contour of the following tone. In another study, it has been noticed that
the tonal onset can shift due to the interaction between tones and segments (syllables)
[28]. This characteristic behavior of languages can help in distinguishing one language
from another. It has been experimentally found that the extent to which these effects on
tonal onset, propagate into the segment can be roughly approximated by the location
of 60% of the peak value of the pitch contour. This work therefore proposes to use the
distance of the location with 60% of the peak value, with respect to VOP, as a feature
for language classification.

• Parameterization of energy contour

Stress has been assumed to be present up to a certain level in all languages. Some
syllables are considered as stressed syllables since they are in some scene perceptually
more prominent than others. Stress is parasitic; it can be produced by the phonetic
correlates of other phenomena, like pitch and duration. In most of the cases, syllables
with higher pitch variation and longer duration are considered as the stressed syllables.
The way stress arises in the speech signal is vastly language dependent, and it is
quantifiedby the energyparameter. In case of tonal languages especially,where register
tones occur, a direct correlation between tone and stress exists [31]. However, for most
of the tonal languages, stress ismuch less obvious [11]On the other hand, for non-tonal
languages, like English, stress is obvious. So, stress is yet another language-dependent
trait and can be used to complement the pitch contour cues. Stress is calculated from
the energy values of all the voiced frames present within a syllable. Six parameters
have been used to quantify the stress characteristics in this work.

A9: Mean energy

Mean energy is calculated by averaging the energy values of the energy contour
corresponding to the syllable.

A10: Change in log energy

Using the quantitative measure quantifying stress characteristics, described in [24],
log energy has also been considered in this work. Log energy is more akin to human
perception of stress variation.

A11: Energy changing speed

As similar to pitch contour, the energy contour of a syllable is also found to charac-
terize languages [35]. Literature study reveals that that there is an interaction between
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tone and stress for register tone languages or the languages which contain level tone
and contour tone [31] like StandardChinese language. Also, in case of tonal languages,
it is observed that stress does not necessarily coincide with high tone. Hence, like pitch
changing speed, energy changing speed may so be used to characterize languages. It
is estimated according to the equation:

EV j �
N−1∑

i�1

|Ei+1 − Ei | (4)

Here j represents the index of each segment;N represents the number of frames present
in the segment, and E1, E2, …, EN represent the energy values of each frame within
a segment. The normalized energy changing speed is given by:

EV j � EV j

mean energy × number of voiced frames
(5)

A12: Energy changing level

The energy changing speed is a local parameter of energy contour and does not
provide the gross level change across a syllable. Therefore, to model the global nature
of speed change, another parameter called energy changing level is introduced and is
given by

(
σ̌e

)
j � σe j

mean energy × number of vowels
(6)

where σe j is the standard deviation of jth segment (syllables),
(
σ̌e

)
j is the normalized

energy changing level. Energy changing level is a global parameter, and it can be used
to discriminate tonal languages from non-tonal.

A13: Amplitude tilt for energy contour (E At)

The dynamics of the energy contour are usually defined using tilt parameters.
Amplitude tilt for energy contour is calculated as follows:

E At � |Aer| − |Aef|
|Aer| + |Aef| (7)

Here Aer, Aef are the rise and fall point of the energy contour, respectively, with respect
to the peak value of the contour .

A14: Duration tilt for energy contour (EDt)

Duration tilt can also be used for quantitative representation of the energy contour
dynamics. It can be expressed as per the equation:

E Dt � |Der| − |Def|
|Der| + |Def| (8)

Here Der and Def are the duration for rise and fall, respectively.
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A15: Distance of peak of energy contour with respect to VOP

As similar to the case of pitch, the parameter defined by the distance of the peak of
the energy contour with respect to VOP is also used, in this work, as a possible cue for
language classification. It may be reasoned that such a parameter may be useful, given
that the stress and pitch are correlated in case of certain languages and uncorrelated
in other cases.

A16: Distance of 60% of the peak value of the energy contour with respect to VOP

Going by the same reasoning of language-dependent correlation between stress
and pitch, yet another parameter is introduced, that is defined in a way, similar to A9
parameter of pitch contour. Here, the distance of the location with 60% of the peak
value of the energy contour with respect to the VOP location is calculated.

• Parameterization of duration

In this work, two parameters have been used to parameterize the duration characteris-
tics

A17: Syllable duration

Tone is the phonologically contrastive use of pitch within a segment or a syllable.
Tonal contrasts are realized not only by differences in pitch contour, but also by sys-
tematic differences in duration [19]. From studies, it can be observed that dynamic
tones tend to be confined to phonetically long sonorous segments [3]. Also, the vowels
on low tones are longer than those on high tones, and on the contrary, vowels on rising
tones are longer than those on falling tones [14]. Thus syllable duration has character-
istic information about tonal languages and can therefore be used as a discriminating
cue for tonal and non-tonal language classification task. In this experiment, syllable
duration is calculated by counting the total number of frames present in a syllable.

A18: Ratio of voiced region duration to total segment duration (Rhythm)

Here, rhythm of each syllable is represented as the ratio of voiced region duration
within a syllable to the total syllable duration. This is approximated by the ratio of
duration of vowels to the duration between two consecutive vowels are used as rhythm.
Mean number of vowel qualities [22] are different for tonal and non-tonal languages.
Vowels can be classified as high/low or close/open and duration of each type of vowels
will be different for tonal and non-tonal languages. Hence, rhythm can be used as a
distinguishing parameter for this system.

A19: Vowel counts

Number of vowel inventories of tonal languages is significantly different from non-
tonal, and hence, this can be used as an important parameter in this classification
task [22]. Vowel counts are obtained by counting the number of VOPs present in the
analysis units (utterance). For a syllable, vowel count would be always equal to 1.
Therefore, use of this parameter is insignificant for a syllable. VOPs can be obtained
for a spontaneous speech signal by using VOP detection algorithm of [30].

Though some the above-mentioned feature parameters (A4, A5, A6, A7, and A10)
have previously been used in tasks of language identification [24], effect of these
parameters for discriminating tonal/non-tonal languages has not been studied so far.
This work analyzes the effect of these parameters for tonal and non-tonal language
pre-classification-based LID task.
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3.1.2 Contour Modeling/Parameterization of Spectral Features

MFCC features represent human auditory perceptions for languages and are a pre-
dominantly used feature for LID task. MFCC features are known to represent the
vocal tract information. Researchers have observed that the vocal tract changes asso-
ciated with different tones of languages, like Mandarin and Vietnamese, have strong
correlation with MFCCs [12]. Literature study [48] also suggests that proper recogni-
tion of tones depends not only upon the tone production process but also on the human
perception ability. And as MFCCs model the human auditory perception, it serves
as a suitable feature for the system. Besides, MFCCs have complementary informa-
tion with respect to pitch [21], which is known to be a robust feature for language
identification.

Extraction of MFCC features is done using standard algorithm which is explained
in [40]. In addition to MFCC features, Δ and Δ−Δ coefficients are also explored.
In this experiment, the feature vectors for all the frames of a syllable are stacked
together, and the contour corresponding to each cepstral coefficient is modeled as a
linear combination of Legendre polynomials according to Eq. (9)

f (t) �
M∑

i�0

ai Pi (t) (9)

where f (t) is the contour being modeled, Pi(t) is the ith Legendre polynomial and
coefficient ai represents a characteristic of the contour shape [23]; a0 corresponds to
the mean, a1 to the slope, a2 to the curvature, and higher-order represents more precise
detail of the contour. Here, Legendre polynomials of order four lead to 35-dimensional
MFCC feature and 105-dimensionalMFCC+Δ +Δ−Δ features for a syllable. In this
study, 35-dimensional MFCC features are used at pre-classification stage and 105-
dimensional MFCC+Δ +Δ−Δ are used at individual language identification stage.
Fitting of Legendre polynomial to the 1st coefficient of MFCC is shown in Fig. 4. In
the present study, the parameters representing prosody and MFCC are concatenated
in a row to obtain the combined feature vector of a syllable and also other analysis
units.
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Table 1 Dimensions of different feature vectors extracted of different analysis units

Analysis units Prosody MFCC MFCC+Δ +
Δ−Δ

Prosody+
MFCC

Prosody+
MFCC+Δ +
Δ−Δ

Utterance 5 (A1, A2, A3,
A17, A19)

35 – 40 –

Syllable 18 (A1–A18) 35 105 53 123

Disyllable 36 (concatenating
the prosodic
parameters of
two consecutive
syllables)

70 – 106 –

Word 54 (concatenating
the prosodic
parameters of
succeeding and
preceding
syllables along
with the present
syllable)

105 – 159 –

Here, each of the parameters represents a dimension of the feature vector. Dimen-
sions of different feature vectors are shown in Table 1.

3.2 Database Used in Language Identification

OGI-MLTS (OGI-MLTS) speech [26] corpus contains spontaneous and fixed-
vocabulary utterances of 11 languages:Hindi, Farsi, French, English,German,Korean,
Japanese, Spanish, Mandarin Chinese, Tamil, and Vietnamese. Japanese language has
not been used in this experiment. The utterances were spoken by individual speakers
of each language over telephone line, and the speech was sampled at 8 kHz. This
set includes two tonal languages (Mandarin and Vietnamese) and nine non-tonal lan-
guages. In this experiment, 10 languages (except Japanese language) have been used
to evaluate the system performance. Since the OGI-MLTS database includes only two
Indian languages (Hindi and Tamil), NITS-LD has been prepared to study identifi-
cation of Indian languages. Table 2 shows the details of the NITS database. In this
database, two languages (Manipuri andMizo) are tonal and the rest five are non-tonal.
The data were collected from AIR news archives. The speakers of AIR news chan-
nels are highly professional and matured. Hence the speech samples collected from
this news archives are well articulated and are standard in terms of pronunciation and
speaking rate.

The database collected from AIR news archives has some inherent problems, like
(i) the number of speakers for individual languages is less, and especially for some lan-
guages like Nagamese, the number is noticeably small; (ii) there could be instances of
overlapping speech samples fromdifferent speakers; and (iii) news headlinesmay have
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Table 2 Different features of OGI-MLTS database and NITS-LD

Characteristics OGI-MLTS database NITS-LD

Number of languages 11 7

Channel characteristics Different Similar

Channel conditions Noisy Non noisy

Types of speech spontaneous Scripted

Recording environment of data realistic Studio

Sampling rate 8 kHz 8 kHz

Speakers per language 90 speakers for each language
present in the database

Assamese (As)-50, Bengali
(Be)-40, Indian English
(En)-21, Hindi (Hi)-20,
Manipuri (Ma)-13, Mizo
(Mi)-8 and Nagamese
(Na)-6

back ground music. Hence, proper care has been taken while preparing the database.
Comparison between OGI-MLTS database and NITS-LD is shown in Table 2.

3.3 Feature Modeling for Language Identification

Feature modeling has been done using different approaches: generative, discrimina-
tive, and their combination. Particularly, GMM–UBM [34, 36, 41], ANN [10, 49],
and i-vector based SVM [7, 8] have been used in this study. Here, i-vectors of our
training data are normalized by within-class covariance normalization (WCCN) [16]
technique to generalize the linear kernel of SVM classifier.

3.4 Data Normalization

Features extracted fromdifferent utterances of different speakers need to be normalized
to avoid speaker variation, channel variation, etc. In this study, the data are normalized
through z-normalization [27] for GMM–UBM and i-vector based SVM classifiers. In
case of ANN classifier, each parameter of the feature vectors of the training and testing
data is normalized to the range of −1 to +1.

4 Experimental Results

4.1 Experimental Setup

All the experiments described in this paper have been performed on NITS-LD and
OGI-MLTS databases. Training data in case of NITS-LD consists of speech from
seven languages, each having 2–3 h of data. In all, there are 14 h of data—8 h data
from non-tonal languages and 6-h data from tonal languages. OGI-MLTS database’s
training set is constituted by 10 h of data—6 h data from non-tonal languages and 4 h
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data from tonal category. A syllabic-level approach has been adopted in this work.
Fourteen hours of NITS-LD training data amounts to 134,400 syllables, while 10 h
of OGI database results in 95,760 syllables. Since the performance of the language
identification system varies greatly with change in the duration of the test utterances,
the performance has been analyzed for utterances of three different durations, namely
30 s, 10 s, and 3 s. Here, 200 test utterances (100 utterances for tonal language and
100 utterances for non-tonal language) from both the databases are used to analyze the
performance of the system. For all of the experiments presented in this paper, training
and testing data have been kept mutually exclusive.

The UBM for GMM–UBM and i-vector based SVM systems is built using data,
in part from NITS-LD and OGI-MLTS databases. Data from 17 languages, each of
1-h duration, are used for this purpose. These data are non-overlapping with either the
training or the testing data. An utterance constituted of different number of syllables.
Given a speech utterance with N syllables, i-vectors are computed with a context size
of L syllables. The Baum–Welch statistics have been computed on the sequence of
syllables, starting from Q−L to Q +L for obtaining i-vector for the Qth syllable. The
corresponding sequence of i-vectors may be denoted byw � [w1, w2, …, wN ]. The
i-vector extractor follows the total variability space model, which is given by [9]

s � m + T w (10)

where s is a supervector obtained for the speech segment with respect to UBM. m is
the mean value of supervectors, T stands for the total variability subspace, and w is
the compact form i-vector representation. A context size of L �3 syllables, with a
sliding window of 7 syllables has been used with a shift step of 1 syllable. As i-vectors
are extracted for short sequence of feature vectors, the total variability subspace too
is trained on similar short segments.

Figure 5 illustrates the pre-classification based LID system framework. It has a
pre-classification stage for tonal/non-tonal classification based on score comparison.
It is followed by the second stage, where individual language identification is done by
finding the top-scored language.

Four key aspects are addressed in this paper by conducting systematic experiments.
Performance analysis of the system for different features has been carried out to
study their discriminative power. Also the effectiveness of the proposed parameters
of prosody for this system has been studied. Here, existing parameters of prosody are
denoted by F1, existing+proposed parameters of prosody are denoted by F2, MFCCs
are denoted by F3, existing+proposed parameters of prosody+MFCCs by F4, and
existing+proposed parameters of prosody+MFCC+Δ +Δ−Δ by F5. Performance
analysis of different models has been done to find the most suitable model for pre-
classification stage and also to the most suitable combination of two different models
for this pre-classification-based language identification system. Experimental analysis
of different features extracted of different analysis units of the speech sample have
been performed to analyze the impact of considering syllables as basic units. Several
experiments have been carried out to show the importance of pre-classification stage
in LID system.
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Fig. 5 Pre-classification-based LID system framework showing all intermediate stages of processing

4.2 Experimental Results of Pre-classification Stage

4.2.1 Syllable-Level Performance

In this section, performances of all the three classifiers are analyzed using F1, F2, F3,
and F4 features. The features are extracted from syllabic units of the speech signal. In
case of GMM–UBMmodeling technique, performance of a system is greatly affected
by the change in the number of Gaussian mixtures. Therefore, experiment has been
performed for different Gaussian mixtures (2, 4, 8, 16, 32, 64, and 128), and it is
observed that for F1, 2; for F2, 32; for F3, 128; and for F4, 256 result in the highest
individual accuracies. Here, the likelihood scores obtained for all of the syllables of
a test utterance are averaged to compute the score for that utterance. The decision is
taken in favor of the top-scored language. The final accuracy of a language is calculated
in terms of the percentage of correctly identified trials.

Similarly, performance of any system using ANN model varies with the different
network structures of ANN. Therefore, several experiments have been carried out with
different network structures, and it is observed that 5L-8N-1L for F1, 18L-29N-8N-
1L for F2, 35L-50N-12N-1L for F3 and 53L-82N-35N-1L for F4 provide the highest
individual accuracies for NITS-LD. Here maximum number of epochs has been set at
500. Tan-sigmoid transfer function is used in the present study. In case of ANN, again,
the output scores obtained from neural network for all the syllables of a test utterance
are averaged to obtain the score for that utterance.

When modeling of the system is done using i-vector based SVM, performance
of that system depends upon two major parameters: number of Gaussian mixtures
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Table 3 Accuracies of different languages of NITS-LD at pre-classification stage for GMM–UBM classifier

Features Test
data (s)

Accuracy of different languages at pre-classification stage (%)

As Be En Na Hi Mi Ma Average
accu-
racy�∑N

j�1 L j

N

F1 30 53.6 70.2 49 64.1 93.2 57 55.8 64

10 47 63.8 41.2 59 86 50.2 48 57.2

3 40.2 57 35.8 51 80.7 46 42.1 51

F2 30 56.5 76 58.1 66.67 94 60 60 67

10 48.6 70.7 49.8 62.8 84.6 57.6 53.1 61

3 47 68 46.4 61.7 73 55.8 51.2 57.5

F3 30 77 88.8 67.1 76.6 90.8 70.8 65.4 77

10 72.3 85.8 65.1 72.6 86.8 69.8 64.4 73.9

3 66.8 82.5 62.7 64.8 81 66.7 61.6 69.8

F4 30 77.8 89.4 68.2 78.1 96.3 71 66.2 78.9

10 74.6 88.8 67.8 76.9 89.9 69.9 65.8 76.3

3 68 83.4 63.8 71 83 67.7 60.4 71

and total variability (TV) matrix dimension. Therefore, a comparative performance
analysis has been made using different values for these two parameters. Experimental
results show for F1, 16 Gaussian mixtures, 100-dimensional TV matrix, and linear
kernel of SVM; for F2, 32 Gaussian mixtures, 100-dimensional TV matrix, and linear
kernel of SVM; forF3, 128Gaussianmixtures, 100-dimensional TVmatrix, and linear
kernel of SVM; forF4, 256Gaussianmixtures, 200-dimensional TVmatrix, and linear
kernel of SVM, provide the highest individual accuracies.

Here, scores of SVMmodel is transformed into posterior probabilities using optimal
sigmoid transformation, and then scores of all the syllables constituting a test utterance
are averaged to obtain the score of that utterance. Accuracies of GMM–UBM, ANN,
and i-vector based SVM model for the pre-classification task are given in Tables 3, 4,
and 5, respectively. Average accuracies corresponding to each feature are calculated by
using the formula which is given in Table 3. Here N is the total number of languages
present in the individual database (NITS-LD, N �7; OGI-MLTS, N �10) and Lj,
accuracies of individual language. Some notable observations made from Tables 3, 4,
and 5 are given below:

• Proposed parameters of prosody show the improvements over the existing param-
eters for all the three classifiers. The improvements are: 3%, 3.8%, and 6.2% for
GMM–UBM, 3.4%, 3.7%, and 10% for ANN, and 7.4%, 11.9%, and 9.1% for i-
vector based SVM, for 30 s, 10 s, and 3 s test data, respectively. Therefore, it may
be concluded that better parametric representation of the prosodic characteristics
may have helped to improve the performance of the pre-classification module.

• F3 performs better than F2.
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Table 4 Accuracies of different languages of NITS-LD at pre-classification stage for ANN classifier

Features Test
data (s)

Accuracy of different languages at pre-classification stage (%)

As Be En Na Hi Mi Ma Average
accu-
racy�∑N

j�1 L j

N

F1 30 55.8 69.3 90.1 77 86.7 39.3 37.8 65.8

10 50.7 64.8 82 71.8 81 36 34 60

3 42 56.7 73.9 60.7 71.2 30.8 28.6 52

F2 30 57.2 75.9 98.9 82.1 90 41 40 69.2

10 49.4 69.2 92.1 76.5 82.2 37.2 36 63.7

3 47.5 68.8 88.7 75.6 80.3 35.7 34.6 62

F3 30 74.2 82.9 95.9 85.5 88.9 56.3 55.2 76.9

10 72.8 79.8 91.6 82 87.8 55.6 54 75

3 67.7 75.5 85.8 79.8 82 51.2 51 70.4

F4 30 77.8 85 96.2 89.6 90.3 60.8 60.3 80

10 74.4 81.8 93.6 82.8 88.6 57.7 56 76.6

3 68 77.8 89 80.3 83.6 53.5 52.8 71.1

Table 5 Accuracies of different languages of NITS-LD at pre-classification stage for i-vector based SVM
classifier

Features Test
data (s)

Accuracy of different languages at pre-classification stage (%)

As Be En Na Hi Mi Ma Average
accu-
racy�∑N

j�1 L j

N

F1 30 48.2 67.1 44.3 64.8 48.1 52.6 73 56.8

10 42 65.4 40.1 59 44 46 68.2 52.1

3 37 59.3 59 54.8 39 41.6 62.4 50

F2 30 56 79.8 54.1 73.6 58.3 60.1 82.5 66.3

10 54.1 77 50.1 72.6 56.3 58.1 81.5 64.2

3 50 75 45 66.67 52 45.3 80 59.1

F3 30 66.7 81.6 59.8 76.4 65.8 66.8 84.6 71.6

10 55.8 78 50.8 71.5 55.2 59.1 80.5 64.2

3 54 78.8 49.6 72 54 58.9 81 64

F4 30 68.6 83.6 61.7 78.6 66.67 68.6 85.8 73.4

10 56.8 79.2 52.1 73.8 58.8 64.8 82 66.7

3 55.1 79 50 72.7 54.6 60 82.1 64.8
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(a) (b) (c)

Fig. 6 ROC curves for a GMM–UBM, b ANN, c i-vector based SVM classifiers at pre-classification stage

• F4 provides the highest accuracy.
• In case of GMM–UBM and ANN, performances for the languages of non-tonal
category are better than that of the tonal category. However, performance of the
languages of tonal category is better than that of non-tonal language category for
i-vector based SVM classifier.

• 30 s duration test utterance provides the highest accuracy, followed by 10 s and
then 3 s. This can be explained as, in a syllable-level implementation, every syllable
of an utterance may not give appropriate score for making the right classification
decision, due to anomaly that could creep in at any stage of the identification process
due to various reasons, like spurious VOP detection, missed VOPs and non-perfect
removal of silence frames. When the utterances are short and the syllables are few,
the proportional presence of such syllables becomes more influential leading to
substantial degradation in the performance. And their influence is much reduced
as the number of syllables increase with the increase in the duration of the test
utterance.

• ANN outperforms all other classifiers considered in this study. GMM–UBM gives
the next best accuracy, followed by i-vector based SVM.

Receiver operating characteristics (ROC) curves for three different classifiers using
F4 features are shown in Fig. 6a–c. It represents the (1-specificity) versus sensitivity
relation across the range of test trial scores. It can be observed that 30 s utterance
score is high in terms of sensitivity and specificity across all the three classifiers. The
10 s utterance results in the next best readings, followed by 3 s utterance. It may also
be observed that, in case of i-vector model, the effect of test data duration is more
prominent, as the plots are farther apart from one another. This may be explained by
the fact that, i-vectors extracted of shorter speech segments tend to be noisy [29] and
hence affect the performance adversely.

Same experiments have been performed on OGI-MLTS database. Accuracies
obtained for GMM–UBM, ANN, and i-vector based SVM classifiers for OGI-MLTS
database using prosody, MFCC, and their combination are shown in Fig. 7a–c. For
ANN, it is observed that 18L-29N-10N-1L for F2, 35L-50N-12N-1L for F3, and
53L-82N-35N-1L for F4 features leads to their respective best performances. It can
be observed that for proposed parameters of prosody, GMM–UBM shows 4%, 6.5%,
7.1%;ANN shows 3.8%, 2.8%, and 2.8%; i-vector based SVM shows 6.4%, 6.6%, and
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Fig. 7 Performance of a GMM–UBM classifier, b ANN classifier, c i-vector based SVM classifier at pre-
classification stage for different features obtained from the speech sample of OGI-MLTS database

9% improvements for 30 s, 10 s, and 3 s test data, respectively. Here, ANN performs
the best, followed by i-vector based SVM classifier and then GMM–UBM classifier.
F4 features and 30 s test data results in the highest accuracies.

The specific observations made from Tables 3, 4, 5, Fig. 7a–c are given:

• Proposed parameters of prosody show significant improvement over the existing
parameters for all the classifiers. Improvement is observed for both NITS-LD and
OGI-MLTS databases.

• F4 features provides the highest accuracy for pre-classifying languages of both
NITS-LD and OGI-MLTS database.

• ANN model outperforms the other models for both NITS-LD and OGI-MLTS
databases. Thus it can be inferred that ANN is able to model more language-specific
information than other two models.

• All the classifiers for NITS-LD either perform better for OGI-MLTS database or
give comparable performances. Thismay be attributed to the fact that, the number of
target languages are less in NITS-LD as compared to OGI-MLTS database, and the
collected speech samples are noise free (whereas in OGI-MLTS database, collected
data are noisy).

Another experiment has been performed using F5 features for pre-classification
task. It is observed that the performance improvement obtained in the pre-classification
module is not so significant after inclusion of Δ and Δ−Δ features, considering the
cost of increased dimension of the feature vectors. Therefore, Δ and Δ−Δ features
have not been considered in the pre-classification module.

4.2.2 Comparison Among the Performances for the Features Extracted of Different
Analysis Units of the Speech Signal

An attempt has been made to analyze the performance of the system, built using F1,
F2, F3 and F4, extracted of different analysis units, viz., disyllables, words, or the
whole utterance. To obtain the utterance-level performance of the system, features
extracted of the whole utterance of the sample are used. Dimensions of the feature
vectors obtained from utterance are given in Table 1. Since for 30 s or 10 s duration
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Fig. 8 Comparative analysis of the performances for the features extracted of different analysis units of
NITS-LD using a GMM–UBM classifier, b ANN classifier, c i-vector based SVM classifier

utterance, calculation of tilt parameter may give erroneous results, and therefore, only
the existing parameters (F1) are explored. Performance of the system is also analyzed
for the features extracted of disyllable and word units of the speech samples. The
extracted features are then fed into three above-mentioned classifiers. Dimensions
of feature vectors corresponding to disyllable and word units are given in Table 1.
By utilizing F1, F2, F3, and F4 of different analysis units, performances of all the
three classifiers for NITS-LD are shown in Fig. 8a–c. Table 6 present the classifiers’
configurations that resulted in highest accuracies.

Table 7 shows the performances of all the classifiers in pre-classifying the languages
of OGI-MLTS database when features are extracted of utterance, syllable, disyllable,
and word units. It can be observed that features extracted of syllables are the most
useful cues for discriminating tonal and non-tonal languages of both the database.
The tones in languages are coded at syllabic level, rather than utterance. Therefore,
tone parameters pertaining to individual syllables perform the best. Figure 8a–c and
Table 7 also show that the performances of all the classifiers are poorer for disyllables
or words as compared to syllables for both the databases.

Itmay be reasoned that sincemost of thewords of the tonal languages ofOGI-MLTS
database (Mandarin Chinese and Vietnamese) [15] and of NITS-LD (Manipuri and
Mizo) aremonosyllabic in nature, the syllable-level features give the best results for all
the classifiers. Therefore, syllables are opted as basic units for subsequent experiments.
In pre-classification stage, ANN outperforms the other model. Therefore, to perform
the two-stage language identification, ANN is adopted for pre-classification stage.

4.3 Experimental Results for Individual Language Identification

In order to show the effectiveness of pre-classification module on language identifi-
cation, three different approaches have been adopted. In Case I, individual languages
are identified without pre-classifying the languages into different categories. In Case
II and Case III, pre-classification of languages are done before identifying individual
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Table 6 Different parameters of three different classifiers that provides the maximum accuracies for utter-
ance, disyllable, and word-level analysis at the pre-classification stage

Databases used Classifiers used Analysis level Parameters of the three different classifiers
(Gaussian mixture numbers/network
structure/Gaussian mixture numbers, TV
dimensions)

F2 F3 F4

NITS-LD and
OGI-MLTS
database

GMM–UBM Utterance 2 (for F1
features
only)

8 16 (for F1 +F3
features)

Disyllable 16 32 128

Word 32 64 128

ANN Utterance 5L-8N-1L 35L-50N-1L 40L-60N-1L

Disyllable 36L-50N-1L 70L-105N-
30N-1L

106L-150N-
50N-1L

Word 54L-85N-1L 105L-160N-
55N-1L

159L-185N-
56N-1L

i-vector-based
SVM

Utterance – – –

Disyllable 32, 200, linear
kernel

64, 200, linear
kernel

128, 200, linear
kernel

Word 32, 250, linear
kernel

128, 200, linear
kernel

256, 250, linear
kernel

Table 7 Performances of the three classifiers forOGI-MLTSdatabasewhen features are extracted of different
segments

Classifiers Accuracy of different classifiers for the features extracted of different segments (%)

Utterance Syllable Disyllable Word

30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s

GMM–UBM 62 55.1 54 71.9 65 65.8 69.1 65.8 65 64.8 66.6 63.6

ANN 63.8 57.9 53.2 75.3 72.8 69.2 72.2 61.2 60.8 73.6 68.4 65.2

i-vector-based
SVM

– – – 72.3 69.2 68.2 69.2 62.1 59 67 61.6 59.8

languages. Scoring and decision making are done in a similar way as in the pre-
classification stage.

4.3.1 Individual Language Identification Without Pre-classification

In this case, pre-classification module is absent, and hence individual languages are
identified like as in a conventional LID system. Here, in training stage, separate mod-
els of each language are trained using the front-end feature vectors. Experimental
results obtained for this case are given in Table 8. After analyzing the perfor-
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Table 8 Performance of Case I for NITS-LD

Without
pre-classification

Accuracy (%)

F1 F2 F3 F4 F5

Language
identification

30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s

GMM–UBM 56.6 50 48.6 65 60 55.7 76 72.7 70.4 76.9 72.6 70.1 80 76.8 72

ANN 61 55.7 52.3 69.8 63.6 62.1 74.8 69.8 65.8 75.9 71.3 69.3 78.1 75 70.2

i-vector-based
SVM

52.8 47.1 42.6 62.2 55.1 50 69.6 63.6 60.3 71.2 65.6 62.8 73.6 68.1 64.9

mances of GMM–UBM, ANN, and i-vector-based SVM classifiers, it is observed
that GMM–UBM outperforms the other models when there is no pre-classification
stage. Table 8 also shows the effectiveness of the proposed parameters of prosody
on individual language identification. In this case, after using proposed parameters
of prosody, GMM–UBM shows 8.4%, 10%, and 7.1%; ANN shows 8.8%, 7.9%, and
9.8%; i-vector based SVM shows 9.4%, 8%, and 7.4% improvements for 30 s, 10 s,
and 3 s data, respectively, over the existing parameters of prosody. Table 8 also shows
the effectiveness of Δ and Δ−Δ coefficients for individual language identification
task.

4.3.2 Individual Language Identification with Pre-classification

Once the speech samples are classified either as tonal or non-tonal languages, it is fed
to the next stage for final language identification. The second-stage identification has
been performed in twodifferentways. In the firstway, denoted asCase II, truly detected
as well as wrongly detected tonal and non-tonal samples are passed into the next stage
for final identification. The second way, denoted as Case III, only truly detected tonal
and non-tonal samples are fed into the next stage. The second stage consists of two
modules: One classifies individual tonal languages and the other individual non-tonal
languages. Several experiments have been performed where ANN is used at pre-
classification stage (Case II and Case III) and one of the three classifiers in the second
stage. Table 8 shows the accuracy values of Case II and Case III for different features
and classifiers. The observations made on Tables 8 and 9 are given:

• The fact that Case III has the best accuracy clearly tells that an accurate pre-
classification stage can boost the performance of the system manifold. With the
present pre-classification module, as presented in this paper (Case II), the perfor-
mance of the system is still better than Case I, where no such module is used.

• Here, with respect to Case I, each of the individual features and their combina-
tion shows significant performance improvements in Case II and Case III. The
combination of ANN model in pre-classification and GMM–UBM model in sec-
ond stage (Case II and Case III) with F5 features provides the highest accuracy in
pre-classification-based language identification task. This combination shows 3.5%,
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Table 9 Accuracy comparison between Case II and Case III for NITS-LD

Accuracy (%)

F2 F3 F4 F5

30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s 30 s 10 s 3 s

With pre-classification language identification (Case II)

GMM–UBM 67.67 64 58.8 77.9 71.9 69.6 80 75.8 71.8 83.5 79 74.1

ANN 69 64.6 62 76.7 73.6 71.4 78 73.4 71.1 80 76.7 73

i-vector-based
SVM

63.8 58.1 56 71.8 65.3 63.6 75.8 67.7 64.6 78.3 70 66.7

With pre-classification language identification (Case III)

GMM–UBM 69 66.8 60.2 78.9 75.9 71.6 84.6 78.9 75 87.2 83.8 76.9

ANN 70.2 66.7 63.6 78.6 76 73.4 83 77.6 73.1 85.1 80.2 74.6

i-vector-based
SVM

67.7 66 61.1 76.6 67.7 66.8 80.6 74 72.1 82 74.8 74

Table 10 Confusion matrix for
Case I using GMM–UBM

Languages As Be En Na Hi Mi Ma

As 16 1 0 1 0 2 0

Be 0 18 0 1 0 0 1

En 0 1 15 1 2 1 0

Na 2 0 0 16 1 1 0

Hi 1 1 0 1 17 0 0

Mi 1 0 0 1 0 41 7

Ma 1 4 2 0 0 5 38

Italic values indicate true
positive trials
Rows correspond to actual class
and columns to the assigned
class of test data

2.2%, and 2.1% improvements in Case II over Case I, for 30 s, 10 s, and 3 s test data,
respectively. Case III reflects the performance of LID system when a 100-percent
accurate pre-classification module is available. In this case, the same combination
provides 7.2%, 6%, and 4.9% improvements with respect to Case I for 30 s, 10 s, and
3 s test data. Therefore, it can be inferred that this combination possibly captures
the most language discriminating cues for this system.

Tables 10 and 11 show the confusion matrices for Case I and Case II. Tables 12
and 13 show the confusionmatrices for Case III. Experimental results are given for 30-
s duration test data and F4 feature. From Table 10, it can be observed that even though
the performance of Bengali language is good, most of the languages are confused with
this and accuracy of Manipuri language is lesser than other languages.

Observations from Tables 12 and 13 are given below:

• Even though the highest accuracy is achieved for Bengali language, all other lan-
guages of non-tonal category are confused with it.

• Bengali is least confused with other languages. Except for Hindi (one instance), no
other language has been confused with Indian English.
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Table 11 Confusion matrix for Case II when ANN is in pre-classification stage and GMM–UBM in second
stage

Languages As Be En Na Hi Mi Ma

As 18 3 0 1 0 1 0

Be 1 13 0 0 0 0 0

En 1 0 18 0 0 0 1

Na 1 0 0 17 1 1 0

Hi 1 1 0 2 16 1 0

Mi 3 3 0 0 0 52 2

Ma 0 2 3 0 0 4 33

Italic values indicate true positive trials
Rows correspond to actual class and columns to the assigned class of test data

Table 12 Confusion matrix for non-tonal languages when ANN classifier used in pre-classification stage
and GMM–UBM in second stage (Case III)

Languages As Be En Na Hi

As 15 1 0 1 1

Be 1 14 0 0 0

En 1 1 17 1 0

Na 1 0 0 16 1

Hi 0 1 1 0 17

Italic values indicate true positive trials

Table 13 Confusion matrix for tonal languages ANN classifier used in pre-classification stage and
GMM–UBM in second stage (Case III)

Languages Mi Ma

Mi 27 4

Ma 4 25

Italic values indicate true positive trials

• Performance of the system in identifying Mizo language is better than that of
Manipuri language. This could be possibly because Mizo language has eight tones,
whereas Manipuri language has just two tones. The features, as a result, could
capture more information with respect to Mizo language than Manipuri.

From Table 10, it can be observed that, in Case I, confusion of each language
with others are reasonably high, and Table 14 confirms it, as is implied by the low
sensitivity and specificity values. It can be observed from Tables 10, 11, 14, and 15
that pre-classification module helps to reduce the confusion among the languages.
However, it may not help boost the performance of all languages necessarily. The
error which occurs at the pre-classification stage itself is carried over to the next stage,
thereby decreasing the accuracies of certain languages. However, the correctly pre-
classified languages are identified with significantly improved accuracy, such that the
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Table 14 Sensitivity and
specificity (in %) for Case I
using GMM–UBM, 30-s
duration test data and F4 feature

Languages Sensitivity Specificity

As 80 97.23

Be 90 96.2

En 75 98.9

Na 80 97.3

Hi 85 98.4

Mi 82 95

Ma 76 95.6

Table 15 Sensitivity and
specificity (in %) for Case II
when ANN is in
pre-classification stage and
GMM–UBM in second stage,
30-s duration test data and F4
feature

Languages Sensitivity Specificity

As 78.2 96.1

Be 92.8 95.2

En 90 98.4

Na 85 98.4

Hi 76.1 99.95

Mi 86.7 95

Ma 78.5 98.2

Table 16 Sensitivity and specificity (in %) for non-tonal languages when ANN classifier used in pre-
classification stage and GMM–UBM in second stage, 30-s duration test data and F4 feature (Case III)

Languages Sensitivity Specificity

As 83.3 97.73

Be 93.3 97.78

En 85 99.93

Na 88.9 98.5

Hi 89.4 98.5

Table 17 Sensitivity and specificity (in%) for tonal languageswhenANNclassifier used in pre-classification
stage and GMM–UBM in second stage, 30-s duration test data and F4 feature (Case III)

Languages Sensitivity Specificity

Mi 87 96.7

Ma 86.2 96.7

overall performance of the system improves. In Case III, there is no possibility to
confuse the languages of non-tonal category with the languages of tonal category and
therefore, sensitivity, and specificity values for all the languages improve (Tables 16
and 17) significantly.

As a result, Case III reports the highest overall accuracy, followed by Case II and
then Case I. So, it may be inferred that improving the accuracy of the pre-classification
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Fig. 9 Comparative analysis between the performances of NITS-LD and OGI-MLTS database

system may help to reduce the confusion and thereby enhance the performance of the
individual language identification module.

From Fig. 9, it can be observed that the combination of ANN in first stage and
GMM–UBM in second, of Case III, fares the best among all combinations. However,
for this combination, accuracy for OGI-MLTS database is lesser than that for NITS-
LD. This result reveals two factors: (i) System performance depends largely on the
number of target languages. Since the number of target languages in NITS-LD are
lesser than that in OGI-MLTS database, this system provides better performance for
NITS-LD. (ii) NITS-LD includes well-articulated, noise-free data, and hence, the
better performance.

However, from Fig. 9, it can also be observed that because of pre-classification
module improvements in the system performance for OGI-MLTS database (8.1%,
7.4%, and 5.7%) aremore significant thanNITS-LD (7.2%, 7%, and 4.9%). This could
be because OGI-MLTS database has been prepared using World’s distinct language
and NITS-LD includes closely related languages of same origin.

5 Conclusions and Future Scopes

This work proposes a system that provides improved performance over existing lan-
guage identification systems. The proposed system has a pre-classification stage to
distinguish the tonal and non-tonal languages. The performance of the system is ana-
lyzed for three different cases, namelyCase I:where individual languages are identified
without using any pre-classification module; Case II: where individual languages are
identified from all detected tonal and non-tonal languages of the pre-classification
stage; and Case III: where individual languages are identified from only correctly
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detected tonal and non-tonal languages of the pre-classification stage.Also thismethod
eliminates the need of automatic speech recognizer or any phonetic information of
the languages. Comparison among the performances for prosody, MFCC with Δ and
Δ−Δ, and their combination at syllabic level has been done. Effectiveness of the pro-
posed parameters of prosody on the pre-classification as well as individual language
identification has been examined in this paper. It is observed that for the proposed
parameters of prosody, system performance at the pre-classification, and individual
languages identification stage improve significantly. This paper also demonstrates that
at pre-classification stage MFCC performs better than prosody and their combination
leads to further improvement. And MFCC with Δ and Δ−Δ proves to be the most
effective among the other features used in this experiment for individual language iden-
tification task. Seven languages of NITS-LD and 10 languages of OGI-MLTS database
have been used for the experiment using features based on different analysis units of
the speech signal. It can be inferred from the experiments that syllables are the most
appropriate analysis segments to be used for this pre-classification based language
identification system. The performance of the proposed system has been analyzed for
three different sizes of test data using three different classifiers (GMM–UBM, ANN
and i-vector based SVM classifiers). Experiment shows that for OGI-MLTS, all the
three classifiers perform the identification taskswith slightly lower accuracy compared
to NITS-LD. Also, in pre-classification stage, ANN classifier outperforms the other
two classifiers for NITS-LD as well as OGI-MLTS. The combination of ANN classi-
fier in pre-classification stage and GMM–UBM classifier in the second stage provides
the highest accuracies for both databases.

However, this accuracy might still be not satisfactory for a practical system. Syl-
lables are used here as basic units because of being the most effective tone bearers.
However, inaccurate syllable boundaries may cause error in the identification system.
As syllables are identified from the locations of VOPs, the accuracy of VOP detection
algorithm might affect the system performance. This aspect can be explored in future
course of work. Also, the tonal languages used in this experiment are all monosyllabic
in nature. In case of monosyllabic languages, most of the syllables bear tone, but for
disyllabic or polysyllabic tonal languages, tones are not carried by all the syllables
which is why it would demand further processing. In future, an extra module can
be added to detect tone bearing syllables to improve the performance of the overall
system.
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