
Circuits, Systems, and Signal Processing (2019) 38:2138–2164
https://doi.org/10.1007/s00034-018-0957-7

Area-Time-Power Efficient Maximally Redundant
Signed-Digit Modulo 2n − 1 Adder and Multiplier

Somayeh Timarchi1 · Negar Akbarzadeh1

Received: 14 November 2017 / Revised: 27 September 2018 / Accepted: 27 September 2018 /
Published online: 9 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
By increasing the length of input operands, standard binary number representation
cannot satisfy the need for area-time-power efficient systems due to carry propagation
chain problem. Redundant residue number system (RRNS) would be an appropriate
solution to this demand as it divides large numbers to smaller ones on which the arith-
metic operations could be performed in parallel. Maximally redundant signed-digit
RNS (MRSD-RNS) has been recently presented as a low-power RRNS because the
addition unit based on this number system consumes the least power among the exist-
ing RRNS encodings. In this work, a low-power MRSD-RNS multiplier for modulo
2n − 1 is proposed for the first time. The implementation results based on the TSMC-
90 nm CMOS Technology indicate that our proposed design outperforms power, area,
power-delay-product and area-delay-product in comparison with the efficient existing
RRNS multipliers for the cases in which delay is not a limiting factor. It has also the
least delay among the existing high-radix RRNS multipliers. Therefore, the proposed
multiplier can meet the strict area-time-energy constraints which can be used as the
core of signal processor in many applications.

Keywords Redundant residue number system · Modular multiplier · High-radix
signed-digit · Low-power arithmetic · VLSI

1 Introduction

Multiplication is often the critical path of integrated processors, such as digital sig-
nal processing [23], cryptography [11] and communication systems [7], as they have
higher latency compared to the other arithmetic circuits like addition and subtraction.

B Somayeh Timarchi
s_timarchi@sbu.ac.ir

Negar Akbarzadeh
ne.akbarzadeh@mail.sbu.ac.ir

1 Department of Electrical Engineering, Shahid Beheshti University, G.C., Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-018-0957-7&domain=pdf
http://orcid.org/0000-0002-7760-3411
http://orcid.org/0000-0002-8040-4317


Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2139

Moreover, many Internet of Things (IoT) applications, such as health monitoring and
surveillance camera, have the limitations of power consumption and extensive com-
putation for burst-mode signal processing. In the IoT applications, individual nodes,
also called smart nodes, are often composed of sensors, signal processors and wire-
less transceivers [28]. To keep smart nodes working for enough time without frequent
maintenance, a low-power signal processor with high energy efficiency is adopted to
IoT applications [5, 13]. Therefore, it is reasonable to design more efficient multipli-
ers in order to improve the whole device efficiency. One of the most suitable schemes
is to use unconventional number systems like residue number systems (RNS) rather
than conventional binary number systems. The bottleneck of binary number systems
is the carry propagation chain as a function of operand width. This problem deterio-
rates sharply when the width of operands becomes larger. Here are the reasons which
prove that RNS leads to a more efficient number system compared to its counter-
part, i.e. binary number system [2–4]. RNS divides large numbers to smaller ones,
called residues, based on the desired moduli set. Arithmetic operations could be done
independently and in parallel on eachmodule. Due to smaller residues, a smaller arith-
metic circuit is needed for each module. There is no carry propagation chain among
the moduli. These characteristics result in fast and low-power systems.

Although RNS eliminates the inter-carry propagation chain, the intra-carry prop-
agation chain already exists, which bounds RNS speed-up [4]. Applying redundant
encoding for representing each residue has turned to be the best answer to this problem
[3]. In fact, the redundant number system is another way for accelerating arithmetic
circuits independently. Employing the redundant number system whose digit set in
radix-r number system contains more than r digits and consequently enables multi-
ple representations for each redundant number can improve arithmetic operations like
addition and multiplication through reduction or elimination of the carry propagation
[8, 9, 12].

The combination of redundant and residue number systems to improve performance
is called redundant residue number system (RRNS). RRNS is a special residue number
systemwith desired moduli set which employs redundant representation to encode the
residues. The basic characteristics of RRNS are fast, parallel and low-power arithmetic
because of the following reasons: (1) decomposing the input operand into smaller
residues, (2) lack of carry propagation among the moduli and (3) removing carry
propagation inside the moduli.

The three existing RRNS encodings are binary signed-digit RNS (BSD-RNS) [29],
maximally redundant signed-digit RNS (MRSD-RNS) [17] and stored-unibit-transfer
RNS (SUT-RNS) [16]. When using high-radix (r >2) redundant representation to
encode the residues, it is called high-radix RRNS. Although BSD-RNS (with radix r
�2) utilizes fully redundant representation and offers faster arithmetic units, the two
other ones utilize high-radix (with radix r >2) redundant representation and enable a
trade-off between delay and area overhead by selecting appropriate radix. Recently,
MRSD-RNS was presented in [17] and also an adder structure based on this number
representation was proposed. The authors indicate that MRSD-RNS adder has the
least delay and power among the high-radix RRNS.

This paper extends the work of [17] and modifies the addition algorithm of 2n −1
MRSD-RNS. It also explores a newmodulo 2n −1MRSD-RNSmultiplier for the first



2140 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

time. The simulation results indicate that the proposed modulo 2n −1 MRSD-RNS
multiplier has the least area, power and PDP for different delays among the RRNS
multipliers. It has also the least delay among the existing high-radix RRNSmultipliers.

The rest of the paper is organized as follows: In Sect. 2, RNS, redundant and RRNS
are described. BSD-RNS and SUT-RNS encodings are also studied in the section.
Section 3 develops formal representations and algorithmic notations for maximally
redundant signed-digit (MRSD) encoding and efficient addition algorithm, as well
as MRSD-RNS encoding and the recently presented adder structure. In Sect. 4, we
propose a radix-2h MRSD-RNS multiplication algorithm and structure for modulo 2n

−1. Section 5 includes simulation results and comparison of our proposed MRSD-
RNS multiplier with other RRNS multipliers. Finally, Sect. 6 concludes the paper.

2 Preliminaries

The three number systems, RNS, redundant and RRNS are first defined in this section.
Then, we focus on existing RRNS encodings.

2.1 Residue Number System (RNS)

Definition 1 (residue number system) RNS is defined by a set of N positive and
pairwise relatively prime moduli {m1,m2, . . . ,mN }. A binary number R is rep-
resented in the determined residue number system as a set of N small integers
R � (R1, R2, . . . , RN ), where

Ri � |R|mi
0 ≤ Ri < mi and 1 ≤ i ≤ N

and |R|mi
denotes the residue of R modulo mi. This representation is individual for

any integer R in the range [0,M −1], where M � m1×m2×· · ·×mN is the dynamic
range of the moduli set [4]. �

Therefore, RNS converts large numbers to smaller residues according to its moduli.
Arithmetic operations like addition, subtraction and multiplication are implemented
in parallel on the moduli without any carry propagation between them. So, RNS can
support high-speed, carry-limited, low-power and parallel arithmetic.

The sections of a typical RNS architecture are depicted in Fig. 1. As shown in the
figure, the RNS is composed of three sections: (1) binary to RNS (m1,m2, . . . ,mN )
conversion, RNS modular arithmetic circuits and finally, RNS (m1,m2, . . . ,mN )
to binary conversion. The input binary number R is converted to the residues
(R1, R2, . . . , RN ) associated with the RNS moduli set (m1,m2, . . . ,mN ). (2) RNS
arithmetic operations are performed on (R1, R2, . . . , RN ) and produce the final result(
R′
1, R

′
2, . . . , R

′
N

)
. 3) Finally, the residues

(
R′
1, R

′
2, . . . , R

′
N

)
are converted to R’

according to the moduli set. RNS is appropriate for applications composed of only
addition, subtraction and multiplication. Division, sign detection and magnitude com-
parison are difficult to be computed in RNS [4].



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2141

RNS 
Arithmetic 
Circuit for 
modulo m1

RNS 
Arithmetic 
Circuit for 
modulo m2

RNS 
Arithmetic 
Circuit for 
modulo mN

Binary to RNS(m 1,m 2,…, mN ) conversion

RNS( m 1,m 2,…, mN ) to Binary conversion

R

R 1 R 2

R ’1 R ’2

RN

R’ N

R’

...

Fig. 1 Typical components of RNS architecture with the moduli set {m1, m2, …, mN}

2.2 Redundant Number System

A redundant number is formed by a collection of digits, each associated with a power-
of-2 weight. A digit is also encoded as a collection of weighted bits. Since a redundant
number exploits more bits than required to represent a binary number in a conventional
binary number system, somenumbers have several representations.Redundant number
system allows carry-free addition independent of operand width, i.e. the addition is
done without propagating a carry signal through the width of operand [1, 9, 31].

The components of a typical redundant number system architecture are illustrated
in Fig. 2. As shown in the figure, the redundant number system is composed of three
sections: binary to redundant conversion, redundant arithmetic circuits and finally,
redundant to binary conversion.

An input operand R is first converted to redundant representation RR. Redundant
arithmetic circuits operate on the input redundant operand RR and produce the output
operand RR′ with redundant representation. Finally, the output RR′ is converted to the
binary number R′.

2.3 Redundant Residue Number System (RRNS)

Asmentioned earlier, utilizing redundant number system for representing eachmodule
of residue number system leads to more efficient arithmetic units due to its carry-free
properties. RRNS is defined as follows:

Definition 2 (redundant residue number system) RRNS is defined by two parameters:
(1) the moduli set parameter m �{m1, m2, …, mN} associated with the RNS and



2142 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fig. 2 Typical components of a
redundant number system

Redundant
Arithmetic 

Circuits

Binary to Redundant conversion

Redundant to Binary conversion

R

RR

RR’

R’

(2) the parameter ‘redundant’ associated with the redundant number system. So, we
imply RRNS by the pair (m, redundant) where m is the moduli set and redundant is a
desired redundant number system. �

Without losing generality, Fig. 3 presents the block diagram of a typical RRNS(m,
redundant) with the moduli set m �{m1, m2, …, mN} and every desired redundant
representation. According to this figure, RRNS(m, redundant) includes five steps:

1. Binary to RNS conversion: The input binary number R is converted to the residues
{R1, R2, …, RN} according to the RNS moduli set m.

2. RNS residues to redundant conversion:The residues {R1,R2,…,RN} are converted
to redundant residues {RR1, RR2, …, RRN} according to the defined redundant
representation.

3. RRNS arithmetic circuits for each module: The final results{
RR′

1, RR
′
2, . . . , RR

′
N

}
are produced according to the arithmetic operations.

4. Redundant to RNS residues conversion: The redundant residues{
RR′

1, RR
′
2, . . . , RR

′
N

}
are converted to the residues

{
R′
1, R

′
2, . . . , R

′
N

}
accord-

ing to the defined redundant representation.
5. RNS to binary conversion: The residues

{
R′
1, R

′
2, . . . , R

′
N

}
are converted to R′

according to the RNS moduli set m.

The first two steps (binary to RNS and RNS to redundant conversions) and also, the
last two ones (redundant to RNS and RNS to binary conversions) could be merged to
achieve amore efficient implementation. ThreeRRNSencodings ofBSD-RNS [18, 26,
29], MRSD-RNS [17] and SUT-RNS [15, 16, 20] have been explored in the state-of-
the-art articles. Nevertheless, BSD-RNS provides the fastest and the most symmetric
arithmetic circuits; MRSD-RNS and SUT-RNS (as high-radix RRNSs) offer a trade-
off between area and speed through various redundancies. Each number system can be
chosen regarding the worst case delay or the available resources listed to a designer.
In the rest of the section, we review the BSD-RNS and SUT-RNS encodings.



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2143

Redundant 
Arithmetic 
Circuit for 

modulo mN

Binary to RNS(m 1,m 2,…, mN) conversion

RNS( m 1,m 2,…, mN) to Binary conversion

R

R1 R2

R ’1 R ’2

R’

...

RNS Residue to 
redundant 
conversion

Redundant to RNS 
residue conversion

Redundant 
Arithmetic 
Circuit for 
modulo m2

RR’2

RNS Residue to 
redundant 
conversion

RR2

Redundant to RNS 
residue conversion

Redundant 
Arithmetic 
Circuit for 
modulo m1

RR’1

RNS Residue to 
redundant 
conversion

RR1

Redundant to RNS 
residue conversion

R’N

RR’N

RRN

RN

Fig. 3 Generic model of the RRNS(m, redundant) with the moduli set m �{m1, m2,…, mN} and a defined
redundant representation

Definition 3 (BSD-RNS) BSD-RNSwhich stands for binary signed-digit residue num-
ber system is a class of RRNS number representation which utilizes redundant binary
signed-digit (BSD) number system [9, 12] to represent the residues. So, BSD-RNS is
implied by RRNS(m, BSD) where m is the moduli set. In this number system, each
redundant residue RRi (in Fig. 3) is composed of k binary signed-digits where a binary
signed-digit has three values in the range {−1, 0, 1} and k � log2 mi . �

To encode the three values in the range {−1, 0, 1}, one posibit and one negabit
could be utilized together [21]. Posibit (xi ) is the well-known bit and has the values
in the range {0, 1}. Negabit (Xi ) is the negated bit and has the values in the range
{−1, 0} as depicted in Table 1. It should be mentioned that in this article, posibits
and negabits are represented by small and capital words, respectively. According to
the table, the posibits (negabits) are represented by black (white) circles in this article.



2144 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Table 1 Summary of two-valued digit sets: posibit, negabit and unibit [6]

Bit name Digit set Dot notation Symbolic representation

Posibit {0,1} ● x

Negabit {-1,0} � X

Unibit {-1,1} � x′

Fig. 4 Dot notation and symbolic representation of a k-digit redundant residue A in BSD-RNS [18]

Figure 4 indicates dot notation and symbolic view of a k-digit redundant residue RRi

in BSD-RNS, where BSD digits Ai (0 ≤ i < k) consists of a posibit xi and a negabit
Xi .

Modulo 2k ±1 BSD-RNS addition could be performed simply by adding an end-
around-carry unit to the BSD adder [18, 22]. Making possible to represent results
which are greater than the module value by negative range, only k digits are sufficient
for representing modulo 2k +1.

Modulo 2k ±1 BSD-RNS multiplication algorithm proposed in [29] is composed
of three main steps: (1) partial product generation, (2) addition tree for partial prod-
ucts reduction and (3) final BSD-RNS modulo addition. Some efficient BSD-RNS
multipliers have been reported in the articles [14, 19, 24, 26, 30].

Definition 4 (SUT-RNS) SUT-RNS which stands for radix-2h (h >1) stored-unibit
transfer residue number system is a class of RRNS number representation which
utilizes radix-2h SUT number system to represent the residues [20]. So, SUT-RNS is
implied by RRNS(m, radix-2h SUT). In this number system, each redundant residue
RRi (in Fig. 3) is composed of k radix-2h SUT digits where a radix-2h SUT digit, as
presented in [6], has the values in the range

[−2h−1 − 1, 2h−1 − 1
]
. �

Figure 5 indicates dot notation and symbolic representation of a k-digit radix-2h

redundant residue in SUT-RNS, where radix-2h SUT digits Ai (0 ≤ i < k) consists
of (h −1) posibits xh−2

i . . . x0i , a negabit X
h−1
i and a unibit x ′0

i . Unibit is a bit in the
range {−1, 1} and is noted by a white square as shown in Table 1. It is shown in [15]
that general building blocks such as full adder, half adder and compressor could be
utilized to construct SUT-RNS arithmetic units.

In [15, 16, 20], the adder, subtractor and multiplier structures have been presented
for the moduli set {2n −1, 2n, 2n +1} based on SUT-RNS encoding. Although SUT-
RNS increases delay slightly, it outperforms area overhead of the BSD-RNS. Besides,



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2145

Fig. 5 Dot notation and symbolic representation of a k-digit redundant residue A in radix-2h SUT-RNS [20]

Fig. 6 Dot notation and symbolic representation of a radix-2h MRSD number system

choosing appropriate radix value provides flexible trade-off between delay and area
overhead.

3 MRSD andMRSD-RNS Encodings and Addition Algorithms

In this section, we explore formal representations for the definitions and addition
algorithms of MRSD and MRSD-RNS. The algorithmic notations are developed with
some modifications.

Definition 5 (MRSD encoding) In [13], Avezienis introduced redundant radix-r
signed-digit (SD) number systems with digits in the range [−α, α]. The redundant
radix-r SD with radixes greater than 2 is called high-radix signed-digit (HRSD) as
shown in Fig. 6. In the figure, for digits Ai, where 0 ≤ i < k, with the intention of
eliminating carry propagation chain, α should be in the following range [13]:

⌈
r + 1

2

⌉
≤ α ≤ r − 1 (1)

For the cases in which α � r–1�2 h-1, the radix-2h maximally redundant SD (MRSD)
number systems lead tomore efficient SDadders. In fact, theMRSDnumber is aHRSD
number with themaximum possible range. Figure 6 indicates a k-digit radix-2h MRSD
number which consists of h posibits xh−1

i · · · x0i and a negabit Xh
i . �

An improved addition algorithm for MRSD number system was presented in [10]
and is stated by Algorithm 1.

Algorithm 1 (FastMRSDAddition) Let’s assume two k-digit radix-2hMRSDnumbers
A and B with digits Ai and Bi whose symbolic representations are:

Ai � Xh
i x

h−1
i · · · x0i , Bi � Y h

i y
h−1
i · · · y0i

The MRSD addition consists of two steps:



2146 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

A0B0

S0

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

t1

A i-1B i-1

S i-1

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

ti

A iB i

S i

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

ti+1

Ak-1Bk-1

Sk-1

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

‘0’

‘0’

......
tk

Fig. 7 Symbolic representation of MRSD addition scheme for two k-digit radix-2h MRSD numbers A and
B proposed in [10]

Fig. 8 Dot notation and symbolic representation of a k-digit radix-2h redundant residue A in MRSD-RNS
[17]

• Parallel calculation of transfer digit ti by only considering digits Ai and Bi, where
ti belongs to {−1, 0, 1} and 0≤ i <k.

• Parallel calculation of Si for digits Ai and Bi where 0≤ i <k. �

The adder is composed of kMRSD adder cells presented in [10] as shown in Fig. 7.
As proved in [10], the transfer digit ti+1 is calculated slightly according to the most
significant bits (i.e. Xh

i x
h−1
i and Y h

i y
h−1
i ). So, the addition is performed independent

of h and a carry-free addition is exploited.

Definition 6 (MRSD-RNS encoding) MRSD-RNS which stands for radix-2h (h >1)
maximally redundant signed-digit residue number system is a class of RRNS number
representation which utilizes radix-2h MRSD number system (Definition 5) to repre-
sent the residues. So, MRSD-RNS is implied by RRNS(m, radix-2h MRSD). In this
number system, each redundant residue is composed of k radix-2h MRSD digits where
a radix-2h MRSD digit is composed of h posibits and a negabit defined earlier. �

Figure 8 indicates dot notation and symbolic representation of a k-digit radix-2h

redundant residue in MRSD-RNS, where radix-2h MRSD-RNS digits Ai (0 ≤ i < k)
consists of h posibits xh−1

i · · · x0i and a negabit X0
i . So, the difference between aMRSD

number (Definition 5) and a MRSD-RNS redundant residue (Definition 6) is their
negabits position, where the negabit is considered as the most (least) significant bit in
MRSD (MRSD-RNS) number system. MRSD-RNS encoding and its adder structure
have been recently explored in [17]. The addition algorithm is described with some
modifications in the next section.



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2147

Fig. 9 Defining new digits A′
i and B′

i based on the redundant residues A and B, respectively

4 Proposed Radix-2h MRSD-RNSModulo 2k − 1 Addition
andMultiplication Algorithms

This section explores the proposed addition and multiplication algorithms by Algo-
rithms 2 and 3, respectively.

Algorithm 2 (MRSD-RNSModulo 2n −1 Addition) Let’s assume two k-digit radix-2h

MRSD-RNS redundant residues A and B composed of digits Ai and Bi, where 0≤ i
<k and n �k.h.

Ai � xh−1
i . . . x0i

X0
i
, Bj � yh−1

j . . . y0j
Y 0
j

(2)

Since
∣∣2n X0

0

∣∣
2n−1 � ∣∣20X0

0

∣∣
2n−1, X

0
0 in Fig. 8 could be considered as the most

significant negabit in position 2n. Now, we define new digits A′
i and B ′

i shown in
Fig. 9. The redundant residues A and B are composed of A′

i and B ′
i defined as follows:

A′
i � Xh

i x
h−1
i . . . x0i , B ′

i � Y h
i y

h−1
i . . . y0i (3)

MRSD-RNS adder of A and B for modulo 2n −1 is made of three parts.

1. Parallel calculation of transfer digit ti by considering digits A′
i and B ′

i , where ti
belongs to {−1, 0, 1} and 0≤ i <k.

2. Parallel calculation of Si for digits A′
i and B ′

i where 0≤ i <k.
3. The transfer produced in the last digit (tk) is ended around to the first digit as

an input transfer. For modulo 2n −1, the re-entrant carry is applied to the least
significant digit position because we have:

∣∣2ntk
∣∣
2n−1 � ∣∣(2n − 1)tk + tk

∣∣
2n−1 � tk (4)

�



2148 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

A’ 0B’ 0

S0

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

t1

A’ i-1B’ i-1

Si-1

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

ti

A’ iB’ i

Si

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

ti+1

A’k-1B’k-1

Sk-1

MRSD 
Adder Cell 

1

MRSD 
Adder Cell 

2

tk

......

EAC

EAC

Fig. 10 Architecture of proposed MRSD-RNS modulo 2n −1 adder

It should be also noted that the addition procedure of [17] has been extended by
presenting newAlgorithm 2 and Figs. 9 and 10. The figures demonstrate appropriately
the carry-free property of MRSD-RNS addition that had not been revealed in the
previous work.

As mentioned in [17], the only difference between MRSD addition (Algorithm 1)
and MRSD-RNS addition (Algorithm 2) is in the third part of the above algorithm,
i.e. the output transfer digit tk is ignored in MRSD addition, whereas it re-enters as
input carry to the first digit in MRSD-RNS addition. In Fig. 10, the addition of two
k-digit MRSD-RNS numbers A and B for modulo 2n −1 is depicted.

Algorithm 3 (MRSD-RNS modulo 2n −1 multiplication) Let’s assume two k-digit
redundant residues A and B in radix-2h MRSD-RNS where n �k.h. The proposed
algorithm is composed of three main steps and is depicted in Fig. 11:

Step 1 Digit-product computation: radix-2h digit Ai is multiplied by Bj for 0≤ i, j
<k;

Step 2 Digit-products arrangement and rotation to generate partial products, and
Step 3 Partial product accumulation

The rest of the section explains the above three steps in detail. Finally, it is concluded
by two examples.

4.1 Step 1 of the Algorithm 3: Digit-Product Computation

In the first stage, we have the following inputs and outputs:

Inputs: digits Ai and Bj in the form of MRSD-RNS digit where 0≤ i, j <k
Outputs: k2 digit products Ai ×Bj (shown by two-digit MRSD numbers P’ji Pji)

In fact, k digits of A are multiplied by k digits of B. So k2 digit products are
produced. In the following, we consider the multiplication of radix-2h digits Ai by Bj

in MRSD-RNS for 0≤ i, j <k. Let’s assume that the symbolic representations of Ai

and Bj are shown by (2).



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2149

Fig. 11 Multiplying two k-digit redundant residues A and B in radix-2h MRSD-RNS

Fig. 12 a Bit representation and b symbolic representation of multiplying Ai and Bj according to the first
step of Algorithm 3

The bit and symbolic representations of multiplying Ai and Bj are revealed in
Fig. 12a, b, respectively, according to the first step of Algorithm 3. The final digit
product Ai ×Bj (shown by P’ji Pji) is computed in the form of a two-digit radix-
2h MRSD number as depicted in the figure. The digit-product computation could be
divided into two parts:

Part 1) Bit-Product Generation: The first part is to derive the bit products including
posibits and negabits. Figure 13 indicates symbolic representations and circuits for
the bit-product derivation. There are three possible combinations of bit products as
shown in Fig. 13:

• multiplying a posibit by a posibit which results in a posibit as shown in Fig. 13a,



2150 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fig. 13 Symbolic representations and required circuits for bit production as the first part of step 1 of the
Algorithm 3: the production of a two posibits, b one posibit and one negabit, c two negabits

Fig. 14 Different functionalities of the full-adder and half-adder cells to accumulate various sets of input
posibits and negabits exploited for the second part of step 1 of the Algorithm 3

• multiplying a posibit by a negabit which results in a negabit as shown in Fig. 13b,
• multiplying a negabit by a negabit which results in a posibit as shown in Fig. 13c.

The first type of bit production is for two posibits implemented by an and-gate as
depicted in Fig. 13a. However, whenmultiplying a negabit Y in the range {−1, 0} by a
posibit x in the range {0, 1}, a bit in the range {−1, 0} is achieved which is equivalent
by a negabit. The bit multiplication is done by an and-gate with inverted negabit input
Y and inverted negabit output S, as shown in Fig. 13b. Similarly, by multiplying two
negabits in the range {−1, 0}, a bit in the range {0, 1} is obtained which is shown by
a posibit. The operation is done by a nor-gate as shown in Fig. 13c.

Part 2) Bit-Product Accumulation: In the second part, the bit products are accu-
mulated to achieve the final digit product. To accumulate the bits, we employ adder
structures. Figure 14 shows schematic representations of a full adder (half adder) used
to accumulate a set of 3 (2) bits. The sum and carry of each summation are indicated



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2151

Fig. 15 The first and second steps of the proposed Algorithm 3: reducing K2 two-digit MRSD numbers to
2k k-digit MRSD-RNS partial products (PPi and PP ′

i ) by appropriate rotating according to the module

by capital or small s and c letters depending on the input set of posibits and negabits.
It is shown in the figure that standard full adders (half adders) could be applied to
accumulate three (two) combinations of negabits and posibits. Standard half adder
assumes a posibit with the value zero as the third input. However, to obtain the desired
final representation, two combinations of equally weighted posibits and negabits uti-
lize a semi-half adder shown by HA+ in the figure. The cell HA+1 assumes a negabit
with the value of zero as the third input. So, its structure is a bit different from the
standard half adder shown in Fig. 14. For bit-product summation, standard full adders
(FA), standard half adders (HA) and semi-half adders (HA+1) represented in Fig. 14
are used. Finally, a two-digit MRSD number is achieved at the end of first step and is
shown by P ′

j i Pji as depicted in Fig. 12.

4.2 Step 2 of the Algorithm 3: Digit-Product Rotation and Partial Product
Generation

The inputs and outputs of the second stage are as follows:

Inputs: k2 digit products Ai ×Bj shown by two-digit MRSD numbers P ′
j i Pji

Outputs: 2k partial products in the form of k-digit MRSD-RNS numbers



2152 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fig. 16 MRSD-RNS adder tree structure for summing 2k partial products

A two-digit MRSD number P ′
j i Pji , produced by multiplying Ai by Bj in the first

step, is located in position indices of (i + j) and (i + j+1). In the second step, the input
k2 two-digit MRSD numbers, obtained from the previous step, are arranged first to
achieve 2k k-digitMRSDnumbers. Figure 15 depicts two k-digit radix-2hMRSD-RNS
redundant residues, A and B. Afterwards, the digits with position indices more than n
(rotation axis in the figure) are rotated based on the difference between their position
indices and n. That is, the modular rotation is performed whenever the addition of two
indices of Puv or P ′

uv is greater than n. let us considered that q �u+v. Then, Puv or
P ′
uv is rotated to |q|k and |q + 1|k , respectively.
As indicated in Fig. 15, for multiplication of B0 by A, as an example, the only

digit whose index is greater than n is P ′
(k−1)0 that should be rotated. Similarly, for

e multiplication of B1 by A, 3 digits, i.e. P ′
1(k−1)

, P1(k−1) and P’1(k−2), and for the
multiplication of Bk-1 by A, all digits except P00 have to be rotated. For modulo 2n

−1, the bits of rotating digits keep their polarity, i.e. posibits remain posibits and
negabits remain negabits.

4.3 Step 3 of the Algorithm 3: Partial Products Accumulation

In this step, we have 2k k-digit MRSD-RNS partial products that can be accumulated
simply by the proposed MRSD-RNS adder depicted in Fig. 10. So, k MRSD-RNS
adders are first required to reduce 2k partial products to k partial products as shown
in level 1 of Fig. 16. Then, k/2 MRSD-RNS adders are utilized for summation in the
level 2. The reduction continues until the final result is achieved. The final result is
achieved after 1 + log2 k levels.



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2153

Fig. 17 Example 1: step 1 of Algorithm 3 (digit-product computation) for two radix-8 MRSD-RNS digits
Ai and Bj which results in a two-digit MRSD number P ′

j i Pji (left) the numeric example for digit product
3 by 5 which results in 15 (right)

4.4 MRSD-RNS Examples

Example 1 (radix-8 MRSD-RNS modulo 29 −1 multiplication, i.e. h �3, k �3 and n
�9) the first step of radix-8MRSD-RNSmultiplication for digits Ai and Bj results in a
two-digitMRSDnumber as revealed in Fig. 17. The figure shows the bit representation
of multiplying two radix-8 MRSD-RNS redundant residues digits Ai and Bj.

Ai � x2i x
1
i x

0
i
X0
i
, Bj � y2i y

1
i y

0
i
Y 0
i

The first part in Fig. 17 indicated as bit product is the product of each bit of Bj

multiplied by Ai. As mentioned earlier, the bit products are produced by the structures
illustrated in Fig. 13 The second part includes addition of different sets of posibits



2154 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fig. 18 Example 1: the three steps of the proposed modulo 29 −1 multiplication algorithm for two 3-digit
radix-8 MRSD-RNS numbers

and negabits separated by grey rectangle utilizing the schemes shown in Fig. 14. The
process of bit-product summation is done during some steps until the final result is
achieved. The final result is in the form of two-digit MRSD number. As a numeric
example, the digit product of 3 by 5 is also shown in the figure (right). Th process of
producing the final result 15 is also traceable.

Figure 18 indicates the three steps of radix-8 MRSD-RNS modulo 29 −1 multipli-
cation. After digit-product generation in the first step, digit products are rotated in the
second step. Then, partial product accumulation for the 3-digit radix-8 MRSD-RNS
multiplication is performed. The rotated partial products in the form of MRSD-RNS
number are accumulated by MRSD-RNS adder.



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2155

Fig. 19 Example 2: step 1 of
Algorithm 3 (digit-product
computation) for two radix-16
MRSD-RNS digits Ai and Bj
which results in a two-digit
MRSD number P ′

j i Pji



2156 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fi
g.
20

To
ta
lA

D
P,
PD

P
an
d
de
la
y
of

ra
di
x-
16

M
R
SD

-R
N
S,

B
SD

_R
N
S
an
d
ra
di
x-
16

SU
T-
R
N
S
m
ul
tip

lie
rs
ve
rs
us

di
ff
er
en
tn

um
be
r
of

di
gi
ts



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2157

Fi
g.
21

To
ta
lp

ow
er

an
d
ar
ea

of
ra
di
x-
16

M
R
SD

-R
N
S,

B
SD

_R
N
S
an
d
SU

T-
R
N
S
m
ul
tip

lie
rs
fo
r
m
od

ul
o
21

28
−1



2158 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Example 2 (radix-16 MRSD-RNS Digit Production) Figure 19 reveals the bit repre-
sentation of multiplying two radix-16 MRSD-RNS digits Ai and Bj as the first step of
Algorithm 3.

Ai � x3i x
2
i x

1
i x

0
i
X0
i
, Bj

y3i y
2
i y

1
i y

0
i
Y 0
i

The next two steps are similar to the previous example depicted in Fig. 15.

5 Simulation Results and Comparison

To compare the proposed MRSD-RNS multiplier with the existing RRNS multipliers,
first we selected the most efficient existing modulo 2n −1 multipliers for BSD-RNS
[24, 30] and SUT-RNS [20]. Afterwards, we described MRSD-RNS, BSD-RNS and
SUT-RNSmultipliers inVHDL (VHSIC—Very high speed integrated circuits—Hard-
wareDescriptionLanguage) and then synthesized themby theSynopsysDesignVision
tool. The modulo 2n −1 RRNSmultipliers were synthesized by TSMC-90 nm CMOS
technology under typical conditions (1 V, 25 °C).

Figure 20 indicates total delay, PDP and ADP of radix-16 BSD-RNS, SUT-RNS,
and the proposed MRSD-RNS multipliers versus different number of bits (n). Due to
great range of changes in ADP and PDP diagrams, these two figures are depicted in
logarithmic scales and for better understanding, the percentage of each bar is calculated
and demonstrated on top of it. Moreover, Fig. 21 indicates total area and total power
consumption of the three RRNS multipliers for n �128, as an example.

As depicted in Fig. 20, BSD-RNS outperforms delay of the high-radix RRNSs for
radix-16. But PDP and ADP of MRSD-RNS outperform the other RRNSs for n >32.
It is reasonable because the main property of high-radix RRNSs is their flexibility to
receive the desired area-time-power constraints with increasing the number of bits.
Accordingly, simulation results of RRNSmultipliers for n �64 and 128 are presented
inTables 2 and3.The tables indicate total area, total power consumption, PDPandADP
of the four radix-16 RRNSmodulo 264 −1 and 2128 −1multipliers for their minimum
possible delay. As it is reasonable, BSD-RNS multiplier offers the least delay because
the carry propagates shorter path in comparison with high-radix RRNSs. However,
the proposed MRSD-RNS multiplier has the least area, power, PDP and ADP.

FromFig. 20, it is concluded thatMRSD-RNS offers the least ADP and PDP among
all RRNS multipliers for large numbers, i.e. when n is greater than 32. Therefore, the
proposed MRSD-RNS could be recognized as an efficient RRNS in terms of area-
time-power for large numbers. According to Fig. 21 for the cases in which delay is not
the limiting factor, our proposed MRSD-RNS multiplier outperforms area and power
of the BSD-RNS and SUT-RNS multipliers versus different delays. For example,
to develop a multiplier with 7.5 ns delay, radix-16 modulo 2128 −1 MRSD-RNS
multiplier achieves 60.3%, 58.5% and 69.8% less area and 54.2%, 54.6% and 70.2%
less power when compared with BSD-RNS [24, 30] and SUT-RNS [20], respectively.

For further enhancing the results, we utilized matrix multiplication benchmark [25,
27] which is the most suitable benchmark for comparing and approving the efficiency



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2159

Ta
bl
e
2
D
el
ay
,a
re
a,
po
w
er
,P

D
P
an
d
A
D
P
of

th
e
m
od
ul
o
26

4
−1

R
R
N
S
m
ul
tip

lie
rs
fo
r
m
in
im

um
de
la
y
ef
fo
rt

Pa
ra
m
et
er
s

D
el
ay

(n
s)

A
re
a
(µ

m
2
)

D
yn
am

ic
po
w
er

(m
w
)

PD
P
(p
j)

Pe
rc
en
ta
ge

A
D
P
(µ

m
2
*
ns
)

Pe
rc
en
ta
ge

B
SD

-R
N
S
[2
4]

2.
59

50
0,
82
2.
4

45
1.
6

11
69
.8

94
.6

1,
29
7,
12
9.
9

85
.9

B
SD

-R
N
S
[3
0]

2.
52

54
7,
71
2.
1

48
6.
1

12
24
.9

99
.1

1,
38
0,
23
4.
6

91
.4

SU
T-
R
N
S
[2
0]

3.
76

40
1,
69
7.
9

32
8.
8

12
36
.3

10
0

1,
51
0,
38
4.
3

10
0

M
R
SD

-R
N
S

(p
ro
po

se
d)

3.
45

36
8,
46
1.
5

32
5.
6

11
23
.3

90
.9

1,
27
1,
19
2.
2

84
.2



2160 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Ta
bl
e
3
D
el
ay
,a
re
a,
po
w
er
,P

D
P
an
d
A
D
P
of

th
e
m
od
ul
o
21

28
−1

R
R
N
S
m
ul
tip

lie
rs
fo
r
m
in
im

um
de
la
y
ef
fo
rt

Pa
ra
m
et
er
s

D
el
ay

(n
s)

A
re
a
(µ

m
2
)

D
yn
am

ic
po
w
er

(m
w
)

PD
P
(p
j)

Pe
rc
en
ta
ge

A
D
P
(µ

m
2
*
ns
)

Pe
rc
en
ta
ge

B
SD

-R
N
S
[2
4]

2.
66

3,
10
6,
57
7.
6

24
82
.3

66
02
.9

82
.2

8,
26
3,
49
6.
5

99
.8

B
SD

-R
N
S
[3
0]

2.
74

3,
02
2,
73
1.
9

22
35
.0

61
23
.9

76
.2

8,
28
2,
28
5.
3

10
0

SU
T-
R
N
S
[2
0]

5.
39

1,
53
0,
79
7.
8

14
91
.1

80
37
.0

10
0

8,
25
1,
00
0.
2

99
.6

M
R
SD

-R
N
S

(p
ro
po

se
d)

3.
80

97
8,
95
6.
5

10
03
.5

38
13
.3

47
.4

3,
72
0,
03
4.
7

45
.0



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2161

Ta
bl
e
4
D
el
ay
,a
re
a,
po
w
er
,P

D
P
an
d
A
D
P
of

th
e
m
od
ul
o
26

4
−1

R
R
N
S
m
ul
tip

lie
rs
fo
r
2-
by

-2
m
at
ri
x
m
ul
tip

lic
at
io
n
be
nc
hm

ar
k

Pa
ra
m
et
er
s

D
el
ay

(n
s)

A
re
a
(µ

m
2
)

D
yn
am

ic
po
w
er

(m
w
)

PD
P
(p
j)

Pe
rc
en
ta
ge

A
D
P
(µ

m
2
*
ns
)

Pe
rc
en
ta
ge

B
SD

-R
N
S
[2
4]

5.
11

1,
93

8,
46

9.
5

22
84

.1
11

,6
71

.7
10

0
9,
90

5,
57

9.
3

10
0

SU
T-
R
N
S
[2
0]

5.
85

1,
53
0,
79
7.
8

15
62
.8

91
42
.4

78
.3
3

8,
50
5,
60
0.
6

85
.8

M
R
SD

-R
N
S

(p
ro
po

se
d)

5.
91

1,
34

0,
93

4.
3

14
19

.0
83

86
.6

71
.8
5

7,
92

4,
92

1.
5

80



2162 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

Fig. 22 Layout view of modulo 264 −1 MRSD-RNS multiplier

ofmultiplier architectures. Table 4 indicates the results of 2×2 squarematrixmultipli-
cation for modulo 264 −1 RRNSmultipliers. As it is expected, althoughMRSD_RNS
increases delay up to 13.5%, it improves PDP and ADP by 29.2% and 20%, respec-
tively.

Moreover, in order to retrieve design layout, netlist of modulo 264 −1MRSD-RNS
multiplier is extracted from Synopsis Design Vision tool and applied to Cadence SOC
Encounter tool. SOCEncounter is an automatic place and route software fromCadence
which enables quick full-chip virtual prototyping to accurately capture downstream
physical or electrical impacts. Figure 22 represents the layout view of modulo 264 −
1 MRSD-RNS multiplier.

6 Conclusion

In order to achieve a good trade-off between delay, area and power, we need to explore
new processors to support area-time-energy limited applications. RRNS turns out to be
an efficient number system as it eliminates carry propagation chain inside of the RNS
moduli. The proposed MRSD-RNS is a kind of RRNS that leads to area-time-power
efficient arithmetic units compared to other RRNS encodings.

In this article, we first modified the MRSD-RNS modulo 2n −1 addition algorithm
and then proposed modulo 2n −1 multiplier for MRSD-RNS encoding. According
to the synthesis results, our newly proposed modulo 2n −1 multiplier for radix-16
MRSD-RNS has less area, power, PDP andADP than themost efficient RRNSmodulo
2n −1 multipliers for n greater than 32. Besides, MRSD-RNS achieves the least delay



Circuits, Systems, and Signal Processing (2019) 38:2138–2164 2163

among existing high-radix RRNS multipliers. As an example, radix-16 modulo 2128

−1 MRSD-RNS multiplier outperforms the delay of SUT-RNS multiplier by %29.5,
while it achieves 42.2%, 37.7% and 52.5% less PDP and 54.9%, 55.1% and 54.9%
lessADP compared to BSD-RNS [24], BSD-RNS [30] and SUT-RNS [20]multipliers,
respectively. Moreover, for modulo 2128 −1 multiplier, as an example, improvements
in 60.3%, 58.5% and 69.8% less area and 54.2%, 54.6% and 70.2% less power are
achieved for 7.5 ns delay in comparison with BSD-RNS [24], BSD-RNS [30] and
SUT-RNS [20], respectively. Therefore, modulo 2n −1 MRSD-RNS multiplier is a
promising RRNS multiplier to realize area-time-power efficient processor.

References

1. A. Armand, S. Timarchi, Low power design of binary signed digit residue number system adder, in
24th Iranian Conference on Electrical Engineering (ICEE) (2016), pp. 844–848

2. A. Avizienis, Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electron.
Comput. 10, 389–400 (1961)

3. H. Garner, The residue number system. IRE Trans. Electron. Comput. EC-8, 140–147 (1959)
4. G. Jaberipur, B. Parhami, M. Ghodsi, Weighted two-valued digit-set encodings: unifying efficient

hardware representation schemes for redundant number systems I. IEEE Trans. Circuits Syst. 52, 28
(2005)

5. M. Khan, S. Din, S. Jabbar, M. Gohar, H. Ghayvat, S.C. Mukhopadhyay, Context-aware low power
intelligent SmartHome based on the Internet of things. Comput. Electr. Eng. 52, 208–222 (2016)

6. I. Koren, Computer Arithmetic Algorithms (Universities Press, New York, 2002)
7. X. Liu, E.S. Sinencio, An 86% efficiency 12 µW self-sustaining PV energy harvesting system with

hysteresis regulation and time-domain MPPT for IOT smart nodes. IEEE J. Solid-State Circuits 50(6),
1424–1437 (2015)

8. A.S. Madhukumar, F. Chin, Enhanced architecture for residue number system-based CDMA for high-
rate data transmission. IEEE Trans. Wirel. Commun. 3, 1363–1368 (2004)

9. H. Marzouqi, M. Al-Qutayri, K. Salah, Review of Elliptic Curve Cryptography processor designs.
Microprocess. Microsyst. 39(2), 97–112 (2015)

10. M.C. Mekhallalati, M.K. Ibrahim, New high radix maximally-redundant signed digit adder, in IEEE
International Symposium on Circuits and Systems, vol. 1 (1999), pp. 459–462

11. K. Navi, A.S. Molahosseini, M. Esmaeildoust, How to teach residue number system to computer
scientists and engineers. IEEE Trans. Educ. 54, 156–163 (2011)

12. B. Parhami, Generalized signed-digit number systems: a unifying framework for redundant number
representations. IEEE Trans. Comput. 39(1), 89–98 (1990)

13. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, Inc.,
Oxford, 2009)

14. D.S. Phatak, I. Koren, Hybrid signed-digit number systems: a unified framework for redundant number
representations with bounded carry propagation chains. IEEE Trans. Comput. 43, 880–891 (1994)

15. D.S. Phatak, T. Goff, I. Koren, Constant-time addition and simultaneous format conversion based on
redundant binary representations. IEEE Trans. Comput. 50, 1267–1278 (2001)

16. A. Safari, C.V.Niras, Y.Kong, Power-performance enhancement of two-dimensional RNS-basedDWT
image processor using static voltage scaling. VLSI J. Integr. 53, 145–156 (2016)

17. M. Salim, A.O. Akkirman, M. Hidayetoglu, L. Gurel, Comparative benchmarking: matrix multiplica-
tionon amulticore coprocessor and aGPU, inComputationalElectromagnetics InternationalWorkshop
(CEM) (IEEE, 2015)

18. M. Saremi, S. Timarchi, Efficient modular binary signed-digit multiplier for the moduli set {2n − 1,
2n, 2n + 1}. CSI J. Comput. Sci. Eng. 9(2 & 4(b)), 52–62 (2011)

19. M. Saremi, S. Timarchi, Efficient 1-out-of-3 binary signed-digit multiplier for the moduli set {2n −1,
2n, 2n +1}, in 2013 17th CSI International Symposium on Computer Architecture and Digital Systems
(CADS) (IEEE, 2013)



2164 Circuits, Systems, and Signal Processing (2019) 38:2138–2164

20. S. Timarchi, K. Navi, Efficient class of redundant residue number system, in Proc. IEEE Int. Symp.
WISP (2007), pp. 475–480

21. S. Timarchi, K. Navi, Arithmetic circuits of redundant SUT-RNS. IEEE Trans. Instrum. Meas. 58(9),
2959–2968 (2009)

22. S. Timarchi, M. Fazlali, Generalised fault-tolerant stored-unibit transfer residue number system mul-
tiplier for moduli set {2n − 1, 2n, 2n + 1}. IET Comput. Digit. Tech. 6(5), 269–276 (2012)

23. S. Timarchi, P. Ghayour, A. Shahbahrami, A novel high-speed low-power binary signed-digit adder,
in 16th CSI International symposium on Computer Architecture and Digital Systems (CADS) (2012),
pp. 357–363

24. S. Timarchi, M. Saremi, M. Fazlali, G. Georgi, High-speed binary signed-digit RNS adder with posibit
and negabit encoding, in 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integra-
tion (VLSI-SoC) (IEEE, 2013), pp. 58–59

25. S. Timarchi, N. Akbarzadeh, A. Hamidi, Maximally redundant high-radix signed-digit residue number
system, in 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS)
(2015)

26. E. Vassalos, D. Bakalis, Combined SD-RNS constant multiplication, in 2009 12th Euromicro Confer-
ence on Digital System Design, Architectures, Methods and Tools (2009), pp. 172–179

27. V.Volkov, J.W.Demmel,BenchmarkingGPUs to tune dense linear algebra, in InternationalConference
for High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008 (IEEE, 2008)

28. Z. Wang, Y. Liu, Y. Sun, Y. Li, D. Zhang, H. Yang, An energy-efficient heterogeneous dual-core
processor for Internet of Things, in IEEE International Symposium on Circuits and Systems (ISCAS)
(2015), pp. 2301–2304

29. Sh. Wei, K. Shimizu, Residue arithmetic circuits using a signed-digit number representation, in IEEE
International Symposium on Circuits and Systems

30. Sh. Wei, J. Changjun, Residue signed-digit arithmetic and the conversions between residue and binary
numbers for a Four-Moduli Set, in 2012 11th International Symposium on Distributed Computing and
Applications to Business, Engineering & Science (DCABES) (IEEE, 2012)

31. M. Zhang, Sh. Wei, High-speed modular multipliers based on a new binary signed-digit adder tree
structure, in Ninth International Symposium on Distributed Computing and Applications to Business,
Engineering and Science (2010), pp. 615–619


	Area-Time-Power Efficient Maximally Redundant Signed-Digit Modulo 2n  1 Adder and Multiplier
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Residue Number System (RNS)
	2.2 Redundant Number System
	2.3 Redundant Residue Number System (RRNS)

	3 MRSD and MRSD-RNS Encodings and Addition Algorithms
	4 Proposed Radix-2h MRSD-RNS Modulo 2k  1 Addition and Multiplication Algorithms
	4.1 Step 1 of the Algorithm 3: Digit-Product Computation
	4.2 Step 2 of the Algorithm 3: Digit-Product Rotation and Partial Product Generation
	4.3 Step 3 of the Algorithm 3: Partial Products Accumulation
	4.4 MRSD-RNS Examples

	5 Simulation Results and Comparison
	6 Conclusion
	References




