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Abstract
Input–output finite-time stability (IO-FTS) of fractional-order positive switched sys-
tems (FOPSS) is investigated in this paper. First of all, the concept of IO-FTS is
extended to FOPSS. Then, by using co-positive Lyapunov functional method together
with average dwell time approach, some sufficient conditions of input–output finite-
time stability for the considered system are derived. Furthermore, the state feedback
controller and the static output feedback controller are designed, and sufficient condi-
tions are presented to ensure that the corresponding closed-loop system is input–output
finite-time stable. These conditions can be easily obtained by linear programming.
Finally, three numerical examples are given to show the effectiveness of the theoreti-
cal results.
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1 Introduction

The concept of fractional calculus and its application have been widely studied dur-
ing the past three decades. Many people have made outstanding contributions for the
development of fractional-order theory [6,7,11,13,23,25]. Among them, Hilfer puts
forward fractional-order models which are applied in viscoelastic systems, dielectric
polarization and electromagnetic [7], and Podlubny involves in fractional-order con-
trol such as P I λDμ controller [23]. References [6,11,13,25] mainly introduce basic
theory of fractional-order integrals and derivations. In some practical applications,
fractional calculus is more available than integer calculus for the behavior of systems,
such as fractional-order biological systems, fractional-order Chua’s circuit, fractional
electrical networks, robotics and other areas. At the same time, there have been lots of
interesting results for fractional-order systems (see [14,17,18,22,26,34] and the ref-
erence therein). These results mentioned above refer to stability [26,34] and robust
control [14,22]. In [17,18], new admissibility conditions of fractional-order systems
have, respectively, addressed with order 0 < α < 1 and 1 < α < 2.

As we all know, switched systems are composed of a family of subsystems and a
logical rule. Positive systems are dynamical systems whose state and output variables
remain non-negative for future time interval whenever their initial conditions and
inputs are non-negative. Therefore, some researchers have investigated the fractional-
order positive systems [3,19] and fractional-order positive switched systems [8,32]. For
example, stabilization of continuous-time fractional positive systems is addressed by
using a Lyapunov function in [3], and positive fractional variable-order discrete-time
systems are presented in [19]. However, stability of fractional-order switching systems
is solved in frequency domain [8]. State-dependent switching control is discussed for
switched positive fractional-order systems by using the sliding sector method in [32].
For normal systems, Lyapunov function and average dwell time (ADT) approach are
always used to solve switched systems (see [5,29,34] and the reference cited in). But
there are very few articles to solve the control problems of fractional-order positive
switched systems by using Lyapunov functional method and ADT approach.

It isworth noting that the above results are focused on asymptotic stability and expo-
nential stability, which reflect the behavior of the system in an infinite-time interval.
However, in many practical applications, the systems happen in finite-time interval.
Peter has firstly proposed the concept of finite-time stability [24], which requires that
the state does not exceed a certain threshold over a appointed time interval. It should
be put forward that sometimes only the output, not the state needs to be restrained
within a bound. So, the concept of input–output finite-time stability (IO-FTS) is intro-
duced in [1]. It is necessary to study the problem of IO-FTS [2,4,9,15,16,20,28,30,33].
These results are involved in singular systems [30], impulsive jump systems [2] and
Markovian systems [28]. In addition, the IO-FTS of positive switched systems with
time-varying and distributed delay is proposed in [15], and discrete-time impulsive
switched linear systems with state delays are solved in [9].

The concept of input–output finite-time stability is also extended to fractional-order
systems in [20]. Recently, considerable attention is focused on fractional-order positive
switched systems, which are discussed with order between 0 and 1 based on ADT.
The guaranteed cost finite-time control of fractional-order positive switched systems is
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considered in [16]. Finite-time stability and stabilization of fractional-order positive
switched system is reported in [33]. Global exponential stability and stabilization
of fractional-order positive switched system is given in [4]. Since the systems are
inevitably affected by external factors , it is necessary to consider the systems with
disturbance. However, to our best knowledge, the result on the control problem of
IO-FTS for fractional-order positive switched systems (FOPSS) with disturbance has
not been investigated yet, which motivates our present paper.

From the above, this paper focuses on the IO-FTS for fractional-order positive
switched system with order between 0 and 1 based on ADT. The challenges we face
are how to establish Lyapunov function, how to deal with the disturbance and how to
design the average dwell time switching signal. The main advantages of this paper are
as follows: (i) The definition of IO-FTS is firstly extended to fractional-order positive
switched systems; (ii) by using ADT approach and multiple co-positive Lyapunov
functional method, two kinds of feedback controllers (state feedback controller and
static output feedback controller) are designed. The rest of this paper is organized
as follows: In Sect. 2, problem statements and preliminaries are introduced. Some
sufficient conditions guaranteeing the IO-FTS of the considered systems are given
in Sect. 3. Three numerical examples are provided to illustrate the effectiveness of
obtained results in Sect. 4. In Sect. 5, conclusion is drawn.

Notations: Throughout this paper, Rn is the n-dimensional Euclidean space. Rn×s

is the set of all (n × s) dimensional real matrices. Rn+ is the set of n-dimensional real
nonnegative vectors. A � 0 (A � 0) means that all the elements of A are positive
(non-negative). A � B (A � B) means that A − B � 0 (A − B � 0). In a similar
way, we can define A ≺ 0 (A � 0), A ≺ B (A � B). AT denotes the transpose
of matrix A. Γ (·) denotes the Gamma function. Let x ∈ R

n , L∞,[0,T ] denote the
space of the uniformly bounded vector-valued functions on the interval [0, T ]; that
is, s(t) ∈ L∞,[0,T ] if maxt∈[0,T ] ‖ w(t) ‖< ∞ holds. Matrices have compatible
dimensions if there are no special statements.

2 Problem Statements and Preliminaries

Fractional-order calculus is the generalization of integer-order calculus. There are
some different definitions of the fractional-order derivative. The commonly used
definitions are Grunwald–Letnikov, Riemann–Liouville and Caputo definitions. We
mainly use Caputo and Riemann–Liouville fractional-order derivative in this paper.

Definition 1 [20] The uniform formula of a fractional integral with α ∈ (0, 1) is
defined as

t0 I
α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ, (1)

where f (t) is an arbitrary integrate function, t0 I
α
t is the fractional integral of order α

on [t0, t] and Γ (·) is Gamma function, Γ (s) = ∫ ∞
0 t s−1e−tdt .
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Definition 2 [20] Caputo (C) definition of fractional derivativewithα ∈ (0, 1) is given
as

C
t0D

α
t f (t) = 1

Γ (1 − α)

∫ t

t0

f ′(τ )

(t − τ)α
dτ, (2)

C
t0D

α
t represents Caputo (C) fractional derivatives of order α of f (t) on [t0, t].

Definition 3 [16] Riemann–Liouville (RL) definition of fractional derivation with α ∈
(0, 1) is given as

RL
t0 Dα

t f (t) = 1

Γ (1 − α)

d

dt

∫ t

t0

f (τ )

(t − τ)α
dτ, (3)

RL
t0 Dα

t represents Riemann–Liouville (RL) fractional derivatives of order α of f (t) on
[t0, t].

From the above two definitions, we can obtain the following relations between
them:

RL
t0 Dα

t f (t) = C
t0D

α
t f (t) + t−α

Γ (1 − α)
f (t0). (4)

Lemma 1 [16] Let α ∈ (0, 1); if f (0) ≥ 0, then C
t0D

α
t f (t) ≤ RL

t0 Dα
t f (t).

Consider the following FOPSS :

C
t0D

α
t x(t) = Aσ(t)x(t) + Bσ(t)u(t) + Eσ(t)w(t),

y(t) = Cσ(t)x(t),
(5)

where x(t) ∈ R
n , u(t) ∈ R

m and y(t) ∈ R
z represent the system state, the control

input and the measure output, respectively. σ(t) : [0,∞) −→ N = {1, 2, . . . , n} is
switching signal of the system, where N is the number of the subsystems; ∀p ∈ N ,
Ap, Bp, Ep and Cp are constant matrices with appropriate dimensions. p denotes the
pth systems, and tq denotes the qth switching instant. w(t) ∈ R

l is the exogenous
disturbance and defined as

W1 = {w(·) ∈ L∞,[0,T ] : max ‖ w(t) ‖≤ d}, (6)

with a known scalar d > 0.

Assumption 1 For the system (5), Ap (∀p ∈ N ) areMetzlermatrices, Bp � 0, Ep � 0
and Cp � 0.

Definition 4 [15] System (5) is said to be positive if for any switching signals σ(t), ini-
tial condition x(t0) � 0, and disturbance input w(t) � 0, the corresponding trajectory
satisfies x(t) � 0 and y(t) � 0 for all t ≥ 0.

Lemma 2 [16]Amatrix is aMetzlermatrix if and only if there exists a positive constant
ς such that A + ς In ≥ 0.
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Definition 5 [4] For any switching signals σ(t) and T2 ≥ T1 ≥ 0, let Nσ(t)(T1, T2)
denote the switching numbers of σ(t) over the interval [T1, T2]. If there exist N0 ≥ 0
and Tα ≥ 0 such that

Nσ(t)(T1, T2) ≤ N0 + T2 − T1
τα

, (7)

then τα are called average dwell time (ADT), and N0 are called chattering bound.
Generally speaking, we choose N0 = 0 in the paper.

Lemma 3 [33] System (5) is positive if and only if Ap (∀p ∈ N) are Metzler matrices
and ∀p ∈ N, Bp � 0, E p � 0, and Cp � 0.

Definition 6 (IO-FTS) (Consider zero initial condition x(0) = 0) For a given time
constant T f , disturbances signalsW1 defined by (6), and a vector ε > 0; System (5) is
said to be input–output finite-time stable (IO-FTS) with respect to (ε, T f , d, σ (t)), if

w(t) ∈ W1 �⇒ yT (t)ε ≤ 1,∀t ∈ [0, T f ]. (8)

Lemma 4 [27] (Gronwall–Bellman inequality) Let f (t) and g(t) be continuous real-
valued functions and non-negative in a ≤ t ≤ b. If k is a nonnegative constant and
f (t) satisfies the integral inequality

f (t) ≤ k +
∫ t

a
f (s)g(s)ds, t ∈ [a, b], (9)

then

f (t) ≤ k exp

(∫ t

a
g(s)ds

)
, t ∈ [a, b]. (10)

Lemma 5 [21] From the definition of fractional integrals and Caputo derivatives,
k − 1 < α < k, we have

I α(Dαx(t)) = x(t) −
k−1∑
i=0

xi (t0)

i ! t i , (11)

in particular, when 0 < α < 1,

I α(Dαx(t)) = x(t) − x(t0), (12)

where I α represents t0 I
α
t , and Dα represents C

t0D
α
t .

Lemma 6 [4] (Cp inequality) For 0 < a < 1 and any positive real numbers x1, x2,
…, xk

n∑
k=1

xak ≤ n1−a

(
n∑

k=1

xk

)a

. (13)
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Lemma 7 [33] (Young’s inequality) For any positive real numbers a, b and any real
number x, y, it holds that

|x |a |y|b ≤ a

a + b
|x |a+b + b

a + b
|y|a+b. (14)

3 Main Results

The purpose of this paper is to design the state feedback controller u(t) = K1σ(t)x(t),
the static output feedback controller u(t) = K2σ(t)y(t) and a class of switching signals
σ(t) for FOPSS (5) such that the corresponding closed-loop system is input–output
finite-time stable.

3.1 Input–Output Finite-Time Stability Analysis

In this subsection, we will focus on the problem of IO-FTS for FOPSS (5) with
u(t) ≡ 0.

Theorem 1 Consider the system (5). Given positive constants T f , λ(λ > 1), μ ≥ 1
and vector ε > 0, if there exist positive vectors vp and ∀p ∈ N, such that the following
inequalities hold:

AT
pvp − μvp � 0, (3.1a)

ET
p vp ≺ r , (3.1b)

vp ≺ λvq , (3.1c)

CT
p ε ≺ vp, (3.1d)

and the average dwell time of the switching signal σ(t) satisfies

τα > τ ∗
α = δ

lnΓ (α) − ln(T f
α−1rd) − η

, (15)

then the FOPSS (5) is input–output finite-time stable, where

δ = T f ln λ + (1 − α)μT f

Γ (α + 1)
, η = N0 ln λ + ((1 − α)(N0 + 1) + αT f )μ

Γ (1 + α)
.

Proof According to Lemma 3 and Assumption 1, each subsystem of the switched
system (5) is positive. Construct the multiple linear co-positive Lyapunov function for
the system (5) as follows:

Vσ(t) = Vσ(t)(t, x(t)) = xT (x)vσ(t), (16)
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where vp ∈ R
n+. Denote t0, t1, t2,…, tk (we choose t0 = 0) as the switching instants

over the interval [0, T f ]. Along the trajectory of the system (5), we have

C
t0D

α
t Vσ(t)(t, x(t)) = xT (t)AT

σ(t)vσ(t) + wT (t)ET
σ(t)vσ(t). (17)

From (3.1a) and (3.1b), which implies that

C
t0D

α
t Vσ(t)(t, x(t)) ≤ μVσ(t)(t, x(t)) + rwT (t). (18)

Taking the fractional integral t0 I
α
t to both sides of (18) yields for t ∈ [tm, tm+1]

V (t, x(t)) ≤ Vσ(tm )(tm, x(tm)) + μ

Γ (α)

∫ t

tm
(t − τ)α−1Vσ(t)(τ, x(τ ))dτ

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ.

(19)

By Lemma 4, we know

V (t, x(t)) ≤ Vσ(tm )(tm, x(tm)) exp

{
μ

Γ (α)

∫ t

tm
(t − τ)α−1dτ

}

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ

= Vσ(tm )(tm, x(tm)) exp

{
μ

Γ (α + 1)
(t − tm)α

}

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ. (20)

From (3.1c), we get the following inequality

Vσ(tm )(tm, x(tm)) ≤ λVσ(t−m )(t
−
m , x(t−m )). (21)

By a similar method, together with exp{ μ
Γ (α+1) (t − tm)α} ≥ 0, we obtain

V (t, x(t))

≤ λVσ(t−m )(t
−
m , x(t−m )) exp

{
μ

Γ (α + 1)
(t − tm)α

}
+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ

≤ λVσ(tm−1)(tm−1, x(tm−1)) exp

{
μ

Γ (α + 1)
((t − tm)α + (tm − tm−1)

α)

}

+ exp

{
μ

Γ (α + 1)
(t − tm)α

}
λr

Γ (α)

∫ tm

tm−1

(t − τ)α−1wT (τ )dτ

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ
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≤ λ2Vσ(t−m−1)
(t−m−1, x(t

−
m−1)) exp

{
μ

Γ (α + 1)
((t − tm)α + (tm − tm−1)

α)

}

+ exp

{
μ

Γ (α + 1)
(t − tm)α

}
λr

Γ (α)

∫ tm

tm−1

(t − τ)α−1wT (τ )dτ

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ

≤ · · ·
≤ λNσ (t0,t)Vσ(t0)(t0, x(t0)) exp

{
μ

Γ (α + 1)
((t − tm)α + · · · + (t1 − t0)

α)

}

+ λNσ (t0,t) r

Γ (α)
exp

{
μ

Γ (α + 1)
((t − tm)α + · · · + (t2 − t1)

α)

}

∫ t1

t0
(t − τ)α−1wT (τ )dτ

+ λNσ (t0,t)−1 r

Γ (α)
exp

{
μ

Γ (α + 1)
((t − tm)α + · · · + (t3 − t2)

α)

}

∫ t2

t1
(t − τ)α−1wT (τ )dτ

+ · · · + λ2r

Γ (α)
exp

{
μ

Γ (α + 1)
((t − tm)α + (tm − tm−1)

α)

}

∫ tm−1

tm−2

(t − τ)α−1wT (τ )dτ

+ λr

Γ (α)
exp

{
μ

Γ (α + 1)
(t − tm)α

} ∫ tm

tm−1

(t − τ)α−1wT (τ )dτ

+ r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ. (22)

According to Lemmas 6 and 7

V (t, x(t))

≤ Vσ(t0)(t0, x(t0)) exp

{
Nσ (t0, t) ln λ + μ

Γ (α + 1)
((1 − α)(Nσ (t0, t) + 1)

+α(t − t0))

}
+ r

Γ (α)
exp

{
μ

Γ (α + 1)
(Nσ (t0, t)(1 − α) + (t − t1)α)

+Nσ (t0, t) ln λ

}∫ t1

t0
(t − τ)α−1wT (τ )dτ + · · ·

+ r

Γ (α)
exp

{
μ

Γ (α + 1)
(2(1 − α) + (t − tm−1)α) + 2 ln λ

}

∫ tm−1

tm−2

(t − τ)α−1wT (τ )dτ
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+ r

Γ (α)
exp

{
μ

Γ (α + 1)
((1 − α) + (t − tm)α) + ln λ

}

∫ tm

tm−1

(t − τ)α−1wT (τ )dτ + r

Γ (α)

∫ t

tm
(t − τ)α−1wT (τ )dτ

≤ Vσ(t0)(t0, x(t0))

× exp

{
Nσ (t0, t) ln λ + μ

Γ (α + 1)
((1 − α)(Nσ (t0, t) + 1) + α(t − t0))

}

+ rd

Γ (α)

× exp

{
t − t0

τα

ln λ + μ

Γ (α + 1)
((1 − α)(Nσ (t0, t) + 1) + α(t − t0))

}
tα−1

≤ exp

{
t − t0

τα

ln λ + μ

Γ (α + 1)
((1 − α)(Nσ (t0, t) + 1)

+α(t − t0))

}{
Vσ(t0)(t0, x(t0)) + rd

Γ (α)
tα−1

}
, (23)

due to t − t0 ≤ T f (t ≤ T f ). Let x(0) = 0 , then τα ≥ δ

lnΓ (α)−ln(T f
α−1rd)−η

,

yT (t)ε = xT (t)CT
σ(t)ε < xT (t)vσ(t) ≤ Vσ(t)(t, x(t))

≤ exp

{
δ

τα

+ η

}
rd

Γ (α)
T α−1
f ≤ 1.

FromDefinition 6,we can obtain that the system (5) is IO-FTSwith (ε, T f , d, σ (t)).
Thus, this completes the proof. ��
Remark 1 It is noted that the conditions (3.1a) and (3.1c) are the same as those in
[10,15,33]. No matter normal positive switched systems or fractional-order positive
switched systems, conditions (3.1a) and (3.1c) are indispensable. Especially, when
α = 1, it is proved that Theorem 1 is consistent with the results of input–output
finite-time control of positive switched without time-varying and distributed delays in
[15]. Therefore, it is easy to see that IO-FTS of FOPSS is the generalization of IO-
FTS on integer-order positive switched systems. However, there are many differences
between FOPSS and normal positive switched systems. We can know the former is
more complex and challenge from references [33] and the proof of Theorem 1.

Remark 2 In reference [10,15], there are two kinds of definitions for exogenous dis-
turbance input w(t), respectively. L p space and L∞ space are adopted in discrete
positive switched systems (non-fractional-order systems) [10], and L1 space and L∞
space are used in continuous positive switched systems (non-fractional-order sys-
tems) [15]. Owing to the special definition of fractional-order integral, L p space and
L1 space can not specifically defined up to now. So, we require the exogenous distur-
bance input belonging to L∞ space in this paper. That is, condition (6) is employed. In
previous works [5,9,10,15,30], the stability problems of switched systems with delays
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(non-fractional-order systems) are addressed based on Lyapunov functions approach.
However, for fractional-order switched systems with delays, two problems have not
been solved. The first problem is how to express Lyapunov functions; the second one
is how to calculate variable limit integral item. Therefore, the problems of fractional-
order switched systems with delays remain open. In the future work, it may be a
interesting topic.

Remark 3 In the proof of Theorem 1, equality I α(Dαx(t)) = x(t)− x(t0) is used. By
Lemma 4, we can know the papers is investigated for Caputo derivative with order
0 < α < 1. However, from the relationship between Caputo and Riemann–Liouville
fractional derivatives in Lemma 1, Riemann–Liouville derivatives can also be applied
to Theorem 1. So, the following conclusion holds.

Corollary 1 Replace C
t0D

α
t by RL

t0 Dα
t in Theorem 1. If the conditions (3.1a)–(3.1d) and

(15) hold, then the system (5) is IO-FTS with (ε, T f , d, σ (t)).

Proof By Lemma 1, we know

C
t0D

α
t V (x(t)) ≤ RL

t0 Dα
t V (x(t)) = xT (t)AT

σ(tm )vσ(tm )

≤ μVσ(tm )(tm, x(tm)), t ∈ [tm, tm+1].

The other part of the proof is similar to that in Theorem 1 and omitted here. ��
In the following subsection, we will design two kinds of controllers. Consider the

fractional-order switched systems as follows:

C
t0D

α
t x(t) = Aσ(t)x(t) + Bσ(t)u(t) + Eσ(t)w(t)

y(t) = Cσ(t)x(t)
(24)

3.2 State Feedback Controller Design

For the system (24), designing the state feedback controller u(t) = K1σ(t)x(t), such
that the corresponding closed-loop system is

C
t0D

α
t x(t) = Acσ(t)x(t) + Eσ(t)w(t),

y(t) = Cσ(t)x(t),
(25)

with Acσ(t) = Aσ(t) + Bσ(t)K1σ(t).

Theorem 2 Consider the system (25). Given positive constants T f , λ(λ > 1), μ ≥ 1
and vector ε > 0, if there exist positive vectors vp and p ∈ N, such that the following
inequalities hold:
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AT
pvp + f1p − μvp � 0, (3.2a)

ET
p vp ≺ r , (3.2b)

vp ≺ λvq , (3.2c)

CT
p ε ≺ vp, (3.2d)

where Ap + BpK1p are Metzler matrices. Then under ADT scheme (15), the FOPSS
(25) is input–output finite-time stable, where f1p = KT

1p B
T
p vp.

Proof By Lemma 3 and Assumption 1, we know the system (25) is positive. Replacing
Ap in (3.1a) with Ap + BpK1p, letting f1p = KT

1p B
T
p vp, then under the ADT (15),

we easily know that the closed-loop system (25) is input–output finite-time stable.
This completes the proof. ��
Corollary 2 Replace C

t0D
α
t by RL

t0 Dα
t in Theorem 2. If the conditions (3.2a)–(3.2d) and

(15) hold, then under the state feedback controller the corresponding closed-loop
system (25) is IO-FTS with (ε, T f , d, σ (t)).

3.3 Static Output Feedback Controller Design

Consider the system (24), under controller u(t) = K2σ(t)y(t), the corresponding
closed-loop system is given by

C
t0D

α
t x(t) = (Aσ(t) + Bσ(t)K2σ(t)Cσ(t))x(t) + Eσ(t)w(t),

y(t) = Cσ(t)x(t).
(26)

Theorem 3 Consider the system (26). Given positive constants T f , λ(λ > 1), μ ≥ 1
and vector ε > 0, if there exist positive vectors vp and p ∈ N, such that the following
inequalities hold:

AT
pvp + f2p − μvp � 0, (3.3a)

ET
p vp ≺ r , (3.3b)

vp ≺ λvq , (3.3c)

CT
p ε ≺ vp, (3.3d)

where Ap + BpK2pCp are Metzler matrices. Then under ADT scheme (15), the
FOPSS (26) is input–output finite-time stable, where f2p = CT

p K
T
2pB

T
p vp.

Proof By Lemma 3 and Assumption 1, we know the system (26) is positive. Replacing
Ap in (3.1a) with Ap + BpK2pCp, letting f2p = CT

p K
T
2p B

T
p vp, then under the ADT

(15), we easily know that the system (26) is input–output finite-time stable. This
completes the proof. ��
Corollary 3 Replace C

t0D
α
t by RL

t0 Dα
t in Theorem 3. If the conditions (3.3a)–(3.3d) and

(15) hold, then under the output feedback controller the corresponding closed-loop
system (26) is IO-FTS with (ε, T f , d, σ (t)).
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Remark 4 From above, two kinds of controllers are designed, and some sufficient
conditions of IO-FTS for FOPSS are obtained by linear programming in Theorem 3
and 4. In practical applications, it is not always possible to obtain all state. So, static
output feedback controller is better than state feedback controller. In the literature
[4,15], output feedback design approach is employed. obviously, it is easy to see that
conditions (3.2a) and (3.3a) are not standard linear programming after disposed. But
we convert nonlinear inequalities into linear inequalities by using variable substitution
method.

Next, we show an algorithm to obtain the feedback gain matrices K1p (or K2p).
Step 1 Giving the parameters λ, μ and solving (3.2a)–(3.2d) (or (3.3a)–(3.3d)) by

linear programming, positive vectors vp and f1p (or f2p) can be obtained.
Step 2Substituting vp , f1p (or f2p) into f1p = KT

1pB
T
p vp (or f2p = CT

p K
T
2pB

T
p vp),

K1p (or K2p) can be obtained.
Step 3 The gain K1p (or K2p) is substituted into Ap + B1pK p (or Ap + BpK2pCp).

If Ap + BpK1p (or Ap + BpK2pCp) are Metzler matrices, the K1p (or K2p ) are
acceptable. Otherwise, go to Step 1, then repeat Steps 2, 3.

4 Numerical Example

In this section, three examples will be given to illustrate the effectiveness of the pro-
posed methods.

Example 1 Consider linear electrical circuits composedof resistors, supercondensators
(ultra-capacitors), coils and voltage (current) sources. In practical problem, a circuit is
always containing exogenous disturbance signals such as circuit aging, environment
and human factors. Using the relations (2.82), (2.83) in [12] and Kirchhoff’s laws,
a switching-type fractional linear circuits systems could be written by the system
(5). Among them, x1(t) ∈ R

n1 represents voltages across the supercondensators;
x2(t) ∈ R

n2 represents currents in coils; u(t) ∈ R
m represents the voltages of the

circuits. And the parameters are given as follows:

A1 =
[−1.6 0

0 1.2

]
, E1 =

[
1
1.2

]
, C1 =

[
1.2 0.2
0.2 1.2

]
;

A2 =
[−1.5 0

0 −1.3

]
, E2 =

[
1.2
1

]
, C2 =

[
1.5 0
0 1.5

]
.

Let α = 0.5, μ = 1, λ = 2, T f = 10, r = 3 and d = 0.00001. Solving the
inequalities in Theorem 1 by linear programming, we get

v1 =
[
0.0208
0.6654

]
, v2 =

[
0.1264
0.4920

]
.

It is easily verified that Ap are Metzler matrices for p = 1, 2. Then according to
(15), we can obtain τ ∗

α = 1.7884. Choose τα = 2 > τ ∗
α . Let w(t) = e−0.5t sin t .
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Fig. 1 Switching signal of system (5)

Fig. 2 State trajectories of system (5)

Figures 1, 2, 3 and 4 show the simulation results, where x(0) = [0 0]T . Switching
signal of the system (5) with ADT is shown in Figure 1. State trajectories of the system
(5) are depicted in Figure 2. Figure 3 plots step responses of the system (5). Figure 4
plots the evolution of yT (t)ε ≤ 1. From Figure 4, we know the system (5) is IO-FTS.
It follows that the fractional electrical circuits systems (5) are positive and IO-FTS.
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Fig. 3 Step responses of system (5)

Fig. 4 Evolution of yT (t)ε of system (5)

Example 2 Consider the system (25) under the state feedback controller u(t) =
K1σ(t)x(t), the parameters are given as follows:

A1 =
[−0.1 0

0 −0.1

]
, B1 =

[
0.1
0

]
, E1 =

[
0.1
0.2

]
, C1 =

[
0.2 0.2
0.2 0.3

]
;

A2 =
[−0.1 0

0 −0.1

]
, B2 =

[
0.2
0.1

]
, E2 =

[
0.1
0.2

]
, C2 =

[
0.2 0.2
0.3 0.2

]
.
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Fig. 5 Switching signal of system (25)

Let α = 0.5, μ = 1, λ = 1.5, T f = 10, r = 4 and d = 0.00001. Solving the
inequalities in Theorem 2 by linear programming, we have

f1 =
[−3777.9

4101.0

]
, v1 =

[
845.3
120.36

]
; f2 =

[
97.8059
140.0599

]
, v2 =

[
0.7125
1.2700

]
;

K1 =
[−44.6932

48.5154

]
, K2 =

[
0.3629
0.5197

]
;

A1 + B1K1 =
[−4.5693 4.8515

0 −0.1000

]
, A2 + B2K2 =

[−0.0274 0.1039
0.0363 −0.0480

]
.

It is easily verified that Ap + BpK p are Metzler matrices for p = 1, 2. Then
according to (15), we can obtain τ ∗

α = 1.7181. Choosing τα = 2 > τ ∗
α . Let w(t) =

e−0.5t sin t . Figures 5, 6, 7 and 8 show the simulation results, where x(0) = [0 0]T .
Switching signal of the system (25) with ADT is shown in Fig. 5. State trajectories
of the system (25) are depicted in Fig. 6. Figure 7 plots step responses of the system
(25). Figure 8 plots the evolution of yT (t)ε ≤ 1. From Fig. 8, we know the system
(25) is IO-FTS.

Example 3 Consider the system (26) under the output feedback controller u(t) =
K2σ(t)y(t), the parameters are given as follows:

A1 =
[−0.2 0

0 −0.2

]
, B1 =

[
1
0

]
, E1 =

[
0.1
0.1

]
, C1 =

[
0.2 0.1
0.1 0.1

]
;

A2 =
[−0.1 0

0 −0.1

]
, B2 =

[
1
0

]
, E2 =

[
0.1
0.2

]
, C2 =

[
0.3 0.1
0.1 0.2

]
.
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Fig. 6 State trajectories of system (25)

Fig. 7 Step responses of system (25)

Let α = 0.6, μ = 1.1, λ = 1.5, r = 4, T f = 10 and d = 0.00001. Solving the
inequalities in Theorem 3 by linear programming, we have

f1 =
[
198.1667
28.7002

]
, v1 =

[
535.5710
428.909

]
; f2 =

[−1.2747
41.2399

]
, v2 =

[
39.3612
462.559

]
;

K1 =
[

3.1642
−2.6283

]
, K2 =

[−2.2250
6.3511

]
;

A1 + B1K1 =
[
0.2700 0.0536

0 −0.1000

]
, A2 + B2K2 =

[−0.1324 1.0477
0 −0.1000

]
.
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Fig. 8 Evolution of yT (t)ε of system (25)

Fig. 9 Switching signal of system (26)

It is easily verified that Ap + BpK pCp are Metzler matrices for p = 1, 2. Then
according to (15), we can obtain τ ∗

α = 2.5174. Choosing τα = 2.7 > τ ∗
α . Let

w(t) = e−0.6t sin t . Figures 9, 10, 11 and 12 show the simulation results, where
x(0) = [0 0]T . Switching signal of the system (26) with ADT is shown in Fig. 9.
State trajectories of the system (26) are depicted in Fig. 10. Figure 11 plots step
responses of the system (26). Figure 12 plots the evolution of yT (t)ε ≤ 1. From
Fig. 12, we know the system (26) is IO-FTS.
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Fig. 10 State trajectories of system (26)

Fig. 11 Step responses of system (26)

5 Conclusion

In the paper,wehavedealtwith the problemof IO-FTS for FOPSSwith order between0
and 1. By constructing multiple linear co-positive Lyapunov functions and using ADT
approach, two kinds of controllers are designed, and some sufficient conditions in
terms of linear programming are obtained to guarantee that the closed-loop system is
IO-FTS. Finally, three examples are given to illustrate the effectiveness of the proposed
methods.
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Fig. 12 Evolution of yT (t)ε of system (26)

Our future efforts will focus on input–output finite-time stability of fractional-order
positive switched time-delay systems (or singular fractional-order positive switched
systems). IO-FTS (or FTS, GES) of FOPSS with order between 1 and 2 may be
interesting topics in the future study.
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