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Abstract
This paper deals with order reduction in discrete-time systems. The reduction tech-
nique is based on utilization of Routh approximation and multiplicative operator.
Various combinations of Routh table are used to derive the desired numerator and
denominator polynomial of reduced-order model. Numerical examples are presented
to verify the proposed algorithm.

Keywords z-Domain interval systems · Order reduction · Multiplicative operator ·
Routh approximation

1 Introduction

Modelling of a physical system and its controller design often result in higher-order
mathematical representation. The analysis of such higher-order systems is tedious and
complicated demanding an appropriate model order reduction technique.

The available methodologies for model reduction in non-interval systems offer
well-known algorithm: Routh approximation (RA). The approximation features the
advantage of simplicity in mathematical computation and stability retention of the
resulting reducedmodel. Due to the above-mentioned advantages, the researchers have
focused their attention on possible extension to other type of systems. The continuous-
time RA is applied to discrete-time systems by using an appropriate transformation.
Further, the attention of the researchers was drawn to extend the method to interval
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systems. The viability of RA for interval systems is explored in paper by Choudhary
and Nagar [6]. The extension of RA to interval systems does not guarantee the stability
of reduced model for a stable high-order interval system. The fundamental reason for
limitation is irreversibility of interval arithmetic.

This paper focuses on reduction in discrete-time interval systems which are
described by z-domain transfer function. The available techniques in this category
are multipoint Pade [20] and Pade approximation allowing dominant pole retention
[13]. The other methods of reduction in interval systems include a higher-order inte-
grator approach [10] sampled by a zero-order hold, finite impulse response technique
[8], H∞ error performance [25], μ-dependent approach [26], direct truncation [2]
and gamma–delta approximation [3]. The reduction in discrete-time interval systems
based on co-prime factor approach and linear matrix inequality is proposed by Li [16].
The technique proposed by Gupta and Narain [19] is based on clustering and dominant
pole retention. Ruchira [22] proposed an extendedmethodology from continuous-time
domain to discrete-time domain. The technique is essentially a mixed method com-
prising Mikhailov stability criterion and factor division method. Kumar et al. [14, 21]
offered a mixed technique for discrete-time interval systems by using improved bilin-
ear Routh approximation. Sandhya [23] considered particle swarm optimization with
fuzzy c-means clustering and Kharitonov theorem. The other techniques are covered
in references [1, 9, 15, 27].

Arithmetic rules are vital in the context of interval systems. The various model
reductionmethods available in the literature for interval systems such as timemoments
and Markov parameters [5, 11, 12, 24] have fully exploited arithmetic rules. However,
the technique of multiplicative operator is not used for interval systems. This is the
prime motivation to carry out the present work. The multiplicative operator in con-
junctionwithRA is utilized to derive the simplifiedmodel. The novelty of the proposed
method is twofold: (a) application of amultiplicative operator and (b) finding an appro-
priate arrangement from various combinations of μ-(mu) and ν-(nu) (Routh) tables to
derive the numerator and denominator polynomials of reduced model of desired order.

The outline of the paper is as follows: The interval systems are described in Sect. 2.
The details of the newalgorithmare described in Sect. 3. Section 4 provides the illustra-
tive examples. Section 5 discusses the important observations followed by conclusion
in Sect. 6.

2 Interval Systems

Basic control theory and its analysis are based on the concept of linear and non-interval
systems. The research community in early 1990s encountered an unusual category of
problem, i.e. robustness and uncertainty in the system. A brief discussion over such
system is mentioned below.

Uncertainty in broad sense is the lack of exact knowledge, regardless of the cause for
its existence. Precisely, thorough study of any environmental,management or technical
system discovers the various types of uncertainties lying within. It is classified into
two categories based on their basic nature: (a) aleatoric uncertainties and (b) epistemic
uncertainties. Former is the representative of unknowns that vary each time when the
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same experiment is performed, i.e. inherent randomness and natural variability. Latter
is due to things known in principle but not in practice. It is the result from imperfect
knowledge, and linguistic uncertainty, arising from language issues. The first is usually
irreducible, whereas the latter can be quantified and reduced.

Uncertainties when considered for deriving mathematical representation of the sys-
tem offer their best approximation. Uncertainty is not only due to the lack of system
knowledge but often subjected to perturbations that change dynamics over time. In
physical systems, these uncertainties are the consequence of un-modelled dynamics,
sensor noises, disturbances, manual errors, parameter variations, actuator constraints
and many others. Presence of these uncertainties alters the coefficients of transfer
function from non-interval to interval parameters. Thus, systems having coefficients
of unknown nature are known as uncertain systems, and when these systems are
bounded by a finite range or boundary, it is designated as Interval Systems. The pres-
ence of uncertainties in the systems results in difficulties for the system simulation,
design and implementation. Since no adequate method emerged for reducing uncer-
tainty description in systems, research developed towards their order reduction. Few
examples of uncertain practical systems are:

Cold rolling mill

H(s) � [4.2, 21]s2 + [3, 16]s + [0.5, 2.6]

s4 + [3, 8]s3 + [1, 2.5]s2 + [0.05, 0.15]s
, (1)

H(s) � [4.5, 24]s3 + [5, 29]s2 + [0.9, 5]s + [0.05, 0.3]

s5 + [4, 9]s4 + [4, 9]s3 + [0.7, 2]s2 + [0.03, 0.08]s
. (2)

Oblique wing aircraft

H(s) � [54, 74]s + [90, 166]

s4 + [2.8, 4.6]s3 + [50.4, 80.8]s2 + [30.1, 33.9]s + [−0.1, 0.1]
. (3)

Electric motors

H(s) � 50 ∗ 10−3

[0.0000096, 0.0000336]s3 + [0.0012, 0.0028]s2 + [0.002025, 0.002475]s
.

(4)

A. Interval Arithmetic

Arithmetic rules are essential to study each and every aspect of systems. Similar is the
case with interval systems that call for interval arithmetic rules. The brief history of
arithmetic rules is:

The idea of Interval Computation pioneered from the monograph by Moore [17].
The literature on interval arithmetic is available at http://www.cs.utep.edu/interval-c
omp/. Recently, Society for Industrial and Applied Mathematics published a book on
Interval Arithmetic [18].

Since the proposed technique in the paper deals with interval systems, their math-
ematical computation demands interval arithmetic which is very similar to the basic

http://www.cs.utep.edu/interval-comp/
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arithmetic rules in mathematics. Only difference is the parameters in the interval arith-
metic are of uncertain nature illustrated as follows:

Let [a, b] and [c, d] be two interval parameters where a, c are minimum and b,
d are maximum entries in the specific intervals. Analogous to the arithmetic rules of
definite numerical, interval arithmetic exists as:

Addition: [a, b] + [c, d] � [a + c, b + d], (5)

Subtraction: [a, b] − [c, d] � [a − d, b − c], (6)

Multiplication: [a, b] × [c, d] � [Min(ac, ad, bc, bd),Max(ac, ad, bc, bd)], (7)

Division:
[a, b]

[c, d]
� [a, b] ×

[
1

d
,
1

c

]
(8)

provided [c, d] /∈ [0].

These uncertainties significantly affect the stability and performance of the system.
Ever since the discovery of uncertainty in system, stability is amajor issue. The stability
of interval system is checked byKharitonov theorem [4]. It involves the standardRouth
algorithm to check stability. It states that an uncertain family of polynomials is robustly
stable if, and only if, the Kharitonov polynomials are stable. The theorem holds true
in the discrete domain also [7].

3 Model Order Reduction

This section presents the details of proposed algorithm for higher- and lower-order
system representations. Tools for the validation of algorithm are also included.

A. Proposed Algorithm

Consider a higher-order z-domain interval system described by

Hm,n(z) � Xm(z)

Yn(z)
� Xmzm + Xm−1zm−1 + · · · + X0

Ynzn + Yn−1zn−1 + · · · + Y0
, (9)

where Xi � [X−
i , X

+
i ], i �0, 1, 2, …, m, and Yj � [Y−

j , Y
+
j ], j �0, 1, 2, …, n. Let the

system under consideration be a proper system where m ≤n.
Apply Euler forward differentiation technique, i.e. z �p +1 to transform the

discrete-time system to its corresponding continuous-domain representation. Apply-
ing the transformation on (9), one obtains

H(p) � Bm(p)

An(p)
� bm pm + bm−1 pm−1 + · · · + b0

an pn + an−1 pn−1 + · · · + a0
, (10)

where bi � [b−
i , b

+
i ], i �0, 1, 2,…, m, and aj � [a−

j , a
+
j ], j �0, 1, 2, …, n.
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Table 1 μ-Table
c0,0 �cq c0,1 �cq−2 c0,2 �cq−4 c0,3 �cq−6 …

c1,0 �cq−1 c1,1 �cq−3 c1,2 �cq−5 c1,3 �cq−7 …

c2,0 c2,1 c2,2
… … …

cq−1,0 cq−1,1

cq,0

Table 2 ν-Table
c0,0 �c0 c0,1 �c2 c0,2 �c4 c0,3 �c6 …

c1,0 �c1 c1,1 �c3 c1,2 �c5 c1,3 �c7 …

c2,0 c2,1 c2,2
… … …

cq−1,0 cq−1,1

cq,0

In the newmethod, usage ofmultiplication between the numerator and denominator
polynomials offers a larger polynomial retaining the characteristics of both. We term
it as π operator over the numerator and denominator polynomials. It is obtained as:

Tq(p) � Bm(p)An(p) � Cq p
q + Cq−1 p

q−1 + Cq−2 p
q−2 + · · · + C1 p + C0, (11)

where Ci � [C−
i , C

+
i ], i �0, 1, 2, …, q and q �m +n.

Coefficients of the reduced-order transfer function are computed from various com-
binations of μ- and ν-tables described in Tables 1 and 2, respectively. Entries for the
μ-table are from Tq(p)and for the ν-table are from T̂q(p). The latter is the inverse of
former one defined as

T̂q(p) � 1

p
Tq

(
1

p

)
� C0 p

q + C1 p
q−1 + C2 p

q−2 + · · · + Cq−1 p
1 + Cq . (12)

Both the tables (μ- and ν-tables) represent the conventional Routh array and have
entries as ci,j � [c−

i,j, c
+
i,j], i �0, 1, 2, … and j �0, 1, 2, ….

Entries from the third row onwards in Tables 1 and 2 are as follows:

ci, j � ci−2, j+1 −
(
ci−2,0.ci−1, j+1

)
ci−1,0

, (13)

where ci,j � [c−
i,j, c

+
i,j], i �2, 3, 4, …, q −1,q and j �0, 1, 2, …, q. The use of RA to

interval systems is described in [2] where all the possible arrangement of RA is used
for both non-interval and interval systems for continuous- and discrete-time systems.

The two tables (μ- and ν-tables) are considered for obtaining the reduced-order
transfer function Rk(p), where k(<q) or k <m ≤n. k represents the desired order of
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reduced transfer function. The reduced polynomial coefficients are considered via four
cases illustrated in the proposed method. It should be noted that the effects of all the
coefficients of the first two rows are taken into consideration while computing the
coefficients below the third rows.

Thus, reduced transfer function of order k(<q) or k <m ≤n is constructed with
(q + 1)th and (q + 2 − k)th rows for numerator and (q + 1 − k)th and (q + 2 − k)th
rows for denominator coefficients. Accordingly, the generalized transfer function is
expressed as:

Rk(p) � Ck(p)

Dk(p)
� c(q+1),0 pk−1 + c(q+2−k),0 pk−2 + c(q+1),1 pk−3 + · · ·

d(q+1−k),0 pk + d(q+2−k),0 pk−1 + d(q+1−k),1 pk−2 + · · · . (14)

The Rk(p)is transformed to desired Rk(z)using transformation p � z −1 resulting
in

Rk(z) � Ck(z)

Dk(z)
� ck−1zk−1 + ck−2zk−2 + · · · + c0

dkzk + dk−1zk−1 + · · · + d0
, (15)

where ci � [c−
i , c

+
i ] and di � [d−

i , d
+
i ], i �0, 1, 2, …, k −1, k.

The four cases to compute the coefficients of the reduced model numerator and
denominator polynomials are as follows:

Case 1 Use only μ-table for both numerator and denominator polynomials.

Case 2 Use only ν-table for both numerator and denominator polynomials.

Case 3 Use μ-table for numerator and ν-table for denominator polynomials.

Case 4 Use ν-table for numerator and μ-table for denominator polynomials.

Once the reduced-order representations are derived using above cases, a comparison
is made with each other and the existing techniques. Finally, the case that offer better
performance and preserves the stability qualifies for selection of reduced model.

Figure 1 demonstrates the flow chart of the proposed algorithm.

B. Tools for Validation

For discrete-time systems, weighted error sum over a fixed interval of time is used
for performance analysis. It is expressed as:

J �
∞∑
k�0

[yn(k) − yk(k)]
2 (16)

where yn(k) and yk(k) are the step responses of the higher-order system Hm,n(z) and
reduced-order model Rk(z), respectively.

Minimum J indicates approximate model of the higher-order representation. Since
the system under consideration is of interval structure, two individual transfer func-
tions, namely with lower limits and with upper limits, account for performance check.
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Fig. 1 Flow chart for the proposed algorithm

Thus, the J under two error columns, lower and upper limits, makes the analysis and
comparison easy with the proposed techniques.

Graphical version of the approximate tracking of the higher- and lower-order rep-
resentations of the systems is presented through Bode plot.
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Table 3 μ-Table

p5 [17.55, 18.42] [287.59, 305.16] [288.13, 310.12]

p4 [109.9, 115.88] [393.79, 420.77] [95.5, 103.5]

p3 [217.07, 245.53] [270.79, 295.66]

p2 [235.93, 299.57] [95.5, 103.5]

p1 [163.08, 226.47]

p0 [95.5, 103.5]

Table 4 ν-Table

p5 [95.5, 103.5] [393.79, 420.77] [109.9, 115.88]

p4 [288.13, 310.12] [287.59, 305.16] [17.55, 18.42]

p3 [−14.11, 14.94] [102.58, 110.48]

p2 [−2005.71, 2733.37] [17.55, 18.42]

p1 [102.46, 110.61]

p0 [17.55, 18.42]

4 Illustrative Examples

This section presents three numerical examples to demonstrate procedure and assess
the performance of the proposed algorithm.

Example 1 Consider a higher-order system from [2, 3, 20] with its p-domain repre-
sentation as

H2,3(p) � [3.25, 3.35]p2 + [10, 10.35]p + [9.55, 10]

[5.4, 5.5]p3 + [17.2, 17.6]p2 + [19.7, 20.3]p + [10, 10.35]
. (17)

Multiplying the two polynomials (numerator and denominator) results T5(p) as:

(18)

T5 (p) �
(
[3.25, 3.35] p2 + [10, 10.35] p + [9.55, 10]

)
(
[5.4, 5.5] p3 + [17.2, 17.6] p2 + [19.7, 20.3] p + [10, 10.35]

)
,

(19)

T5 (p) � [17.55, 18.42] p5 + [109.9, 115.88] p4

+ [287.59, 305.16] p3+ [393.76, 420.77] p2

+ [288.13, 310.12] p + [95.5, 103.5] .

Form Table 3 from the above T5(p).
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Reciprocate T5(p) to obtain T̂5(p) to lead to Table 4 as:

(20)

T̂5 (p) � [95.5, 103.5] p5 + [288.13, 310.12] p4

+ [393.76, 420.77] p3+ [287.59, 305.16] p2

+ [109.9, 115.88] p + [17.55, 18.42] .

Reduced models allowing the four cases derived in p-domain and z-domain are,
respectively:

Case 1 Use only μ-table for both numerator and denominator polynomials

R2(p) � [163.08, 226.47]p + [95.5, 103.5]

[235.93, 299.57]p2 + [163.08, 226.47]p + [95.5, 103.5]
, (21)

R2(z) � [163.08, 226.47]z + [−130.97,−59.58]

[235.93, 299.57]z2 + [−436.06,−245.39]z + [104.96, 239.99]
. (22)

Case 2 Use only ν-table for both numerator and denominator polynomials

R2(p) � [102.46, 110.61]p + [17.55, 18.42]

[−2005.71, 2733.37]p2 + [102.46, 110.61]p + [17.55, 18.42]
, (23)

R2(z) � [102.46, 110.61]z + [−93.06,−84.04]

[−2005.71, 2733.37]z2 + [−5364.2, 4122]z + [−2098.8, 2649.3]
. (24)

Case 3 Use μ-table for numerator and ν-table for denominator polynomials

R2(p) � [163.08, 226.47]p + [95.5, 103.5]

[−2005.71, 2733.37]p2 + [102.46, 110.61]p + [17.55, 18.42]
, (25)

R2(z) � [163.08, 226.41]z + [−130.97,−59.58]

[−2005.71, 2733.37]z2 + [−5364.2, 4122]z + [−2098.8, 2649.3]
. (26)

Case 4 Use ν-table for numerator and μ-table for denominator polynomials

R2(p) � [102.46, 110.61]z + [17.55, 18.42]

[235.93, 299.57]z2 + [163.08, 226.47]z + [95.5, 103.5]
, (27)

R2(z) � [102.46, 110.61]z + [−93.06,−84.04]

[235.93, 299.57]z2 + [−436.06,−245.39]z + [104.96, 239.99]
. (28)

Table 5 lists the computed error sum for the above cases and comparison with
existing techniques. It presents superiority of Case 4 over other methods. Discussion
over the explicit finding is done in next section.

Figures 2 and 3 present the frequency response for all the cases for lower- and
upper-limit transfer functions, respectively. The figures depict an appropriate tracking
of the responses.

Example 2 Consider higher-order interval system considered in [2, 3, 13]

H2,3(z) � [1, 2]z2 + [3, 4]z + [8, 10]

[6, 6]z3 + [9, 9.5]z2 + [4.9, 5]z + [0.8, 0.85]
. (29)
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Table 5 Error sum for second-order model for Example 1

Methods Error sum

Lower limit Upper limit

Proposed Case 1 0.0080 0.0215

Proposed Case 2 0.4263 0.3233

Proposed Case 3 0.4667 0.2769

Proposed Case 4 0.0281 0.0575

Direct truncation [2] 8.3993 7.3392

Gamma–delta approximation[3] 0.0011 5.4626×10−5

Multipoint Pade [20] 0.0721 0.0392

Fig. 2 Frequency response for lower limit (Example 1)

Following the proposed procedure, second-order reduced models are obtained as:
Case 1

R2(z) � [352, 1045.04]z + [−796.64,−10.4]

[−580.1, 737.79]z2 + [−1123.58, 2205.24]z + [−1376.74, 727.39]
. (30)

Case 2

R2(z) � [25.27, 564.13]z + [−558.13,−13.27]

[−19.33, 360.07]z2 + [−694.87, 602.79]z + [−577.46, 346.8]
. (31)

Case 3

R2(z) � [352, 1045.04]z + [−796.64,−10.4]

[−19.33, 360.07]z2 + [−694.87, 602.79]z + [−577.46, 346.8]
. (32)
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Fig. 3 Frequency response for upper limit (Example 1)

Table 6 Error sum for second-order model for Example 2

Methods Error sum

Lower limit Upper limit

Proposed Case 1 0.5982 1.1731

Proposed Case 2 2.1726 1.5213

Proposed Case 3 337.7032 6.5997

Proposed Case 4 0.0442 0.1860

Direct truncation [2] 0.0278 0.0077

Gamma–delta approximation[3] 0.1292 0.0443

Pade and dominant poles [13] 0.1810 0.0741

Case 4

R2(z) � [25.27, 564.13]z + [−558.13,−13.27]

[−580.1, 737.79]z2 + [−1123.58, 2205.24]z + [−1376.74, 727.39]
. (33)

The corresponding error sum is given in Table 6. The frequency response plots for
lower and upper bounds are shown in Figs. 4 and 5, respectively.

The examples clearly indicate the superiority of Case 4 for computing reduced
model.

Example 3 Consider the automatic voltage regulator system shown in Fig. 6. The
parameters of system are T1 �5, T2 �2, T3 �0.07, T4 �0.04, T5 �0.1, a1 �2.5,
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Fig. 4 Frequency response for lower limit (Example 2)

Fig. 5 Frequency response for upper limit (Example 2)
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1

1 1
a

sT +
2

2 1
a

sT +
3

3 1
a

sT +
4

4 1
a

sT +
5

5 1
a

sT +
u y

Fig. 6 Higher-order automatic voltage regulator

Table 7 Error sum for second-order model for Example 3

Methods Error sum

Lower limit Upper limit

Proposed Case 1 0.4927 0.3988

Proposed Case 2 0.4091 0.0137

Proposed Case 3 24.2955 0.3731

Proposed Case 4 0.0073 0.0147

Direct truncation [2] 5.9277×10−4 2.9768×10−4

Gamma–delta approximation [3] 0.1197 0.0331

a2 �3.2, a3 �6, a4 �3, a5 �3 (T1, T2, T3, T4, T5 in s). Due to uncertainties, the
system is an interval system described by following z transfer function (T �0.01 s)

H5(z) �
[0.95, 1.05]z4 + [11.10, 12.27]z3 + [11.56, 112.78]z2

+ [1.76, 1.95]z + [0.031, 0.03]

[168.22, 185.93]z5 + [−473.21,−428.14]z4 + [349.91, 386.74]z3

+ [−94.12, 85.15]z2 + [−4.07,−3.68]z + [−1.24,−1.13]

. (34)

Reduced model by Case 4 is

R2(z) � [−3740.8, 5834]z + [−5674.2, 3936]

[−41060, 45979]z2 + [−121011, 111415]z + [−71886, 76564]
. (35)

Table 7 indicates superiority of the second-order reduced model with other tech-
niques. Figures 7 and 8 show frequency response plots for lower and upper limits,
respectively.

5 Discussion

It is observed that different techniques proposed in this paper have different error
bounds. It will enable us to choose an appropriate model based on accuracy require-
ment. Some important observations are: in Table 5, proposedCase 1 and gamma–delta
approximation offer minimum error; and in Tables 6 and 7, direct truncation presents
minimum error. It may be stated that of all the error tables, the Case 4 appears to be
the finest, offering minimum error. The prime advantage of Case 4 over the others
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Fig. 7 Frequency response for lower limit (Example 3)

Fig. 8 Frequency response for upper limit (Example 3)

is the stability retention. This check is performed by Kharitonov theorem for inter-
val systems. Thus, in spite of higher error bounds, Case 4 is superior to the existing
techniques.

Further, Figs. 2, 3, 4, 5, 7 and 8 present the frequency responses of reduced-order
models and higher-ordermodels. The responses clearly illustrate the validity of higher-
order system approximation.
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As future work, the reduced-order model may be derived by considering numerator
and denominator polynomials separately. The disadvantage of considering separate
polynomials is overweighed by lengthy tables and hence more computation.

6 Conclusion

The Routh approximation has been considered here for model reduction in interval
system due to its principal advantage of stability retention. The results of the illus-
trative examples show that proposed method can be a viable alternative for reducing
complex system. The focus of the proposed algorithm is the employment of multi-
plicative operator and the selection of different criterion for deriving the numerator
and denominator polynomials of reduced-order representation.
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