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Abstract
This paper proposes an improved variable regularization parameter (VRP) for sign
subband adaptive filter, which is derived on the basis of the mean-square deviation
(MSD) analysis. Since it is difficult to get access to the exact values of some quantities
in the MSD, the VRP is calculated by minimizing the upper bound of a certain term
which is employed to update the MSD. Moreover, a re-initialization mechanism that
can enhance the tracking capability is developed. We also discuss the computational
complexity of our finding. The proposed scheme enjoys more merits than several prior
algorithms, which is illustrated by sufficient simulations designed for both the system
identification and acoustic echo cancelation applications in the presence of impulsive
noise.

Keywords Variable regularization · Sign subband · Adaptive filter · Tracking
capability · Impulsive noise

1 Introduction

Adaptive filtering algorithms have been widely used in practical applications such as
acoustic echo cancelation, network echo cancelation, channel equalization and active
noise control [3, 7, 8, 10, 19, 21]. Among these algorithms, the least mean squares
algorithm (LMS) is recognized as a typical algorithm due to its simplicity and easy
implementation. Based on theLMSalgorithm, its normalized version called theNLMS
was developed to overcome the gradient noise amplification problem in the LMSwhen
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input vector is large [16]. However, colored inputs which are very common tend to
degrade the performance for both the LMS and NLMS algorithms. In order to address
this problem, the normalized subband adaptive filter (NSAF) was investigated [9],
which can filter the fullband correlated inputs into the subband signals that approx-
imate Gaussian white signals. Subsequently, to speed up the convergence rate when
identifying sparse impulse responses, a class of proportionate NSAF algorithms was
extensively developed, such as the proportionate NSAF (PNSAF) and μ-law PNSAF
(MPNSAF) algorithms [1, 2].

Since impulsive noises which may produce more outliers than Gaussian model
are frequently encountered in practical applications, a series of algorithms aimed at
improving robustness against impulsive noises were developed, such as the sign-type
algorithms [13, 14, 20], M-estimate-type algorithms [4, 22, 23] and maximum corren-
tropy algorithms [5, 6].Among these robust algorithms, the sign subband adaptive filter
(SSAF) [13, 20] that utilizes the sign function has attracted much attention because it
can be easily implemented and achieve desirable performance in the presence of strong
impulsive noises. Unfortunately, the conventional SSAF is obliged to a compromise
between fast convergence rate and small steady-state misalignment. As is known to
all, the variable step size (VSS) strategy is an effective method for overcoming this
drawback [15, 18]. Following this idea, the variable step size sign subband adaptive
filter (VSS-SSAF) was investigated to solve this conflicting requirement [17]. Apart
from the VSS scheme, the variable regularization parameter is another technique for
addressing the previously stated tradeoff. Correspondingly, the variable regularization
parameter (VPR) sign subband adaptive filter (VRP-SSAF) was proposed [11], which
is obtained by minimizing the L1-norm of the subband a posteriori error vector that
subjects to a constraint on the tap-weight vector of the filter.

Motivated by the mean-square deviation (MSD) analysis, this paper accomplishes
an improved variable regularization parameter for SSAF (IVRP-SSAF) by making
the MSD undergo the steepest descent from the current iteration to the next, which is
different from the previous VRP-SSAF that is based on the minimization of the L1-
norm of the subband a posteriori error. Since it is difficult to calculate the exact values
of several quantities in the procedure, we get the proposed VRP by minimizing the
upper bound of a certain termwhich is used to update theMSD.To enhance the tracking
ability of the scheme, we design a re-initialization mechanism for the regularization
parameter to detect the sudden change in the system. Meanwhile, the computational
complexity of the proposed algorithm is discussed. Sufficient simulations demonstrate
the superiority of the proposed IVRP-SSAF algorithm.

Notation For convenient reading, the dimensions of the vectors or matrices used in
what follows are summarized in Table 1.

2 Review of the SSAF

Consider an unknown M-dimensional vector wo that satisfies the following linear
model

d(n) � uT(n)wo + η(n) (1)
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Table 1 Dimension of the vector
or matrix, where M denotes the
length of the filter, N is the
number of subbands

Vector or matrix Dimension

wo M × 1

u(n) M × 1

ui (k) M × 1

w(k) M × 1

U(k) M × N

ηD(k) N × 1

dD(k) N × 1

eD(k) N × 1

w̃(k) M × 1

ea (k) N × 1

where d(n) is the desired signal, u(n) � [u(n), u(n − 1), · · · , u(n − M + 1)]T

denotes the input vector, η(n) refers to the disturbance noise and (·)T stands for vector
or matrix transpose. Figure 1 presents the structure of the SSAF, where N denotes
the number of subbands. Hi (z) and Gi (z) for i � 0, 1, . . . , N − 1 are the analysis
filters and the synthesis filters, and ↓ N and ↑ N stand for N -fold decimation and
interpolations, respectively. The desired signal d(n) and input signal u(n) are parti-
tioned into the subband signals di (n) and ui (n) by means of the analysis filters bank
Hi (z). Then, di (n) and yi (n) are decimated to di,D(k) and yi,D(k) which is defined as
yi,D(k) � uTi (k)w(k), where ui (k) � [ui (kN ), ui (kN − 1), . . . , ui (kN − M + 1)]T.
Symbols n and k denote the original sequences and decimated sequences, respectively,
and they satisfy n � kN .

The update equation of the SSAF is expressed as

w(k + 1) � w(k) + μ
U(k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ

(2)

whereμ represents the step size, sgn(·) is the sign function, δ denotes the regularization
parameter to avoid numerical difficulty, and eD(k) � dD(k) − UT(k)w(k) with

dD(k) � UT(k)wo + ηD(k) (3)

and

U(k) � [
u0(k), u1(k), . . . , uN−1(k)

]
(4)

ηD(k) � [
η0,D(k), η1,D(k), . . . , ηN−1,D

]T (5)

where ηi,D(k) accounts for the i th subband measurement noise with zero mean and
variance σ 2

ηi, D
.
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Fig. 1 Structure of the SSAF

2.1 Proposed IVRP-SSAF Algorithm

To facilitate the derivation, following the same method in [11] that assumes the step
size to be one and replaces the regularization parameter with its time-varying version

w(k + 1) � w(k) +
U(k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

(6)

where δ(k) accounts for the variable regularization parameter. The weight error vector
w̃(k) and noise-free a priori subband error ei,a(k) are defined, as follows:

w̃(k) � wo − w(k). (7)

ei,a(k) � uTi (k)w̃(k). (8)

2.2 Design of the Variable Regularization Parameter

To proceed, an assumption which has been widely used in the literatures [9, 12] needs
to be introduced
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Assumption 1 The off-diagonal elements satisfy uTi (k)u j (k) ≈ 0, i �� j if the fre-
quency responses of the analysis filters do not significantly overlap.

Combining (7) gives rise to the update of the weight error vector w̃(k) for (6)

w̃(k + 1) � w̃(k) − U(k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

. (9)

Taking the square and mathematical expectation of both sides of (9) yields the
recursion of the MSD

MSD(k + 1) � MSD(k) − 2E

⎧
⎨
⎩

eTa (k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭

+ E

{
sgn

[
eTD(k)

]
UT(k)U(k)sgn[eD(k)]∑N−1

i�0 uTi (k)ui (k) + δ(k)

}
(10)

whereMSD(k) � E
{
w̃T(k)w̃(k)

}
denotes the transientMSDat iteration k, and ea(k) �[

e0,a(k), e1,a(k), · · · , eN−1,a(k)
]T refers to the noise-free a priori subband error

vector.
Under Assumption 1, we have

UT(k)U(k) � diag
[
uT0 (k)u0(k), uT1 (k)u1(k), . . . , u

T
N−1(k)uN−1(k)

]
(11)

and (10) can be simplified as:

MSD(k + 1) � MSD(k) − 2E

⎧
⎨
⎩

eTa (k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭

+ E

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N−1∑
i�0

uTi (k)ui (k)

∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

Let

�(k) � −2E

⎧
⎨
⎩

eTa (k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭ + E

{ ∑N−1
i�0 uTi (k)ui (k)∑N−1

i�0 uTi (k)ui (k) + δ(k)

}
(13)

Since eD(k) � ea(k) + ηD(k), �(k) is expanded as
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�(k) � −2E

⎧
⎨
⎩

(
eTD(k) − ηTD(k)

)
sgn[eD(k)]√∑N−1

i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭ + E

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N−1∑
i�0

uTi (k)ui (k)

∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

� −2E

⎧
⎨
⎩

‖eD(k)‖1 − ηTD(k)sgn[eD(k)]√∑N−1
i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭ + E

{ ∑N−1
i�0 uTi (k)ui (k)∑N−1

i�0 uTi (k)ui (k) + δ(k)

}

(14)
Considering that the term for ηTD(k)sgn[eD(k)] is difficult to be calculated, we

employ the method designed in [17] to obtain the upper bound of ηTD(k)sgn[eD(k)]

ηTD(k)sgn[eD(k)] � ηTD(k)sgn
(
UT(k)w̃(k) + ηD(k)

)

≤ ∥∥ηD(k)
∥∥
1 ≤ K Nσηi, D � K

√
Nση (15)

where σ 2
η � Nσ 2

ηi, D
is widely used in the subband filtering algorithms [9, 12, 17], and

K is a constant value with its range (0, 3] [17].
Invoking (15), the upper bound of �(k) is presented as follows:

�(k) ≤ −2E

⎧
⎨
⎩

‖eD(k)‖1 − ∥∥ηD(k)
∥∥
1√∑N−1

i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭ + E

{ ∑N−1
i�0 uTi (k)ui (k)∑N−1

i�0 uTi (k)ui (k) + δ(k)

}

≤ −2E

⎧
⎨
⎩

‖eD(k)‖1 − K
√
Nση√∑N−1

i�0 uTi (k)ui (k) + δ(k)

⎫
⎬
⎭ + E

{ ∑N−1
i�0 uTi (k)ui (k)∑N−1

i�0 uTi (k)ui (k) + δ(k)

}
� �̄(k)

(16)

The regularization parameter δ(k) that enables the MSD to undergo the steepest
descent from iteration k to k + 1 can be achieved by taking the first-order derivative
of (16) with respect to δ(k), as follows:

∂�̄(k)

∂δ(k)
� E

⎧
⎪⎪⎨
⎪⎪⎩

‖eD(k)‖1 − K
√
Nση

[∑N−1
i�0 uTi (k)ui (k) + δ(k)

] 3
2

⎫
⎪⎪⎬
⎪⎪⎭

− E

⎧
⎪⎨
⎪⎩

∑N−1
i�0 uTi (k)ui (k)[∑N−1

i�0 uTi (k)ui (k) + δ(k)
]2

⎫
⎪⎬
⎪⎭

� E

⎧
⎪⎨
⎪⎩

[
‖eD(k)‖1 − K

√
Nση

]√∑N−1
i�0 uTi (k)ui (k) + δ(k) − ∑N−1

i�0 uTi (k)ui (k)
[∑N−1

i�0 uTi (k)ui (k) + δ(k)
]2

⎫
⎪⎬
⎪⎭

(17)

A suboptimal δ(k) is thus obtained by setting (17) to zero

δ(k) � E

⎧
⎨
⎩

[ ∑N−1
i�0 uTi (k)ui (k)

‖eD(k)‖1 − K
√
Nση

]2

−
N−1∑
i�0

uTi (k)ui (k)

⎫
⎬
⎭. (18)
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2.3 Practical Considerations

As can be seen in (18), it is difficult to calculate the exact regularization parameter
because it is essentially a statistic. Following the method in [17], the moving average
strategy can be used to compute δ(k), as follows:

δ(k) �
{

αδ(k − 1) + (1 − α)max(χ (k), δ(k − 1)), if χ (k) > 0
δ(k − 1), otherwise

. (19)

where α denotes the smoothing factor close to one, and χ (k) is expressed as

χ (k) �
[ ∑N−1

i�0 uTi (k)ui (k)

‖eD(k)‖1 − K
√
Nση

]2

−
N−1∑
i�0

uTi (k)ui (k). (20)

Remark 1 Due to the stochastic approximation in (15), χ (k) may be negative. Thus,
the update of the regularization parameter needs to be constrained to χ (k) > 0. When
0 < χ (k) ≤ δ(k − 1), one will have δ(k) � δ(k − 1). And, if χ (k) > δ(k − 1), we
will get δ(k) > δ(k − 1). This means δ(k) ≥ δ(k − 1) is guaranteed as long as δ(k) is
updated, which caters to the evolution of the regularization parameter.

2.4 Re-initializationMechanism

The monotonically increasing behavior of δ(k) cannot ensure its tracking capa-
bility when the system suddenly changes. Therefore, to improve the tracking
ability of the algorithm, a re-initialization mechanism designed for δ(k) is pre-
sented by learning from [18], as shown in Table 2. In this table, mod( ·) denotes
the remainder operator, VT and VD refer to the positive integers (VT > VD),

C � sort
[ |e(k)|

‖u(k)‖2+ε
, . . . ,

|e(k−VT +1)|‖u(k−VT +1)‖2+ε

]T
where sort(·) accounts for the ascend-

ing order operation, M � diag(1, . . . , 1, 0, . . . , 0) is a diagonal matrix with its
first VT − VD elements set to one, and ξ is a threshold value.

Note that the re-initialization mechanism is designed for the nonstationary environ-
ment. When the noise level is large, VT − VD should be increased to discard the large
noise samples that will otherwise contribute as outliers for the estimation of a change
in the system. If the condition �k > ξ holds, this means that the sudden change in the
system happens at the current iteration, and we need to initialize several parameters
including δ(k) and w(k). If the change is not too large (ctrlnew > ctrlold), the second
line of the “if” sentence can solve the tracking problem without restarting the delta
sequence. If no change is detected, the regularization parameter will be updated by
the previously developed manners in (19) and (20).

2.5 Computational Complexity

In this subsection, we compare the computational complexity of the proposed IVRP-
SSAF and several subband-type algorithms. For the IVRP-SSAF, the computational
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Table 2 Summary of the re-initialization mechanism

if mod (k, VT
/
N ) � 0

ctrlnew � CTMC
VT −VD

end

�k � (ctrlnew − ctrlold)
√
(δ(k) +

∑N−1
i�0 uTi (k)ui (k))

if �k > ξ

δ(k) � δ(0)

w(k) � 0

else if ctrlnew > ctrlold

δ(k) � 1(
1/

√
δ(k−1)+

∑N−1
i�0 uTi (k)ui (k) + ctrlnew−ctrlold

)2 −
N−1∑
i�0

uTi (k)ui (k)else

invoke (19) and (20)

update of the weight vector

end

ctrlold � ctrlnew

Table 3 Computational complexity of various subband-type algorithms

Algorithms Multiplications Additions Comparisons

NSAF 3M + 3NL + 1 3M + 3N (L − 1) 0

SSAF M + 2M/N + 3NL 2M + M/N + 3NL −
2N − 1

0

VRP-SSAF 3M + 2M/N + 3NL + 1 4M + (M − 1)/N +
3NL − 2N − 2

1/N

VSS-SSAF M + (2M + 3)/N + 3NL 2M + (M + 2)/N +
3NL − 2N

2/N

Proposed 3M +(2M +4)/N +3NL 4M + M/N + 3NL −
2N − 2

1/N

cost regarding the re-initializationmechanism has not been taken into account because
it is performed only every VT input samples, and we just perform the calculation in
(6), (19) and (20). We calculate the total number of multiplications, additions and
comparisons for one fullband input sample as the scale of the computational com-
plexity. Table 3 shows the results, where the symbol L stands for the length of the
analysis filters and synthesis filters. As we can see, the NSAF algorithm requires
3M + 3NL + 1 multiplications and 3M + 3N (L − 1) additions, while the SSAF algo-
rithm demands fewer multiplications and additions than it. Because of the additional
computation for VRP, the VRP-SSAF algorithm requires more multiplications and
additions compared with the SSAF algorithm, amounting to 3M + 2M/N + 3NL + 1
and 4M + (M − 1)/N + 3NL − 2N − 2, respectively. The VSS-SSAF algorithm
slightly increases the computational complexity as comparedwith theSSAFalgorithm,
demanding M +(2M +3)/N +3NL multiplications and 2M +(M +2)/N +3NL−2N
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Fig. 2 Impulse response of the sparse acoustic echo path

additions. Owing to calculating the proposed VRP, our scheme has the highest
computational cost, which needs 3M + (2M + 4)/N + 3NL multiplications and
4M + M/N + 3NL − 2N − 2 additions. This is tolerable and can be compensated by
the improved performance.

3 Simulations

In this section, the proposed algorithm is evaluated by simulations conducted for both
the system identification and echo cancelation. The sparse acoustic echo path with
M � 512 coefficients (the sampling frequency is 8 kHz) is used as the unknown
system, as depicted in Fig. 2. As is known to all, with the increase in subband, the
algorithm tends to obtain faster convergence rate but also suffers frommore expensive
computational cost [12]. Thus, to balance the conflict, the cosine-modulated filter bank
with N � 4 subbands is employed. Themeasurement noise consists of two partswhere
one is a white Gaussian noise with variance σ 2

η � 10−3, and the other is an impulsive
interference modeled as a Bernoulli–Gaussian process, i.e., v(k) � q(k)h(k), where
q(k) is a white Gaussian process, and h(k) is a Bernoulli process with the probability
mass function given by P[q(k)] � 1−Pr . (Pr denotes the probability of the occurrence
of the impulsive interference.) In the experiments, the variance for v(k) is set to σ 2

v �
1000E

[
y2(k)

]
with y(k) � uT(k)wo. The initial vector of the adaptive filter is set to a

zero vector, and the regularization parameter is initialized as δ(0) � 10−4. The relevant
parameters for the re-initialization mechanism are set to the recommended values in
[18], as VT�3M, VD � 0.75VT , ξ � 1, ε � 10−6. The initial values for ctrlnew
and ctrlold are set to zero. The NMSD, defined as 10 log10

[‖wo − w(k)‖2/‖wo‖2
]
, is

used to evaluate the performance. The results are the average of 100 independent trials.

3.1 System Identification

In this subsection, the correlated input is generated by filtering the zero-meanGaussian
random sequence through a first-order system G(z) � 1/(1−0.95z−1). The length of
filter is M � 512 as well as the number of subbands is N � 4.
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Fig. 3 NMSD curves of the proposed algorithm with different α, and K � 1. a Pr � 0.001, b Pr � 0.01,
c Pr � 0.1

Figure 3 compares the results of the proposed algorithm with different α. As can be
seen, the proposed algorithm with α � 0.999 achieves better performance, especially
in terms of the steady-state misalignment, than that with other values no matter in
which case of Pr . With the decrease in α, the performance of the algorithm degrades.
Therefore, for the IVRP-SSAF, the selection of α � 0.999 will be appropriate.

Figure 4 compares the results of the proposed algorithmwith respect to K . For both
Pr � 0.001 and Pr � 0.01, the IVRP-SSAF with K � 2 or K � 3 exhibits similar
performance. By contrast, the IVRP-SSAF with K � 1 performs better than that with
other values, yielding the lowest steady-state misalignment. In the case of Pr � 0.1,
the learning curves of the proposed algorithm with different K are nearly the same,
which means that the value of K makes a trivial impact to its performance. Therefore,
the selection of K � 1 for the IVRP-SSAF will be utilized for simulations.

Figure 5 compares the learning curves of various algorithms in the presence of
impulsive noise, where the probability is selected as Pr � 0.001. To facilitate the com-
parison among the VRP-SSAF, VSS-SSAF and the proposed algorithm, the value of ρ
for theVRP-SSAF is obtained by training, and the values of K andα for theVSS-SSAF
are recommended values in the literature [17]. As can be seen, the NSAF algorithm
performs poorly since it is not equipped with capability to combat impulsive noise.
In contrast, the performance of the SSAF, VRP-SSAF and VSS-SSAF algorithms has
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Fig. 4 NMSDcurves of the proposed algorithmwith different K , andα � 0.999.a Pr � 0.001,b Pr � 0.01,
c Pr � 0.1

significant improvement due to their robustness against impulsive noise. Importantly,
as one can see, the proposed IVRP-SSAF performs better than other algorithms, which
provides the fastest convergence rate and lowest steady-state misalignment. Note that
all the tested algorithms, except the VSS-SSAF algorithm, have tracking abilities.

Figure 6 carries out the comparison of various algorithms in the case of Pr � 0.01.
Similar to the results in Fig. 5, the proposed algorithm still obtains the best performance
in terms of both the convergence rate and steady-state misalignment.

Figure 7presents the results of several algorithms in the case of Pr � 0.1.Becauseof
the adverse effect of strong impulsive noise, all the tested algorithms have experienced
a disastrous decrease in the performance. In the situation of keeping the same step size
used inFigs. 6 and7, theNSAFalgorithmbehaves divergent. The remaining algorithms
maintain convergent since they can prevent the impulsive noise from damaging the
adaptive process. Moreover, as compared to the SSAF, VRP-SSAF and VSS-SSAF
algorithms, the proposed algorithm enjoys more advantages, which is obvious after
the sudden change in the unknown system.

In Fig. 8, the evolutions of the regularization parameter using logarithm scale
10 log10 δ(k) are presented in different impulsive noise environments. As can be seen,
before the change in the system, in the situation of P � 0.001 or P � 0.01, the
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Fig. 6 Comparison of NMSD curves of the proposed algorithm, NSAF, SSAF, VRP-SSAF and VSS-SSAF,
and Pr � 0.01. For the VRP-SSAF, δ(0) � 0.001 and δp � 0.0001. The unknown vector wo changes to
−wo at the middle of iterations

steady-state value of 10 log10 δ(k) is close to 120, while in the case of P � 0.1, it
is approximate to 90, which implies the strong impulsive noise could jeopardize the
performance of the proposed scheme. After the change, the regularization parameter
maintains a similar evolutionary trend as before.

3.2 Echo Cancelation

The speech input, depicted in Fig. 9, is utilized to examine the proposed algorithm in
an acoustic echo cancelation application. The length of filter is M � 512 as well as
the number of subbands is N � 4.
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As can be seen from Fig. 10, the NSAF algorithm provides the worst result, which
becomes divergent when its step size is selected as μ � 0.001. In contrast to the
NSAF algorithm, the SSAF, VRP-SSAF and VSS-SSAF algorithms greatly improve
their convergence rates and reduce the steady-statemisalignments. The performance of
the VRP-SSAF algorithm is inferior to that of the SSAF and VSS-SSAF algorithms. It
is worth noting that the proposed IVRP-SSAF exhibits the fastest convergence rate and
arrives at the lowest steady-state misalignment compared with other tested algorithms.

4 Conclusions

In this paper, the IVRP-SSAF algorithm that can suppress impulsive noise has been
proposed. The proposed VRP was derived by minimizing the upper bound of a certain



Circuits, Systems, and Signal Processing (2019) 38:1396–1411 1409

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

-1.5

-1

-0.5

0

0.5

1

Sample index

A
m

pl
itu

de

Fig. 9 Impulse response of the speech input

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 105

-20

-15

-10

-5

0

5

10

15

Iterations

N
M

S
D

(d
B

)

NSAF (μ=0.0001)
NSAF (μ=0.001)
SSAF (μ=0.005)
VRP-SSAF (ρ=0.5)
VSS-SSAF (K=1, α =0.9999)
proposed

Fig. 10 NMSD curves of the proposed algorithm, NSAF, SSAF, VRP-SSAF and VSS-SSAF for the acoustic
echo cancelation, and Pr � 0.001. For the VRP-SSAF, δ(0) � 0.001 and δp � 0.0001

term that is used to update the MSD. We have designed a re-initialization mechanism
to enhance the tracking capability as well as discussed the computational complexity
of the algorithm. Sufficient experiments have illustrated that the proposed IVRP-SSAF
algorithmoutperforms theNSAF, SSAF,VRP-SSAF andVSS-SSAF algorithms in the
impulsive noise scenario for both system identification and acoustic echo cancelation
applications.

Remark 2 For better understanding the proposed scheme, a nomenclature table is sum-
marized as follows.
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Summary of the nomenclature list

Symbol Nomenclature

d(n) Desired signal

η(n) Measurement noise

Hi (z) Analysis filters

Gi (z) Synthesis filters

N Subband number

↓ N N-fold decimations

↑ N N-fold interpolations

di, D(k) Subband desired signal

yi, D(k) Subband output signal

ηi, D(k) Subband measurement noise

ei,a (k) Priori subband error

MSD Mean-square deviation

wo Unknown vector

u(n) Input vector

ui (k) Subband input vector

w(k) Weight vector

U(k) Subband input matrix

ηD(k) Subband noise vector

dD(k) Subband desired vector

eD(k) Subband error vector

w̃(k) Weight error vector

ea (k) Prior subband error vector
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