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Abstract
In this paper, the weak derivatives (WD) criterion is introduced to solve the frequency
estimation problem of multi-sinusoidal signals corrupted by noises. The problem is
therefore modeled as a new least squares optimization task combined with WD. To
overcome the potential basis mismatch effect caused by discretization of the frequency
parameters, a modified orthogonal matching pursuit algorithm is proposed to solve
the optimization problem by coupling it with a novel multi-grid dictionary training
strategy. The proposed algorithm is validated on a set of simulated datasets with white
noise and stationary colored noise. The comprehensive simulation studies show that
the proposed algorithm can achieve more accurate and robust estimation than state-
of-the-art algorithms.
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1 Introduction

The frequency estimation of multi-sinusoidal signals in additive noise can be eas-
ily applied in diverse areas, such as the direction estimation of arrival narrowed
sources signals, power supply systems, speech, radar, and sonar signal processing,
and biomedical engineering [6, 14, 17, 19, 26, 28]. Given white additive noise, a
variety of approaches have been proposed for the frequency estimation problem, and
they demonstrate differences in the estimation accuracy and computational complex-
ity. These approaches include fast Fourier transform (FFT), modified iteration scheme
algorithm, characteristic polynomial-based methods, and subspace-based methods [4,
5, 15, 17, 18, 26, 27, 29]. The colored additive noise is frequently encountered in
practice [10, 22]. Computational methods developed for this scenario include higher-
order statistics [7, 22, 23], prefiltering-based ESPRIT [10], and parametric least square
estimator [11–13, 24]. The least squares (LS) method [2, 3, 20] is the most widely
used among these methods, because it is simple and does not require significant prior
knowledge in signal statistics. However, just as most of the existing state-of-the-art
methods, the LS algorithm suffers from middle or low signal-to-noise ratio (SNR).

The multi-sinusoidal signals generally contain a parsimonious structure with a
small number of unit norm sinusoids. Therefore, the sparse representation theory is
commonly used in the frequency estimation of multi-sinusoidal signals to obtain the
best sparse approximation of the observed signals. For efficient implementation, the
orthogonal matching pursuit (OMP) algorithm is a greedy algorithm that iteratively
identifies the sinusoidal atom that yields the greatest improvement in approximation
quality in the dictionary. The dictionary is generally designed by discretizing the
frequency parameter using a grid. When the frequency is roughly discretized, the
size of the dictionary will be small, and OMP becomes computationally attractive for
identifying the best atom at each iteration. However, it is more likely that the true
underlying frequencies lie outside a rougher grid. This is called the “basis mismatch”
or “off-grid” effect, which significantly comprises the reconstructing performance.
More recent methods, such as gradient basis local search and Newton-basis cyclic
refinement [16], have been developed to alleviate the problem.

To enhance the robustness of frequency estimation given noisy signals, this
paper introduces the weighted LS optimization with a penalized term of the weak
derivation (WD). Mathematically, WD generalizes the concept of derivative for non-
differentiable functions. WD has the ability to suppress the noises. The LS criterion is
a commonly used criterion which minimizes the sum of the squared residuals between
the observed and the fitted values. However, the LS method ignores the connections
among the data points, especially for the time series signals. The individual data points
are connected with each other through the derivatives of the time-continuous function.
Ignoring the connection information may easily lead to overfitting. Therefore, the
usage of derivatives has been studied in some system identification tasks [1, 21], and
WD has been successfully utilized in the identification of nonlinear dynamic systems
and has achieved more accurate approximation [8]. Thus, to some extent, WD can
prevent overfitting caused by the LS optimization and can suppress the noise. This
proposed LS+WD optimization model is solved by a modified OMP algorithm. In
addition, a novel multi-grid dictionary learning (MGDL) strategy is applied to allevi-
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ate the possible basis mismatch effect. Each MGDL iteration ranks the atoms by the
OMP and then inserts new samples around the frequency vectors corresponding to the
top atoms. The proposed method is validated using simulated data with both white
and colored noises at different SNRs. Compared to state-of-the-art algorithms, the
proposed algorithm can obtain more accurate estimation with higher computational
efficiency.

2 Background

2.1 LS Frequency Estimation for Multi-sinusoidal Signals Model

We use y(n) to denote the observed p-component multi-sinusoidal signal, which is
modeled as

y(n) �
p∑

i�1

xlsi sin(ωi nts) + e(n), n � 1, . . . , N , (1)

where the parameters xlsi and ωi are, respectively, the amplitude and frequency of the
i-th component, ts is the sampling period,e(n) denotes the additive noise process and
N is the number of samples.

Let

gi � [ sin(ωi · ts) sin(ωi · 2ts) · · · sin(ωi · Nts) ]T, (2)

then the LS frequency estimation can be achieved by minimizing the following loss
function

min
x,ω

JLS �
∥∥∥∥∥y −

p∑

i�1

xlsi gi

∥∥∥∥∥

2

2

, (3)

where y � [ y(1) y(2) · · · y(N ) ]T.

2.2 Weak Derivation

Let z be a function in the Lebesgue space L1([a, b]), and ϕ(t) ∈ C∞
0 ([a, b]) is a

smooth function with compact support on [a, b]. Then D(z(t)) is a weak derivative of
z(t), if

∫ b
a z(t)D(ϕ(t))dt � − ∫ b

a ϕ(t)D(z(t))dt , and D(·) is called the weak derivation
operator. An efficient method to calculate D( · ) was derived in [8].

Dy(n) � y(n) ∗ d

dn
ϕ(n), (4)

Dgi (n) � gi (n) ∗ d

dn
ϕ(n). (5)
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Fig. 1 An example ofmulti-sinusoidal signals before and after transformation. The solid line denotes the true
valueswhile the dashed line denotes the noisy observed data. aBefore transformation,b after transformation
by the weak derivative operator

Here, the filter ϕ(n) is set as a Gaussian function since it is widely used to achieve
smoothing effect on the observed signals. d

dnϕ(n) is calculated using the first-order
difference to approximate the derivative of ϕ(n).

To illustrate the operatorD’s ability to suppress the noise, an examplewith amixture
of three sinusoidal components corrupted by the additive Gaussian noise is shown in
Fig. 1. We investigate the noise effect on the signal before and after transformation by
the operatorD. The left panel indicates that the noise effect on the signal is evident and
the discrepancy between the true values and the noisy observed data is huge before
transformation. In contrast, the discrepancy is largely reduced after both the true values
and the noisy signal are transformed by the operator D. These results indicate that the
associated weak derivatives are capable of reducing the noise effect.

3 TheModified OMP Algorithm

3.1 TheWeighted Criterion

To enhance the robustness of the algorithm, a LS+WD criterion is introduced to
modify the objective function on (3):

JLS+WD �
∥∥∥∥∥y −

p∑

i�1

xigi

∥∥∥∥∥

2

2

+ μ

∥∥∥∥∥D
(
y −

p∑

i�1

xigi

)∥∥∥∥∥

2

2

. (6)

The first term measures the local approximation error by calculating the difference
between the observed and reconstructed signals, while the second term characterizes a
more general divergence between the trend of the observed and reconstructed signals.
The tradeoff parameter μ is applied to balance the importance of the “local error” and
the “general error” in the training phase, which can be selected by cross-validation.
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Based on the definition of the weak derivatives, minimizing the improved weighted
criterion (6) is equivalent to solving a new least squares problem

[
y

μDy

]
�

p∑

i�1

xi

[
gi
Dgi

]
. (7)

3.2 Modified Orthogonal Matching Pursuit

The classic OMP is an efficient scheme to iteratively solve the LS-type optimization
problems by constructing the model term by term. Given discrete observations of the
multi-sinusoidal signal y(n), n � 1, . . . , N and the original dictionary gi (n), n �
1, . . . , N , the discrete forms of (4) and (5) can be written as

Dy(n) �
n+n0∑

k�n

y(k) · ϕ′(n − k),

Dgi (n) �
n+n0∑

k�n

gi (k) · ϕ′(n − k),

where ϕ′(·) � d
dnϕ(·), n0 is the support of the function ϕ(·), and n � 1, . . . , N − n0.

The matrix form of (7) can be written as

YLS+WD � GLS+WDx, (8)

where

YLS+WD � [y(1) · · · y(N )μDy(1) · · · μDy(N − n0)]
T, (9)

GLS+WD � [gi (1) · · · gi (N )Dgi (1) · · · Dgi (N − n0)]
T, (10)

andx � [ x1 x2 · · · x2N−n0 ]
T.

It follows that a classic OMP can be applied to solve (8) by minimizing the loss
function (6).

3.3 Multi-grid Dictionary Training Strategy

In the classic OMP, the candidate parameters are typically sampled uniformly using a
grid.However, it is rather challenging to select a proper sampling rate.A low-resolution
grid with a small sampling rate is likely to cause serious off-grid effect and lead to
bad reconstruction performance. On the other hand, a high-resolution dictionary with
a large amount of atoms results in a heavy computational burden. Therefore, instead
of defining a large size of dictionary, we propose a multi-grid scheme to adaptively
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Table 1 Multi-grid dictionary learning algorithm (MGDL)

...

refine a coarse dictionary. The coarse dictionary G(0) is constructed by discretizing
the frequency parameters with a sampling rate of 10 within the frequency range of the
signal. Table 1 describes the procedure of updating the dictionary G(l−1) to G(l). At
steps 1 and 2, OMP is utilized to select the index set indl ofG(l−1), and the size of indl
is n f candl . At step 3, the active frequency set Ωl is a subset of the frequency sampling
set fusl−1 with the indices of indl . The new frequency set fusl is obtained at step 4
by inserting new samples in the neighborhood of Ωl . Finally, the new dictionary G(l)

can be constructed according to frequency set fusl based on Eqs. (2) and (10). The
iteration terminates when the maximum level is reached.

4 TheModified OMP (MOMP) Algorithm

The modified OMP algorithm for the frequency estimation of multi-sinusoidal signals
can be illustrated as Fig. 2.

Initialization: Set hyper-parameters μ, Gaussian function ϕ(n) with support n0,
original dictionaryG(0) built from the initial frequency set fus0 � {ω1, ω2, . . . , ωn f0}.

Step 1 Given the current dictionary G(0), use OMP to obtain a solution x(0) and
fus1.

(1) Let l � 1. For the dictionary G(0), use the test function to get the new

G̃(0) � [g̃1 · · · g̃n f0 ] �
[

g1 · · · gn f0
Dg1 · · · Dgn f0

]
,

with gi � [ sin(ωi · ts) sin(ωi · 2ts) · · · sin(ωi · Nts) ]T.
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Fig. 2 Algorithm flow chart

(2) For r0 � y, Y0
I−LS � [r̃0] �

[
λr0

μDr0

]
; therefore, we obtain

l1 � argmax
1≤ j≤nM

{C(r̃0, g̃ j )},

where the function C( · , · ) denotes the correlation coefficient. Then, the first
orthogonal regressor can be chosen as h1 � gl1 , and the residual vector can be
updated as

r1 � r0 − rT0h1
hT1h1

h1.

(3) In general, let us assume that at the (m −1)-th step, a subset G
(0)

m−1 consisting of
(m − 1) significant bases gl1 , gl2 . . . glm−1 has been determined, and these bases
have been transformed into a new group of orthogonal basis h1, . . . hm−1. Let

h(m)
j � g j −

m−1∑

k�1

gTj hk

hTk hk
hk,

lm � argmax
j ��lk ,1≤ j≤m−1

{
C

(
r̃m−1,

[
h(m)
j

Dh(m)
j

])}
,

The m-th significant basis can then be chosen as hm � h(m)
lm

. The residual vector
is given by

rm � rm−1 − rTm−1hm
hTmhm

hm .
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The algorithm terminates until the maximum level n f cand1 is reached. Then, Ω1 �
{ωl1, ωl2 , . . . ωl

n f cand1
}, so fus1 by inserting new samples in the neighborhood of Ω1.

Step 2 Update G(l) using MGDL strategy in Table 1. Obtain the MOMP solution
x(l) and fusl+1 at the current dictionary G(l).

Step 3 If l < L − 1, use MOMP to update the dictionary; otherwise, terminate
the algorithm. At the last iteration, p components are extracted by OMP, and their
corresponding frequencies fusL are the estimated frequencies output by the algorithm.

5 Simulation Results

Weuse simulation studies to evaluate the performance of the proposedMOMPmethod
compared with five state-of-art methods: MUSIC, OW-HMUSIC [29], OMP, New-
tonized OMP (NOMP), and ZZB [18]. The simulation results show that MOMP
outperforms the above-mentionedmethods given signals with low SNR.All the phases
are set to zero in these studies.

5.1 Frequency Estimation of Sinusoidal Signal withWhite Additive Noise

The MOMP is compared with the other five methods in the frequency estimation of
two-component sinusoidal signals polluted by white Gaussian noise:

y(n) � a1 sin(ω1 · nts) + a2 sin(ω2 · nts) + v(n). (11)

The frequency and amplitude parameters are set as ω1 � 0.6, ω2 � 1.7, a1 �
1, and a2 � 2, respectively. The additive noise v(n) follows the Gaussian distri-
bution, with mean zero, standard deviation σ , and support n0 � 90. The sampling
interval ts � 0.1. A total of 256 data points are generated according to (11). In
the MOMP algorithm, the trade-off parameter μ is selected from the candidate set
{0.15, 0.2, 0.25, . . . , 0.5} using cross-validation. For MOMP, OMP, and NOMP, the
dictionary is constructed by discretizing the frequency parameters with a sampling
rate of 10 within [0, π ], and thus the dictionary is of size 62× 256. In ZZB, the stop-

ping criterion parameter τ is set as σ 2 log N − σ 2 log log
(

1
1−p0

)
with p0 � 10−2. In

OW-HMUSIC, the parameter M is set to 100.
To evaluate the robustness of different methods against noise, signals with different

SNRs are obtained by properly scaling the noise variance σ 2. The SNR is defined as

SNR � 10 log10
a21 + a22

σ 2 .

We assess the detection result of a method using detection acceptance condition
(DAC), which means that we accept a detection only if all the frequencies have been
accurately estimated, i.e.,
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Fig. 3 Detection rate of four methods at different SNRs

max(|ω1 − ω̃1|, |ω2 − ω̃2|) < 0.01.

Finally, the detection rate is defined as

detection rate =
the number of correct detection

the number of total experiment runs
. (12)

The detection rate is a value in [0, 1], with 1 indicating best accuracy. All the
presented simulation results are averaged over 100 independent experiments.

The detection rates of MOMP and the other five methods given varying SNRs are
shown in Fig. 3. Both the ZZB algorithm and the newly proposed method MOMP are
the only twomethods that achieve 100%detection rate at SNR�−1 or 0 dB.However,
with the lower SNR (<−5 dB), the accuracy of ZZB, MUSIC, and OW-HMUSIC
decreases greatly and all of their detection rates are smaller than 40%. The detection
rate of MOMP is nearly 10% higher than the other methods when SNR<−5 dB.
These results demonstrate the superiority of the proposed MOMP method compared
with the other methods, especially when SNR is relatively low.

5.2 Frequency Estimation of Sinusoidal Signal with Stationary Colored Additive
Noise

The newly proposed algorithm MOMP can also be used to improve frequency esti-
mation in the existence of the stationary colored additive noise. It was proved that if
the additive noise satisfies a certain assumption [11–13, 24], the strong consistency
or the asymptotic normality results can be obtained [12], even if the noise does not
satisfy the standard sufficient condition (Jennrich [9] or Wu [25]) for the least squares
estimators to be consistent.
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In this experiment, the sinusoidal signal is polluted by colored additive noise, and
the two frequency parameters are very close with ω1 � 0.63 and ω2 � 0.66. The
amplitude parameters are set as a1 � 1, a2 � 2. The noise v(n) is a random variable
following the exponential distribution:

v(n) � s1e(n) + s2e(n − 1), e(n) ∼ i.i.d. exponential distribution λ

where s1 � 2.8, s2 � 0.2, and 256 sample points are generated with sample rate
10. The values of μ and n0 are the same as in experiment 1. With the stationary
colored additive noise, bothMUSIC and OW-HMUSIC can extract only one harmonic
component when the two frequencies to be estimated have very close true values. That
is, the frequency resolution rates of both methods are significantly decreased with
the colored additive noise. Moreover, ZZB cannot detect any harmonic component in
this case, because ZZB is specially designed for data with the Gaussian white noise.
Therefore, we compare the detection rate of MOMP with that of OMP and NOMP in
this experiment.

The MOMP algorithm coupled with the multi-grid approach is applied to estimate
the frequency of the sinusoidal signal with 256 samples embedded in the colored
additive noise with different SNRs. Here, the SNR is defined as

SNR � 10 log10

(
a21 + a22

λ2(s21 + s22 )

)
.

Because the frequency parameters in this experiment are not initially in the dictio-
nary, we used the multi-grid procedure presented in Sect. 3.3. Figure 4 illustrates the
detection rates of the MOMP, OMP, and NOMP algorithms. All the three methods are
able to distinguish the two frequency parameters when the SNR is 5 dB. However,
when SNR is decreased to 2 dB, only MOMP is still able to estimate the two frequen-
cies with 100% accuracy, while the accuracy of the other two methods decreases to
95%. The NOMP estimates the frequency with a rate higher than 80% for an SNR
more than −1 dB, while the rate of both OMP and NOMP is almost 60%.

6 Conclusion

Sparse representation is an effective way to solve the frequency estimation problem
of the multi-sinusoidal signals. However, when the signals are polluted by additive
noise, the commonly used least squares criterion cannot reconstruct the signal well. To
address this issue, a new stricter measurement of the residuals is proposed to improve
the frequency estimation performance. The weak derivatives of the observed data and
the model-predicted values are combined with the classic least square criterion via a
weighted parameter to construct an improved weighted criterion.

The MOMP algorithm is proposed to efficiently detect the true underlying fre-
quency. A multi-grid dictionary training strategy is used to assist the selection of
dictionary and improve the efficiency of sparse construction. The idea behind the
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Fig. 4 Detection rate of three methods at different SNRs

multi-grid approach is to refine the dictionary over several levels of resolution. Sim-
ulation results showed that the new algorithm significantly improved the accuracy of
frequency estimation.

Despite the good performance of the proposed MOMP algorithm in the simulation,
a mathematical proof is in need to guarantee its effectiveness. As a continuous effort,
we will analyze the theoretical properties and potential extensions of MOMP in the
future work.
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