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Abstract This paper focuses on the parameter estimation problem of multivariate
output-error autoregressive systems. Based on the data filtering technique and the
auxiliary model identification idea, we derive a filtering-based auxiliary model recur-
sive generalized least squares algorithm. The key is to filter the input—output data and
to derive two identification models, one of which includes the system parameters and
the other contains the noise parameters. Compared with the auxiliary model-based
recursive generalized least squares algorithm, the proposed algorithm requires less
computational burden and can generate more accurate parameter estimates. Finally,
an illustrative example is provided to verify the effectiveness of the proposed algo-
rithm.

Keywords Filtering technique - Parameter estimation - Recursive least squares -
Multivariate system - Auxiliary model

1 Introduction

Parameter estimation and system identification can be used to many areas [2,16,18,53]
such as signal modeling [41,42]. Modeling is always the first step when one tries to

B Feng Ding
fding@jiangnan.edu.cn

Qinyao Liu

qyliul2@126.com

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education),
Jiangnan University, Wuxi 214122, People’s Republic of China

College of Automation and Electronic Engineering, Qingdao University of Science
and Technology, Qingdao 266042, People’s Republic of China

Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-018-0871-z&domain=pdf

Circuits Syst Signal Process (2019) 38:590-610 591

design a control system [54], and the model quality directly affects the performance
of the entire control system [9,46]. System identification, which mainly includes the
parameter identification [6,43,44] and the state estimation and filtering [12,17,57], is
the methodology of system modeling and has been used in linear systems and nonlinear
systems [5,19,40]. Recently, Greblicki, and Pawlak presented a nearest neighbor algo-
rithm for Hammerstein systems and established the optimal convergence rate which
is independent of the shape of the input density [14]. Li et al. gave the input—output
representation of a bilinear system through eliminating the state variables and derived
an iterative algorithm by using the maximum likelihood principle [21]. Other methods
can be found in [3,10,11,22,24,34,37,55]. It is well known that multivariable sys-
tems, i.e., multi-input multi-output (MIMO) systems, are frequently encountered in
practical engineering. However, multivariable systems have large dimensions, com-
plex strictures and coupled relations between inputs and outputs [39]. Therefore, the
identification for multivariable systems is important and has attracted a lot of attention
[33,56]. For MIMO systems with unknown inner variables, an auxiliary model-based
algorithm was studied by means of the iterative search principle [4]. Multivariable
systems have many categories and multivariate systems are a class of multivariable
systems, which can describe not only linear systems but also nonlinear systems.

The least squares is a conventional method and plays an important role in system
identification [1,45]. The basic idea is to define and minimize a quadratic function and
to get the minimum solution [35]. However, the recursive least squares (RLS) algo-
rithm has a heavy computational burden due to the calculation of the inversion of the
covariance matrix. In this paper, we employ the data filtering technique to improve the
performance of the RLS algorithm [8]. By filtering the input—output data, the original
system is divided into two subsystems with fewer variables. Then the dimensions of the
involved covariance matrices in each subsystem become smaller than the original sys-
tem [20]. Moreover, the filtering technique can reduce the parameter estimation errors
[38]. For example, a decomposition-based iterative algorithm was developed for mul-
tivariate pseudo-linear autoregressive moving average systems using the data filtering,
and this algorithm had less computational burden and higher estimation accuracy com-
pared with the least squares-based iterative algorithm [7]. In the previous work [31],
we combined the data filtering technique and the multi-innovation theory to improve
the performance of the stochastic gradient algorithm.

This paper studies the parameter estimation methods for multivariate output-error
systems with autoregressive noise (i.e., colored noise). In order to reduce the influence
of the colored noise on the parameter estimation accuracy, we modify the RLS algo-
rithm by employing the data filtering technique and the auxiliary model. In addition,
the data filtering technique can improve the computational efficiency. The main idea
is to use a filter to filter the input—output data; then the system can be transformed into
two models: a multivariate output-error model with white noise and an autoregressive
noise model. To cope with the unknown variables in the identification models, we
establish the auxiliary models and replace the unknown variables in the algorithm
with the outputs of the auxiliary models. The main contributions of this paper are in
the following aspects.
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— A filtering-based auxiliary model recursive generalized least squares (F-AM-
RGLS) algorithm is derived for multivariate output-error autoregressive systems
by using the data filtering and the auxiliary model.

— The F-AM-RGLS algorithm has smaller parameter estimation errors than the auxil-
iary model-based recursive generalized least squares (AM-RGLS) algorithm under
the same noise levels.

— The F-AM-RGLS algorithm has higher computational efficiency than the AM-
RGLS algorithm.

The rest of this paper is organized as follows. In Sect. 2, we give some definitions and
the identification model for multivariate output-error autoregressive systems. Section 3
employs the data filtering technique to derive two identification models and presents the
F-AM-RGLS algorithm. Section 4 proposes the AM-RGLS algorithm for comparison.
An illustrative example is shown to verify the effectiveness of the proposed algorithms
in Sect. 5. Finally, we offer some concluding remarks in Sect. 6.

2 The System Description

Some symbols are introduced. “A =: X" or “X := A” stands for “A is defined as
X"; the superscript T stands for the vector/matrix transpose; the symbol I, denotes
an identity matrix of size n x n; 1, stands for an n-dimensional column vector whose
elements are 1; 1,,x, represents a matrix of size m x n whose elements are 1; the
symbol ® represents the Kronecker product, for example, A = g;; € R™*" B :=
bijj e RF*, A® B = [a;;B] € RmP)*(nq) jp general, A ® B # B ® A; col[X]
is defined as a vector consisting of all columns of matrix X arranged in order, for
example, X = [x1,X2,...,x,] € R™" x; € R" (i = 1,2,...,n), col[X] :=
[x], x5, ..., x,] € R™, 1§(t) denotes the estimate of ¥ at time ¢; the norm of a
matrix (or a column vector) X is defined by || X 12 := tr[XX"].
Consider the following multivariate output-error system,

X0
Y = 0+ ), M

where y(t) := [y1(t), y2(¢), ..., ym(£)]" € R™ is the output vector of the system,
@(t) € R™*" is the information matrix which can be linear or nonlinear function
of the past input—output data u(r — i) and y(t — i), # € R" is the parameter vector
to be identified and A(z) is a polynomial in the unit backward shift operator z~!
[z'y(@®) = y(t = D], and

A(z) =1 +aiz '+ arz?

+--tap,z7", a; €R,

w(t) := [wi (@), wa(t), ..., w,#)]" € R™ is a disturbance vector. In general, w(t)
includes several special cases, (a) w(?) is a stochastic white noise process with zero
mean; (b) w(¢) is an autoregressive (AR) process; (¢) w(¢) is a moving average (MA)
process; (d) w(f) is an ARMA process. In this paper, w(¢) is taken as an AR process
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of the white noise vector v(¢) := [v(¢), v2(¢), ..., v, (#)]" € R™, and there are still
two cases for the description of the AR noise term,
1

Case 1: w(r) := mv(t), where C(z) is a scalar polynomial and expressed as

2

C@)i=l4ciz ' 4z 24 +cnz7 ", ¢ R

Case 2: w(7) := C~'(2)v(¢), where C(2) is a matrix polynomial and expressed as
Ci@)i=1,+Ciz7 " +Coz? + - +Cpz, C; e R™*™.

Case 2 is chosen to derive the identification models and identification algorithms in
this paper. Assume that the orders m, n, n,, and n. are known and y(r) = 0, @4(r) =0
and v(r) = 0 forr < 0.

Define the parameter vectors a and 6 and parameter matrix 6, as

*— T n,
a:=laj,az,...,a,,] €R",
0 :=[0",a"]" € R,

0. :=[C1,Cy,...,C,J" € RMIxm

and the information matrices ¢, (¢) and @ (¢), and parameter vector ¢.(¢) as

Ga(®) =[xt —1),—x(t —2),...,—x({ —ny)] € R"*"a,
B (1) := [5(0), $a(1)] € R™*0F10),
Ge(t) = [~w'(t — 1), —w'(t = 2), ..., —w"(t — n,)]" € R

Then w(#) in Case 2 can be expressed as

w(t) = C ' @)v(@)

=y — C()]w() + v(7) 2
=—Ciwt—-1)—Cow(t —-2)—--- = Cpw(t —n.) +v(t)
= 0:¢:(1) +v(1). (€)

Define an intermediate variable:

_9s()
x() = _A(z) 0
= [1 - A@)]x(®) + D5(1)0

= — Zajx(t —J)+ ®5(1)0
j=1
= @(1)0 + ¢, (t)a
— (1), )
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Substituting (2)—(4) into (1), we can obtain

y@) =x@) +w() (5)
= &)+ C ' ()v() (6)
= ®(1)0s +0"¢.(1) + (). (7

Equation (7) is the hierarchical identification model for the multivariate output-error
autoregressive (M-OEAR) system in (1). Observing (7), we can see that there is not
only a system parameter vector @ to be identified, but also a noise model parameter
matrix 0. to be identified. The objective of this paper is to derive a new recursive
algorithm for the M-OEAR system by using the auxiliary model and the data filtering.

3 The Filtering-Based Auxiliary Model Recursive Generalized Least
Squares Algorithm

From (5), we can see that the output y(¢) contains the colored noise w(¢), which leads
to large parameter estimation errors. In this section, we use a filter L(z) = C(2) to
filter the input and output data and derive an F-AM-RGLS algorithm for the M-OEAR
system to improve the parameter estimation accuracy.

For the M-OEAR system in (1), multiplying the both sides of (1) by C(z) gives

D(1)
A(2)
D(1)
A(z)

C@y@) =Ck)

0+ C()w(r)

=C(2)

0+ (). ®)

Define the filtered output vector y;(#) and the filtered information matrix @¢(#) as

yi(@) == C(2)y@) € R",
P5(t) := C()Ps(t) € R,

which can be expressed as the following recursive forms:

Ye() = C@)y ()

=y +Ciyt—D+Coy(t =2)+ -+ Cp y(t —n¢)

= y(1) +0.9y(1), ©))
P (1) = C()Ps(1)

=01+ C1P,¢ - D+ C2Ps(t —2) + -+ C P (t — nc)

=@ (1) + 0. W (1), (10)
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where
[y -1
yt—2)
Py (1) = : e RO,
Ly —nc)
&t —1)
U (1) = ¢S(t‘_ 2) e Rmne)xn
L D (t —n.)
Then Eq. (8) can be rewritten as
Ds(1)
() = Afzz) 0+ (). (11)
Define an inner variable:
¢fs(t)
x¢(t) := 0
(1) A

= [1 — A@)]x¢ (1) + P ()0
Na
= — Y a;xi(t — j) + P(1)0
j=1
= &:(1)0 € R™, (12)
where
(1) i= [P (), —xp(t — 1), —x¢(t —2), ..., —x(t — ng)] € R™*"Ha),
Substituting (12) into (11) gives

ye(t) = @¢(1)0s + v(2). 13)

For the filtered identification model (13) and the noise identification model (3), define
two quadratic functions:

t
J109) =Y lye(j) — @c ()OS,

j=1

t
D00 =Y lw(j) —0ipe (N>

j=1
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Based on the least squares principle [32], minimizing J; (fs) and J>(0.) gives

0,(1) = 05(t — 1) + L1 ()[yp(1) — Se()8s(t — D], (14)
Li(t) = P1(1)®5(1)

= Pi(t — DO, + P () P12 — DPED] ), (15)
Pi(t) = Upin, — LiO)Pr(DIP1(t — 1), (16)
bo(t) = 0c(t — 1) + La)[w(r) — B.(t — D (DT, (17)
Ly(t) = Po(t — Do (D[1 + L0 P2t — Dpe()] ", (18)
Po(t) = Uyn, — Lo (D1 P21 — 1). (19)

As we can see, Egs. (14)—(19) cannot generate the estimates 9S(t) and 9C(t), because
the filter C(z) is unknown, then the filtered output vector y;(¢) and the filtered matrix
@¢(t) are unknown. In addition, the information matrix ¢,(t) and the information
vector ¢.(t) contain the unknown terms x (¢ — i) and w(¢ — i). Here, we establish the
appropriate auxiliary models and use their outputs x,(t — i), w(t — i), and X, (t — i)
to replace the unknown variables x (¢ — i), w(t — i), and x¢(# — 7). Then the estimates
Ga(t) and ¢ () of ¢u(t) and ¢.(¢) can be formed by x,(r — i) and W(r — i) as

qga(l) =[xt = 1), —x2(t = 2), ..., —xa(t —ng)] € R,
&C(t) = [—ﬁ)T([ — 1)’ —I"\)T(t _ 2)’ o _I"\)T(t _ nc)]T e R(mnc).

Similarly, we use x,(t — i) and the estimate (ifs([) of @ (¢) to define
D1(1) 1= [Brs(1), —¥ra(t — 1), —Xa(t = 2), ..., —Xpa(t — ng)] € R"¥CH7),
Then we can get the estimate of @ (¢):
b (1) 1= [D5(1), Pa(1)] € R0,

According to (4)—(6), replacing @ (¢) and 6 with their estimates @ (t) and 9s(t) in (4),
the outputs x,(¢) and w(z) of the auxiliary models can be computed by

xa(t) = S (1)85(1),
W) = y(t) — ®(1)85(1)
= y(1) — x4(1).

From (12), we can obtain x¢,(¢) through
xp(t) = S0 (1).

Use the parameter estimates 9C(t) = [6'1(t), é‘z(t), R é‘n( (H]" € RUmeIxm of the
noise model to construct the estimate of C(z) as

Ct.2)=In+Ci(z " +Co)z 2+ + é'nc(t)z_””.
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Replacing C(z) in (9), (10) with C (t, z), the estimates of the filtered output vector
y;(¢) and the filtered information matrix @ (¢) can be obtained by

51(1) = C(t, 2)y(1)

= y(0) + 0.y (1),
b5(1) = C(1, 2)Ds(1)

= ®(1) +0.() W (1)

Replace the unknown information matrix @ (¢), the information vector ¢.(t), the fil-
tered output vector y;(¢), and the filtered information matrix @¢(#) with their estimates

dAi(t), ¢A>L.(t), y¢(t), and éf(l‘) in (14)—(19), respectively. For convenience, define two
innovation vectors:

e1(1) := yp(1) — De(1)fs(t — 1) € R™,
ex(t) == (1) — 0,(t — ) (t)
= y(1) — M0t — 1) — 0,1 — Dpe(r) € R™.

Then, we can obtain the filtering-based auxiliary model recursive generalized least
squares (F-AM-RGLS) algorithm:

05(1) = 05t — 1) + L1 (e (1), (20)
e1(t) = yp(t) — Pr()Bs(t — 1), 1)
Li(t) = Pi(t — V@)L + Pr() P11 — DDp(0)] ", (22)
Pi(t) = Tpin, — Li(0)®5()1P1(t — 1), (23)
0c(t) =0.(t — 1) + La()eb (1), (24)
ex(t) = y(1) — D)0t — 1) — 6.t — D (1), (25)
Ly(t) = P2(t — D)1 + ¢L(1) P2t — De(D)] ™", (26)
Po(t) = Ly, — La)$L(OIP2(1 — 1), 27)
(1) = [Prs(t), —Xrat — 1), —Xpa(t = 2), ..., —Xpa(t — 1)l (28)
i) = () + 0.y (1), (29)
B, (1) = @4(1) + 0, (OW(1), (30)
By(1) = [yt — 1),y (t = 2), ..., y"(t — no)]", 31)
(1) = [<I>§(t —1), dig(t —2), ..., ¢§(t —no)]", (32)
D (1) = [@4(1), Pa(D)], (33)
Palt) = [—xa(t — 1), —xa(t = 2), ..., —x4(t — 1)), (34)
b)) = [0t —1), =Dt —2),...,— D" —no)", (35)
xia (1) = Dr(B(1). (36)
xa(t) = d(D5(1), (37)
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w(r) = y(1) — x,(1), (38)
0.(0) =10 (1), & ()T, (39)
0.0) =[C1(t), C2(t), ..., Co.(D]". (40)

The steps involved in the F-AM-RGLS algorithm in (20)—(40) are listed as follows.

1. Set the initial values: let 7 = 1, 85(0) = L4, /p0s 0c(0) = Liun.)xm» P1(0) =
pOInJrnaa Py(0) = pOImnca X2 (t —i) = 1/ po, xa(t — i) = 1,4/ po, wt—i) =
1,,/po.i =1,2,...,max[ny, n.], po = 10 and set a small positive number €.

2. Collect the observation data y(¢) and @(¢), and construct the information vectors
and matrices ¢y (1), ¥s(1), (;Aba 1), qgc(t) and @(t) using (31), (32), (34), (35), and
(33).

3. Compute Ly(t), P3, and e (t) using (26), (27), and (25).

Update the parameter estimation matrix éc(t) using (24).

Compute the filtered output vector y;(r) by (29) and the filtered information matrix

@ (1) by (30), and form @¢(¢) by (28).

Compute Li(¢), P1(t), and e (¢) by (22), (23), and (21).

Update the parameter estimate é s(?) by (20).

Compute the outputs X (1), xa(1), and w(t) by (36)—(38)

Compare 0 (t) with 0 (t — 1) and compare 0 (1) with ) c(t—1):if ||0 (1) —0 $(t—

1)|| < € and ||0 (1) — 0 c(t — 1] < e, terminate recursive calculation procedure

and obtain 0 s(t) and ) ¢(1); otherwise, increase ¢ by 1 and go to Step 2.

v o

© %0 N o

The flowchart of computing 0, (t) and 0, (#) in the F-AM-RGLS algorithm is shown
in Fig. 1.

Remark 1 To obtain the F-AM-RGLS algorithm in (20)—(40), we use the matrix poly-
nomial C(, z) to filter the input—output data and derive a filtered model with the
white noise and a noise model. As for the calculation procedure, the F-AM-RGLS
algorithm identifies the noise parameter matrix 9C(t) first and constructs the filtered
output vector y¢(z) and the filtered information matrix éfs(t) before calculating the
system parameter vector 9s(t).

4 The Auxiliary Model-Based Recursive Generalized Least Squares
Algorithm

As a comparison, this section gives the AM-RGLS algorithm to show the advantages
of the F-AM-RLS algorithm in (20)—(40). For the identification model in (7), combine
the information matrix @ (¢) and the information vector ¢.(¢) into a new information
matrix ¥ (¢), and the parameter vector ¢ and the parameter matrix . into a parameter
vector ¥:

W(t) = [D0), In ® L] € R™™ | ny:=n+n, +m’ne,
— 05 ni
¥ = |:c01[06]] e R",
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( Start: let t = 1 and set e >

l

Collect y(t) and Ps(t), form @, (t) ti=t+41
W(t), Pu(t), d.(t) and (1)

!

Compute La(t), P2(t) and e2(t)

!

Update the estimation matrix 0.(t)

l

Compute §¢(t) and Pg(t), form b (t)

!

Compute L1(t), P1(t) and e1(t)

}

Update the estimation vector ()

!

Read 8(t) and a(t) from s(t)

}

Compute @, (t), a(t) and w(t)

6s(t) — Bs(t — 1)|| < & and
[16c(t) — Bc(t — 1)|| < &7

Obtain the estimate 05(t) and 0.(t)

G

Fig. 1 The flowchart of computing the F~AM-RGLS parameter estimates 95():) and éc (t)

Then, we have the following identification model

y@) =v@)d +v(r). 41
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The parameter vector ¥ contains all parameters to be estimated. Referring to the
derivation of the F-AM-RGLS algorithm in (20)—(40), we can obtain the following
AM-RGLS algorithm:

F(1) =9t — 1)+ LO[y@) — ¥ O — D], (42)
L) =P — D¥ )L, + ¥ )Pt — ¥ ()], 43)
P(t) = (I, — LO)¥(0)]P(t — 1), (44)
V(1) =[®(), In ® ()], (45)
P (1) = [D5(1), pa(D)], (46)
Ga(t) = [—xa(t — 1), —x4(t = 2), ..., —x4(t — ny)], (47)
qASC(t) = [A—ﬁ)TA(t —D,—w'(t—=2),...,—0" (¢ —n)]", (48)
xa(t) = S()5(1). (49)
w(t) = y(t) — xa(0), (50)
bs() =10 (1), a" O, (51)
A 0t
ro = [col[é(czt)]} ' 42

The procedure for computing the parameter estimation vector f}(t) in the AM-

RGLS algorithm in (42)—(52) is listed as follows.

1.

W

Set the initial values: let = 1,9 (0) = 1,,,/po, P(0) = pol,,,xa(t—i) = 1,,/ po,
wt—i)=1,/po,i =1,2,..., max[ng, n.], po = 10° and set a small positive
number ¢.

Collect the observation data y(¢) and @(t), and construct the information matrix
<]3a (1) and the information vector qgc (t) using (47), (48), and form dAi(t) and lIAI(t)
using (46) and (45).

. Compute the gain matrix L(#) using (43) and compute the covariance matrix P (¢)

using (44).

. Update the parameter estimation vector 19(1‘) using (42).
. Read Os(t)Afrom 0(0; and compute zca(t) anAd w (1) using (49), (50).
. Compare ¥#(r) with #(r — 1): if A||19(t) — #(t — 1)|] < &, terminate recursive

calculation procedure and obtain #(¢); otherwise, increase ¢ by 1 and go to Step
2.

In the F-AM-RGLS algorithm in (20)—(40), the dimensions of the covariance matri-

ces P(t) and P,(¢) are (n + ny) X (n +ngy) and (mn.) x (mn.). In the AM-RGLS
algorithm in (42)—(52), the dimension of the covariance matrix P (¢) in Eq. (44) is
nyxny (np=n+n;+ m2nc). Here, we give the computational efficiencies of the
two algorithms at each recursive step in Tables 1, 2, where flops represent the floating
point operations. In order to compare the computational burden of the two algorithms,
we do

Birkhauser



Circuits Syst Signal Process (2019) 38:590-610 601

Table 1 The computational efficiency of the AM-RGLS algorithm

Expressions Number of multiplications Number of additions
d)=9@ — 1)+ L)e®) e Rl mn, mny
et) = y(t) — P —1) eR" mn mnj
L(t) = P(t — 1)!IAIT(I))§(I) mn% + m2n1 mzn] +mn% — 2mny
c Rnl xXm
é(t) = [Im+lIA/(t) mn%-‘rmznl-‘rm3 mn%—mn1+m2n1+m3—m2
PG — D ()] e RMXM
P(t)=[In, —LOWYOIP(—1) mn?+n} n3 +mn} —n?
c Rnl Xny
Sum m3 + n? + 3mn% + 2m2n1 m3 + n? —m? - n%
+2mny +2m2n1 +3mn% —mny
Total flops Ny =2m3 + 2n? —m? - n%

+4m2n1 + 6mn% + mny

N1 — Ny = 2m3 + Zn? —m? - n% +4m2n1
+ 6mn% +mny — (2m3 + 2(mnc)3 + S(mnc)2 +2(n + na)3
—(n+ na)2 + 12mnn, + m2(6nc +4n, +4n +2nn. — 1)
+m(6n° + 6n2 4 51 + 5n4 4 n. — 1)),

where n; = n + ny + m?n,., then
Ni — Ny = 3n’ng + 3n2n + 5m*n’n 4 6m*n’n,
+m+ 2m3ng(m3 -+ m4n%(n -+ mnc(m2 —1)
+4m*n, + mzn%(6m3 —5)
+mnen(12m — 4) + m*neng (12m — 2) + 6m*ne(2ngn — 1)

+mn(6bmnn, — 1) + mny,(6mngn, — 4).

In general, when the orders m, n, n,, no > 1, it is obvious that the computational bur-
den of the F-AM-RGLS algorithm in (20)—(40) is less than the AM-RGLS algorithm
in (42)—(52), that is to say, N1 > Nj.

Remark 2 The system considered in this paper is disturbed by an autoregressive noise.
In order to reduce the influence of the colored noise on the system, the F-AM-RGLS
algorithm in (20)—(40) filters the input and output data by using the filter C(z) and
divides the original identification model (7) into a filtered identification model (13)
and a noise identification model (3). Compared with the AM-RGLS algorithm in
(42)—(52), the F-AM-RGLS algorithm gives more accurate estimates. Furthermore,
the F-AM-RGLS algorithm also improves the computational efficiency.

5 Example

Consider the following multivariate output-error autoregressive system:

) Birkhduser
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Table 3 The AM-RGLS estimates and errors (02 = 0.502)

t 100 200 500 1000 2000 3000

61 = 0.90000 0.94801 0.94436 0.92341 0.90430 0.90306 0.90235
6, = 0.45000 0.43693 0.44590 0.44398 0.44766 0.44835 0.44973
03 = 0.43000 0.54609 0.55778 0.50549 0.48795 0.48614 0.48352
04 = —0.49000 —0.49967  —0.49361 —0.49049  —0.48708  —0.48915 —0.49080
65 = 0.10000 0.31978 0.30383 0.20670 0.16119 0.13942 0.13179
0 = —0.29000  —0.47302  —0.47568 —0.41022  —-0.36173 —0.34564  —0.33544
67 = 0.42000 0.39431 0.41850 0.42316 0.41643 0.40742 0.41456
a; = 0.37000 0.38717 0.39967 0.37713 0.37358 0.37276 0.37126
ap = 0.37000 0.30457 0.30748 0.33120 0.35145 0.35970 0.36580
c1 = 0.65000 0.41779 0.46925 0.57493 0.61459 0.64569 0.64383
¢y = 0.63000 0.55591 0.72562 0.75393 0.70433 0.73110 0.73793
c3 = 0.75000 0.22097 0.34047 0.49070 0.55000 0.58127 0.60388
cqg =—0.59000 —0.22857 —0.39492  —0.49577 —0.50058  —0.52125 —0.56056
8 (%) 35.87239 25.48388 12.90504 8.49105 5.75645 3.60237

Table 4 The F-AM-RGLS estimates and errors (62 = 0.502)

t 100 200 500 1000 2000 3000
0, = 0.90000 0.92568 0.90396 0.89504 0.89769 0.89765 0.89938
6, = 0.45000 0.43755 0.44397 0.44966 0.44898 0.44834 0.44893
03 = 0.48000 0.48459 0.49090 0.48491 0.48272 0.48192 0.48033
04 = —0.49000 —0.49267 —0.48771 —0.48940 —0.48928 —0.49039  — 0.49000
05 = 0.10000 0.21559 0.15436 0.12365 0.10995 0.09536 0.09341
06 = —0.29000 —0.41001  —0.36810 —0.30635 —0.29232 —0.28346  —0.28075
07 = 0.42000 0.31610 0.37929 0.41904 0.40617 0.41067 0.42247
a; = 0.37000 0.36833 0.38737 0.37482 0.37398 0.37425 0.37153
ar = 0.37000 0.34255 0.35392 0.37100 0.37140 0.37272 0.37186
¢l = 0.65000 0.31827 0.44600 0.58823 0.61567 0.64289 0.64088
¢ = 0.63000 0.39418 0.56207 0.70036 0.71320 0.73989 0.74920
c3 = 0.75000 0.39214 0.49338 0.59684 0.60988 0.61815 0.62989
c4 = —0.59000 —0.39529 —051791 —0.54334 —0.54275 —0.55087 —0.57582
8 (%) 31.43584  17.28418 5.27574 3.82527 2.31466 1.06650
D (1) —1
y(t) = A0 0+C (v,
®(1) = [—M(I - »@t-2) S%n(yz(t =2) =1yt —2ui(t = 2)
=yt =1) ¥yt —2)sin(t/7) =1 yi(—2ux(t—2)

ur(t =1 ui(t —2ux(t —2) u(t—1)cos(t) c R2X7
wit —1) sin(ua(t —2)) ui(t — 1) +ur(t —2) ’
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Table 5 The AM-RGLS estimates and errors (02 = 0.802)

t 100 200 500 1000 2000 3000

61 = 0.90000 0.89608 0.89464 0.90454 0.90396 0.90171 0.90061
6, = 0.45000 0.45911 0.45100 0.44844 0.44907 0.44691 0.44774
03 = 0.43000 0.49888 0.48122 0.48818 0.48516 0.48211 0.48221
04 = —0.49000  —0.48341 —0.48403  —0.48827  —0.48904 —0.48874  —0.48977
65 = 0.10000 0.41087 0.34875 0.22856 0.18183 0.15065 0.14158
0 = —0.29000  —0.49419  —0.52687 —0.41314  —0.37528 —0.36075  —0.34957
67 = 0.42000 0.24213 0.28846 0.36285 0.37909 0.38398 0.39963
a; = 0.37000 0.37798 0.36992 0.37241 0.37126 0.37112 0.37170
ap = 0.37000 0.34119 0.35971 0.36361 0.36525 0.36690 0.36723
c1 = 0.65000 0.48250 0.50444 0.59216 0.62253 0.65244 0.65007
¢y = 0.63000 0.34695 0.48875 0.66585 0.69111 0.72870 0.74434
c3 = 0.75000 0.59782 0.64974 0.63478 0.62492 0.61880 0.62873
cqg =—0.59000 —0.36303 —0.50338  —0.54290  —0.54305 —0.55273 —0.57529
8 (%) 33.21098 24.89127 11.27485 7.68048 5.37932 3.98389

Table 6 The F-AM-RGLS estimates and errors (o2 = 0.802)

t 100 200 500 1000 2000 3000

61 = 0.90000 0.89134 0.89407 0.89143 0.89886 0.89504 0.89735
6 = 0.45000 0.46067 0.45106 0.44491 0.44807 0.44599 0.44720
63 = 0.48000 0.50899 0.49083 0.49293 0.48923 0.48280 0.48262
04 = —0.49000 —0.49190 —0.48933 —0.49150 —0.49098  —0.48951 —0.49020
65 = 0.10000 0.25168 0.17972 0.13023 0.11354 0.09600 0.09233
0 = —0.29000  —0.26564  —0.25908 —0.26081 —0.26907  —0.26966 ~ —0.26963
67 = 0.42000 0.34219 0.37101 0.40591 0.39090 0.40086 0.41956
a; = 0.37000 0.39348 0.38006 0.38600 0.37856 0.37708 0.37447
ap = 0.37000 0.35978 0.36866 0.37193 0.37108 0.37178 0.37134
c1 = 0.65000 0.47364 0.51876 0.59928 0.62082 0.64291 0.64113
cp = 0.63000 0.50913 0.63267 0.72128 0.72847 0.75027 0.75613
c3 = 0.75000 0.44483 0.55523 0.61997 0.62054 0.62191 0.63371
cqy = —0.59000  —0.23235 —0.41552  —0.50149  —0.51573 —0.53563 —0.56626
8 (%) 27.42819 14.31464 6.06590 4.77131 3.25060 1.79544

2
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Fig. 2 The AM-RGLS and F-AM-RGLS estimation errors versus ¢ with 62 = 0.502
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Fig. 4 The F-AM-RGLS estimates 0, (¢), 05 (1), 06 (t), 42 (t), é4(t) versus ¢ (o2 = 0.50%)
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Fig. 5 The AM-RGLS and F-AM-RGLS estimation errors versus ¢ with o2 =0.802

In simulation, the inputs {1 () } and {u>(¢) } are taken as two independent persistent
excitation signal sequences with zero mean and unit variances, {v1(¢) } and {v,(¢) } are
taken as two white noise sequences with zero mean and variances 0’12 for vy () and 022
for vy (). Taking 012 = 022 = 0?2 = 0.50% and 012 = 022 = 02 = 0.80%, respectively,
we use them to generate the output vector y(t) = [y1(¢), y2(¢)]". Applying the F-AM-
RGLS algorithm in (20)—(40) and the AM-RGLS algorithm in (42)—(52) to estimate
the parameters of this system, the parameter estimates and errors are shown in Tables 3,
4,5, and 6. The parameter estimation errors § := ||1§(t) — #|/||?#]| versus ¢ are shown
in Figs. 2 and 5.
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Fig. 6 The AM-RGLS estimates 0} (1), 05(t), 06 (1), d» (1), é4(t) versus t (o2 = 0.802)
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Fig.7 The F-AM-RGLS estimates 6, (¢), 05 (1), 05 (t), 42 (1), ¢4(t) versus ¢ (62 = 0.80%)

From Tables 3, 4, 5, and 6 and Figs. 2, 3,4, 5, 6, and 7, we can draw the following

conclusions.

1. The parameter estimation errors of the AM-RGLS algorithm and the F-AM-RGLS
algorithm become smaller with the data length ¢ increasing—see the estimation

errors of the last columns in Tables 3, 4, 5, and 6.

2. Under the same noise level, the F-AM-RGLS algorithm can give more accurate
parameter estimates than the AM-RGLS algorithm—see Tables 3, 4, 5, and 6 and

Figs. 2 and 5.
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3. A lower noise level results in smaller parameter estimation errors—see Tables 3,
4,5, and 6 and Figs. 2 and 5.

6 Conclusions

In this paper, we employ the data filtering technique to propose an F-AM-RGLS
algorithm for M-OEAR systems by adopting the auxiliary model identification idea.
Compared with the AM-RGLS algorithm, the F-AM-RGLS algorithm can improve
the parameter estimation accuracy and reduce the computational burden. The proposed
approaches in the paper can combine other mathematical tools [25-30] and statistical
strategies [13,48-52] to study the performances of some parameter estimation algo-
rithms and can be applied to other multivariable systems with different structures and
disturbance noises and other literature [15,23,36,47,58,59].

Acknowledgements This work was supported by the National Natural Science Foundation of China (No.
61273194) and the 111 Project (B12018).
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