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Abstract This paper dealswith the problemof detecting faults in nonlinear networked
control systems. The considered system is the state space models of time-varying
systems in which the upper and lower bounds of delay are known. Sector-bounded
condition is exploited to overcome the nonlinear term. It is assumed that data
packet dropouts occur during data transmission, which here is modeled as Bernoulli-
distributed white sequences. For fault detection, an H−/H∞ performance index is
utilized to design an observer such that the residual signal is much sensitive to faults
and less sensitive to disturbance. The Lyapunov–Krasovskii approach is exploited to
ensure the stability of the designed observer. The obtained results for observer design
are modeled as linear matrix inequalities. Finally, a numerical example and a practi-
cal example of engineering systems are adopted to illustrate the effectiveness of the
proposed approach.
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1 Introduction

During the last 2 decades, the application of networked control systems (NCSs) in
industries is growing. Compared to traditional point-to-point control systems, the
NCSs have benefited from advantages such as low cost, system safety, and ease of
diagnosing and maintenance [22,23,30]. However, using networks for data transmis-
sion instead of wires has been resulted in many issues such as delay, data packet
dropout and quantization problems [10,17,18,34]. System stabilization is an impor-
tant issue in the practical and theoretical systems. Besides, the occurrence of delay and
data packet dropout impacts stability, and therefore, these issues should be considered
in the controller design [3,14–16,31,33].

The existence of nonlinear terms in networked control systems result in many
mathematical issues. There are several methods to analyze nonlinear systems, for
example, utilizing Takagi–Sugeno fuzzy model is an appropriate method to design
stabilizing controllers and observers for nonlinear systems [7,13,19,29,30,32]. Sum
of squares (SOS) method is another approach that is used to investigate the stability
of nonlinear NCSs. For example in [4], the SOS method is exploited to analyze a
nonlinear system with time-varying delay and transition intervals. In many studies,
sector-bounded nonlinearity condition is utilized to analyze the stability of nonlinear
systems [24,25,35]. A gain-scheduled algorithm for controller design in discrete-time
systems with randomly nonlinear disturbance, which satisfy sector-bounded condition
is studied in [26], where the random variable is represented by Bernoulli-distributed
sequence.

Due to increased demands for safety, reliability and performance, fault detection
methods have received much attention in the last decades [5,11]. In the fault detection
process for NCSs, transmission delays and data packet dropouts cause many chal-
lenges. In several studies, delays or data packet dropouts are considered, for example
in [12,20,24] transmission delays, and in [9,21] data packet dropout is studied. The
aim of this paper is fault detection by designing a stable observer, and computing and
evaluating the residual signal using the observer. Comparing the residual evaluation
signal with a predefined threshold can detect faults [8,27,28].

Moreover, the mathematical model of systems suffers from uncertainty as well
as disturbance that can cause inappropriate effects in the residual signal. In other
words, incipient fault cannot be detected in the presence of modeling uncertainty
and disturbances; therefore, a robust H−/H∞ strategy can be adopted to improve
the process of fault detection. This performance index is the combination of H− and
H∞ indexes in which the H∞ index reduces the effect of disturbance and the H−
index increases the faults impact on the residual signal [1,2,6,11]. Despite the clear
advantages of H−/H∞ performance index, to the best of our knowledge, it has not
been used for the fault detection of networked control systems.

Thus, our goal, in current work, is to design a stable observer using a robust fault
detection approach, in which the residual signal is sensitive to fault, while it is robust
against disturbance. To this end, H−/H∞ performance index is exploited to achieve
the optimal fault detection filter. It is assumed that the system model includes a class
of nonlinearity, which can be handled using a sector-bounded nonlinearity condition
technique. This work aims to design a robust fault detection scheme, where data
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transmission from sensors to the observer is subjected to data packet dropout. This
phenomenon ismodeled asBernoulli-distributedwhite sequences. Finally, a numerical
example and a practical example of engineering systems are studied to show the
effectiveness of the proposed approach.

The rest of this paper is organized as follows: In Sect. 2, the structure of the system
including observer is described. In Sect. 3, three theorems are derived, in the first
theorem, H∞ index is used to reduce the impact of disturbance on the residual signal,
in the second theorem, H− index is used to increase the effect of fault on the residual
signal, and finally third theorem makes use of model matching technique to obtain
observer gain. In Sect. 4, a numerical example and in Sect. 5 a practical example
of engineering systems is adopted to show the efficiency of the proposed approach.
Finally, the paper is concluded in Sect. 6.

Notations The notations used throughout this paper are as follows. E {.} denotes the
expectation, ||.|| denotes the standard l2 norm, Pr ob {.} denotes occurrence probability,
diag {.} denotes a block diagonal matrix, ∗ illustrates a symmetrical transpose. I and
0 are an identity and zero matrices with appropriate dimensions.

2 Problem Statement

Consider a dynamic system that is described by:

x(k + 1) = (A + �A)x(k) + (Ah + �Ah)x(k − h(k)) + Ng(x(k))

+ M1w(k) + F1 f (k)

y(k) = Cx(k)

(1)

where x(k) ∈ R
n is the state vector, g(x(k)) ∈ R

n is the nonlinear term that depends
on system state, y(k) ∈ R

m is the output vector,w(k) ∈ R
w is disturbance that belongs

to L2 (0 , ∞) , f (k) ∈ R
f denotes the faults. A, Ah, N , M1, F1, C are predefined

matrices with appropriate dimensions, h(k) is a positive value for delay with upper
and lower bounds τm < h(k) < τM , where τm, τM are positive known scalars.�A(k)
and �Ah(k) are time-varying uncertainties of the matrices A and Ah where:

[
�A �Ah

] = LF(k)
[
E1 E2

]
(2)

L , E1, E2 are known matrices and F(k) is a time-varying matrix that satisfies
FT(k)F(k) < I .

It is assumed that for the nonlinear term, the following sector-bounded nonlinearity
condition is satisfied:

[g(x(k)) − S1x(k)]
T [g(x(k)) − S2x(k)] ≤ 0 ∀x(k) ∈ R

n (3)

and g(0) = 0 for some constant real matrices S1, S2 with appropriate dimensions, in
which (S2 − S1) > 0.
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Fig. 1 The structure of networked control systems

The structure of fault detection filter for considered NCS is shown in Fig. 1. This
figure shows that the network is used for data transmission from the plant to the fault
detection filter.

Considering data packet dropout, the input of the fault detection filter is:

ŷ(k) = α(k)Cx(k) + M2w(k) + F2 f (k) (4)

where M2, F2 are known matrices, and stochastic variable α(k) is assumed to be a
Bernoulli-distributed white sequence defined as follows:

Prob {α(k) = 1} = E {α(k)} = ᾱ

Prob {α(k) = 0} = 1 − E {α(k)} = 1 − ᾱ

Var {α(k)} = E
{
(α(k) − ᾱ)2

}
= ᾱ(1 − ᾱ) = β̄2

(5)

where ᾱ is the expected value of α(k) and β̄2 is the variance of α(k).
Fault detection system considers a full-order filter as follows:

x̂(k + 1) = Acx̂(k) + Bc ŷ(k)

r(k) = V (ŷ(k) − Cx̂(k))
(6)

where x̂(k) ∈ R
n is an auxiliary vector for the observer, r(k) ∈ R

m is the residual
signal, Ac, Bc, and V are the observer parameters.

Considering new augmented vector η(k) = [
xT(k) x̂T(k)

]T
, the overall system can

be represented as:

η(k + 1) = Ã�η(k) + (α(k) − ᾱ) Ãαη(k) + Ã�hη(k − h(k)) + Ñ g(Hη(k))

+ M̃1w(k) + F̃1 f (k)

r(k) = V C̃η(k) + (α(k) − ᾱ) V C̃αη(k) + V M̃2w(k) + V F̃2 f (k)

(7)

where:

Ã� =
[
A + �A 0
ᾱBcC Ac

]
, Ãα =

[
0 0

BcC 0

]
, Ã�h =

[
Ah + �Ah 0

0 0

]
, Ñ =

[
N
0

]
,

M̃1 =
[

M1
BcM2

]
, F̃1 =

[
F1

BcF2

]
, C̃ = [

ᾱC −C
]
, C̃α = [

C 0
]
, M̃2 = M2,

F̃2 = F2, H = [
I 0

]
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Moreover, term g(Hη(k)) in Eq. (7) can be rewritten using Eq. (3) as:

[
g(Hη(k)) − S̃1η(k)

]T [
g(Hη(k)) − S̃2η(k))

]
≤ 0

S̃1 = [
S1 0

]
, S̃2 = [

S2 0
] (8)

By simple arrangement of the above equation, one can obtain:

[
η(k)

g(Hη(k))

]T [
S̃T1 S̃2+S̃T2 S̃1

2 − S̃T1 +S̃T2
2

− S̃1+S̃2
2 I

] [
η(k)

g(Hη(k))

]
≤ 0 (9)

Our aim is to use H−/H∞ performance index to design a fault detection filter that
maximizes the effect of fault while minimizes the effect of disturbance on the residual
signal; in other words:

||r(k)|| < λ||w(k)||
||r(k)|| > γ || f (k)|| (10)

To this end, a reference system is defined as:

ηr (k + 1) = Ã∗ηr (k) + (α(k) − ᾱ) Ã∗
αηr (k) + Ãhηr (k − h(k))

+ Ñ g(Hηr (k)) + M̃∗
1w(k) + F̃∗

1 f (k)

rr (k) = V ∗C̃ηr (k) + (α(k) − ᾱ) V ∗C̃αηr (k) + V ∗M̃2w(k) + V ∗ F̃2 f (k)
(11)

where:

Ã∗ =
[

A 0
ᾱB∗

c C A∗
c

]
, Ã∗

α =
[

0 0
B∗
c C 0

]
, Ãh =

[
Ah 0
0 0

]
,

Ñ =
[
N
0

]
, M̃∗

1 =
[

M1
B∗
c M2

]
, F̃∗

1 =
[

F1
B∗
c F2

]
,

By defining re(k) = r(k)−rr (k), and introducing new augmented matrices ξ(k) =[
xT(k) ηTr (k) x̂T(k)

]T
and d(k) = [

f T(k) wT(k)
]T
, we have:

ξ(k + 1) = ( Ā + � Ā)ξ(k) + (α(k) − ᾱ) Āαξ(k) + ( Āh + � Āh)ξ(k − h(k))

+ N̄ g(H̄ξ(k)) + D̄1d(k)

re(k) = C̄ξ(k) + (α(k) − ᾱ) C̄αξ(k) + D̄2d(k)

(12)
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where:

Ā =
⎡

⎣
A 0 0

ᾱB∗
c C A∗

c 0
ᾱBcC 0 Ac

⎤

⎦ , Āα =
⎡

⎣
0 0 0

B∗
c C 0 0

BcC 0 0

⎤

⎦ , Āh =
⎡

⎣
Ah 0 0
0 0 0
0 0 0

⎤

⎦ , D̄1 =
⎡

⎣
F1 M1

B∗
c F2 B∗

c M2

BcF2 BcM2

⎤

⎦ ,

D̄2 = [
(V − V ∗)F2 (V − V ∗)M2

]
, C̄ = [

(V − V ∗)ᾱC V ∗C −VC
]
,

C̄α = [
(V − V ∗)C 0 0

]
, H̄ = [

I 0 0
]

� Ā =
⎡

⎣
�A 0 0
0 0 0
0 0 0

⎤

⎦ ,� Āh =
⎡

⎣
�Ah 0 0
0 0 0
0 0 0

⎤

⎦ , N̄ =
⎡

⎣
N
0
0

⎤

⎦ ,

Considering Eq. (2), uncertain terms � Ā and � Āh can be obtained as:

� Ā = [
LT 0 0

]T
F(k)

[
E1 0 0

] = L̄ F(k)Ē1

� Āh = [
LT 0 0

]T
F(k)

[
E2 0 0

] = L̄ F(k)Ē2

(13)

Sector-bounded condition for nonlinear term, g(H̄ξ(k)), in the new structure can
be rewritten as:

[
g(H̄ξ(k)) − S̄1ξ(k)

]T [
g(H̄ξ(k)) − S̄2ξ(k))

] ≤ 0

S̄1 = [
S1 0 0

]
, S̄2 = [

S2 0 0
] (14)

By a simple arrangement, it can be reformulated as:

[
ξ(k)

g(H̄ξ(k))

]T [
S̄T1 S̄2+S̄T2 S̄1

2 − S̄T1 +S̄T2
2

− S̄1+S̄2
2 I

] [
ξ(k)

g(H̄ξ(k))

]
≤ 0 (15)

The following H∞ performance index is considered for the system (12) tominimize
the deviation of the residual dynamics from the reference dynamics:

||re(k)|| < κ||d(k)||. (16)

To detect faults, the residual evaluation function and the threshold are defined as:

J (k) =
{
s=k∑

s=1

rT(s)r(s)

}1/2

Jth = sup {J (k)}
f (k)=0

(17)

A fault can be detected by comparing the residual evaluation with the threshold by
resorting to the following rules:

J (k) > Jth ⇒ fault has occurred

J (k) ≤ Jth ⇒ fault free
(18)
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Lemma 1 Consider real matrices ψ1, ψ2, ψ3 with appropriate dimensions and
assume that ψT

3 ψ3 ≤ I , and then following equation is satisfied:

ψ1ψ3ψ2 + ψT
2 ψT

3 ψT
1 ≤ ϑψ1ψ

T
1 + ϑ−1ψT

2 ψ2 ∀ϑ > 0

3 Main Results

The objective of this section is to design a fault detection filter for nonlinear networked
control systems. The residual signal is designed in a way that it is the most sensitive
to fault, and robust against disturbances and uncertainties. In the first step, define
rr f (k), rrw(k) as the sum of reference residual signal. Our goal is to increase the
effect of fault in rr f (k), and to reduce the impact of disturbance in rrw(k), in the other
words:

||rrw(k)|| < λ||w(k)||
||rr f (k)|| > γ || f (k)|| (19)

The first two Theorems are proposed to achieve rrw(k) and rr f (k), respectively.
The observer gain is obtained from the third theorem by means of a model matching
approach.

Theorem 1 For any positive matrices P = PT = diag(P11, P22) > 0, Q = QT >

0, and matrices R̃, S̃, Z∗ with appropriate dimensions, positive scalar ε > 0 and
H∞ gain λ > 0 that satisfies (19), if the following LMI is satisfied:

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

Ψ11 0 0 Ψ14

(
Ã∗
p

)T
C̃TZ∗ β̄

(
Ã∗
Pα

)T
β̄C̃T

α Z
∗

∗ −Q 0 0 ÃT
h P 0 0 0

∗ ∗ −λI 0
(
M̃∗

P1

)T
M̃T

2 Z
∗ 0 0

∗ ∗ ∗ −ε I ÑTP 0 0 0
∗ ∗ ∗ ∗ −P 0 0 0
∗ ∗ ∗ ∗ ∗ −Z∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z∗

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

< 0 (20)

where

Ψ11 = −P + (τM − τm + 1)Q − ε
S̃T1 S̃2 + S̃T2 S̃1

2

Ψ14 = ε
S̃T1 + S̃T2

2

Ã∗
p =

[
P11A 0
ᾱ R̃C S̃

]
, Ã∗

pα =
[

0 0
R̃C 0

]
, M̃∗

p1 =
[
P11M1

R̃M2

]
,
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system (21) is asymptotically stable,

ηrw(k + 1) = Ã∗ηrw(k) + (α(k) − ᾱ) Ã∗
αηrw(k) + Ãhηrw(k − h(k))

+ Ñ g(H(ηrw(k)) + M̃∗
1w(k)

rrw(k) = V ∗C̃ηrw(k) + (α(k) − ᾱ) V ∗C̃αηrw(k) + V ∗M̃2w(k)

(21)

Then, the observer gain is achieved by:

B∗
c = (P22)

−1 R̃, A∗
c = (P22)

−1 S̃, V ∗ = (
Z∗)1/2

Proof Consider the following Lyapunov–Krasovskii (LK) functional:

V (k)=ηTrw(k)P ηrw(k)+
k−1∑

i=k−τ(k)

ηTrw(i)Qηrw(i) +
−τm∑

j=−τM+1

k−1∑

i=k+ j

ηTrw(i)Q ηrw(i)

(22)

and the following criterion:

J l∞ =
l−1∑

k=0

(
rTrw(k)rrw(k) − λwT(k)w(k)

)
(23)

where l is an arbitrary positive integer. For any initial condition ηrw(0) = 0, then:

J l∞ =
l−1∑

k=0

(
rTrw(k)rrw(k) − λwT(k)w(k) − �V (k)

)
+ V (k) (24)

With attention to the LK functional (22) and the inequality (9) for the nonlinear
term, the system (21) is stable with the H∞ performance, if:

E[�V (k)] < E
[
(rTrw(k)rrw(k)) − λwT(k)w(k)

+ ηTrw(k + 1)P ηrw(k + 1)
]

− ηTrw(k)Pηrw(k) + (τM − τm + 1)ηTrw(k)Q ηrw(k)

− ηTrw(k − τ(k))Qηrw(k − τ(k))

− ε

[
ηrw(k)

g(Hηrw(k))

]T [
S̃T1 S̃2+S̃T2 S̃1

2 − S̃T1 +S̃T2
2

− S̃1+S̃2
2 I

] [
ηrw(k)

g(Hηrw(k))

]
< 0 (25)
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By the substituting system (21) into Eq. (25), then:

(
V ∗C̃ηrw(k) + V ∗M̃2w(k)

)T ×
(
V ∗C̃ηrw(k) + V ∗M̃2w(k)

)
− λωT(k)ω(k)

+
(
Ã∗ηrw(k) + Ãhηrw(k − h(k)) +Ñ g(Hηrw(k)) + M̃∗

1w(k)
)T

P
(
Ã∗ηrw(k) + Ãhηrw(k − h(k))

+Ñ g(Hηrw(k)) + M̃∗
1w(k)

)
+ (τM − τm + 1)ηTrw(k)Qηrw(k)

−ηTrw(k − τ(k))Qηrw(k − τ(k)) + β̄2ηTrw(k)
(
C̃α

)T
Z∗ (

C̃α

)
ηrw(k)

+β̄2ηTrw(k)
(
Ã∗

α

)T
P

(
Ã∗

α

)
ηrw(k) − ε

[
ηrw(k)

g(Hηrw(k))

]T [
S̃T1 S̃2+S̃T2 S̃1

2 − S̃T1 +S̃T2
2

− S̃1+S̃2
2 I

]

[
ηrw(k)

g(Hηrw(k))

]
< 0 (26)

Now, consider augmented matrix ψ(k) =
[
ηTrw(k) ηTrw(k − τ(k)) wT(k)

gT(H(ηrw(k))
]
, Eq. (26) can be reformulated as:

ψT(k)Ξψ(k) < 0 (27)

where:

Ξ =

⎡

⎢
⎢⎢⎢⎢
⎣

Ξ11 Ξ12 Ξ13

(
Ã∗

)T
P Ñ + ε

S̃T1 +S̃T2
2

∗ Ξ22 ÃT
h P M̃∗

1 ÃT
h P Ñ

∗ ∗ Ξ33

(
M̃∗

1

)T
P Ñ

∗ ∗ ∗ Ξ44

⎤

⎥
⎥⎥⎥⎥
⎦

Ξ11 = − P + (τM − τm + 1)Q +
(
Ã∗)TP Ã∗ + β̄2

(
Ã∗

α

)T
P Ã∗

α

− ε
S̃T1 S̃2 + S̃T2 S̃1

2
+ C̃TZ∗C̃ + β̄2

(
C̃α

)
Z∗C̃α

Ξ12 =
(
Ã∗)TP Ãh; Ξ13 = C̃TZ∗M̃2 +

(
Ã∗)TPM̃∗

1

Ξ22 = − Q + ÃT
h P Ãh; Ξ33 = −λI + M̃T

2 Z
∗M̃2 +

(
M̃∗

1

)T
PM̃∗

1

Ξ44 = ÑTP Ñ − ε I



72 Circuits Syst Signal Process (2019) 38:63–84

The system (21) is stable ifΞ < 0. Now using the Schur complement, and defining:

Z∗ = (
V ∗)TV ∗, P = diag(P11, P22),

R̃ = P22B
∗
c , S̃ = P22A

∗
c ,

Ã∗
p = P Ã∗, Ã∗

pα = P Ã∗
α, M̃∗

p1 = PM̃∗
1

(28)

to overcome the nonlinear terms, the LMI (20) can be obtained. �	

Theorem 2 For any positive matrices P = PT = diag(P11 P22) > 0, Q = QT > 0,
matrices R̃, S̃, Z∗ with appropriate dimensions, positive scalars ε, δ, e > 0 and
the H− gain γ > 0 that satisfies (19), if the following LMI satisfied:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Λ11 0 Λ13 ε
S̃T1 +S̃T2

2

(
Ã∗
p

)T
β̄
(
Ã∗
Pα

)T

∗ Λ22 0 0 ÃT
h P 0

∗ ∗ Λ33 0
(
F̃∗
P1

)T
0

∗ ∗ ∗ −ε I ÑTP 0
∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ −P

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0 (29)

where

Λ11 = −P + (τM − τm + 1)Q − ε
S̃T1 S̃2+ S̃T2 S̃1

2
−C̃TZ∗C̃ − β̄2C̃T

α Z
∗C̃α + I + δ I

Λ13 = −C̃TZ∗M̃2,

Λ22 = −Q + I + δ I,Λ33 = γ I − F̃T
2 Z∗ F̃2 − e2δ I

Ã∗
p =

[
P11A 0
ᾱ R̃C S̃

]
, Ã∗

pα =
[

0 0
R̃C 0

]
, F̃∗

p1 =
[
P11F1
R̃F2

]

system (30) is asymptotically stable:

ηr f (k + 1) = Ã∗ηr f (k) + (α(k) − ᾱ) Ã∗
αηr f (k) + Ãhηr f (k − h(k)) + Ñ g(xr f (k))

+ F̃∗
1 f (k)

rr f (k) = V ∗C̃ηr f (k) + (α(k) − ᾱ) V ∗C̃αηr f (k) + V ∗ F̃2 f (k)
(30)

and the observer gain can be achieved by:

B∗
c = (P22)

−1 R̃, A∗
c = (P22)

−1 S̃, V ∗ = (
Z∗)1/2
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Proof Consider the following Lyapunov–Krasovskii functional:

V (k) = ηTr f (k)P ηr f +
k−1∑

i=k−τ(k)

ηTr f (i)Qηr f (i)

+
−τm∑

j=−τM+1

k−1∑

i=k+ j

ηTr f (i)Q ηr f (i)

(31)

and the following criterion:

J l− =
l−1∑

k=0

(
rTr f (k)rr f (k) − γ f T(k) f (k)

)
(32)

where l is an arbitrary positive integer. For any initial condition ηr f (0) = 0, Eq. (32)
can be rewritten as:

J l− =
l−1∑

k=0

(
rTr f (k)rr f (k) − γ f T(k) f (k) − �V (k)

)
+ V (k) (33)

With attention to LK functional (31) and inequality (9) for the nonlinear term,
system (30) is stable with the H− performance, if:

E{�V (k)} < E
{
− rTr f (k)rr f (k) + γ f T(k) f (k)

+ ηTr f (k + 1)Pηr f (k + 1) − ηTr f (k)Pηr f (k)

ηTr f (k + τ(k))Qηr f (k + τ(k))
}

− γωT(k)ω(k) +
(
Ã∗ηrw(k) + Ãhηrw(k − h(k))

+Ñ g(Hηrw(k)) + M̃∗
1w(k)

)T
P

(
Ã∗ηrw(k)

+ Ãhηrw(k − h(k)) + Ñ g(Hηrw(k)) + M̃∗
1w(k)

)

+ (τM − τm + 1)ηTr f (k)Qηr f (k)

− ε

[
ηr f (k)

g(Hηr f (k))

]T [
S̃T1 S̃2+S̃T2 S̃1

2

− S̃1+S̃2
2

− S̃T1 +S̃T2
2
I

] [
ηr f (k)

g(Hηr f (k))

]
< 0 (34)

By substituting system (30) into (34), we have:

−
(
V ∗C̃ηr f (k) + V ∗ F̃2 f (k)

)T (
V ∗C̃ηr f (k) + V ∗ F̃2 f (k)

)

+ γ f T(k) f (k) +
(
Ã∗ηr f (k) + Ãhηr f (k − h(k))
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+Ñ g(xr f (k)) + F̃∗
1 f (k)

)
P

(
Ã∗ηr f (k) + Ãhηr f (k − h(k))

+Ñ g(xr f (k)) + F̃∗
1 f (k)

)

− ηTr f (k)P ηr f (k) (τM − τm + 1)ηTr f (k)Q ηr f (k)

− ηTr f (k − τ(k))Qηr f (k − τ(k)) (35)

− ηTr f (k)β̄
2
(
C̃α

)T
Z∗ (

C̃α

)
ηr f (k)

+ ηTr f (k)β̄
2
(
Ã∗

α

)T
P

(
Ã∗

α

)
ηr f (k)

− ε

[
ηr f (k)

g(Hηr f (k))

]T [
S̃T1 S̃2+S̃T2 S̃1

2 − S̃T1 +S̃T2
2

− S̃1+S̃2
2 I

] [
ηr f (k)

g(Hηr f (k))

]
< 0

Consider the augmented vector χ(k) =
[
ηTr f (k) ηTr f (k − τ(k)) f T(k)

gT(H(ηr f (k))
]
, then:

χT(k)Ωχ(k) < 0 (36)

where:

Ω =

⎡

⎢⎢
⎢⎢⎢
⎣

Ω11

(
Ã∗

)T
P Ãh Ω13 Ω14

∗ Ω22 ÃT
h P M̃1 ÃT

h P Ñ

∗ ∗ Ω33

(
F̃∗
1

)T
P Ñ

∗ ∗ ∗ −ε I + ÑTP Ñ

⎤

⎥⎥
⎥⎥⎥
⎦

Ω11 = − P + (τM − τm + 1)Q +
(
Ã∗)TP Ã∗ + β̄2

(
Ã∗

α

)
P Ã∗

α

− ε
S̃T1 S̃2 + S̃T2 S̃1

2
− C̃TZ∗C̃ − β̄2C̃T

α Z
∗C̃α

Ω13 = − C̃TZ∗M̃2 +
(
Ã∗)TP F̃∗

1 ,Ω14 =
(
Ã∗)TP Ñ + ε

S̃T1 + S̃T2
2

Ω22 = − Q + ÃT
h P Ãh,Ω33 = γ I − F̃T

2 Z∗ F̃2 +
(
F̃∗
1

)T
P F̃∗

1

System (30) is stable and satisfies the H− performance index, if Ω < 0. Moreover,

it is clear that in Ω the value γ depends on −F̃T
2 Z∗ F̃2 +

(
F̃∗
1

)T
P F̃∗

1 ; therefore,

one can use S-procedure Lemma to reduce the dependence of γ . Consequently, the
following S-procedure equations are used:

||ηr f (k)||2 + ∥
∥ηr f (k − h(k))

∥
∥2 ≥ 0

||ηr f (k)||2 + ∥∥ηr f (k − h(k))
∥∥2 ≥ e2

∥∥ f̄ (k)
∥∥2

(37)
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Now, using the S-procedure Lemma and the Schur complement, LMI (29) can be
obtained. The proof of the second Theorem is completed. �	

Then, our aim is to find reference residual that is much sensitive to fault and insen-
sitive to disturbance. Therefore, there is a need for the simultaneous use of the both
Theorems.

Remark 1 Our aim is to obtain reference residual to reach inf λ
γ
, for this purpose, first

λ and γ are initialized, in the next step, γ is increased and λ is decreased, as much
as possible, while Theorem 1 and Theorem 2 are feasible.

Remark 2 Our aim is to select λ as small as possible and γ as large as possible. This
might lead to a big value for Z∗. Therefore, we can limit the Z∗ by selecting a design
parameter μZ as follows:

Z∗ − μZ I < 0

where μz is a positive scalar.
Using both theorems, we can obtain A∗

c , B∗
c , and V ∗. Now a model matching

technique has been used to find the observer gain; therefore, in Theorem 3, the H∞
performance index (16) has been used to decrease the difference between the residual
and the reference residual.

Theorem 3 System (12) is robust and asymptotically stable, which satisfies the H∞
performance index (16), if for anypositivematrices P = PT = diag(P11, P22, P33) >

0, Q = QT > 0, matrices S̄, R̄, V with appropriate dimensions, and positive
scalars ε, v, κ > 0 the following LMI is satisfied:

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Γ11 0 0 Γ14 ĀT
P C̄T β̄ ĀT

Pα β̄C̄T
α 0

∗ Γ22 0 0 ĀT
h P 0 0 0 0

∗ ∗ −κ I 0 D̄T
P1 D̄T

2 0 0 0

∗ ∗ ∗ −ε I N̄TP 0 0 0 0

∗ ∗ ∗ ∗ −P 0 0 0 P L̄

∗ ∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −v

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0 (38)

where:

Γ11 = −P + (τM − τm + 1)Q − ε
S̄T1 S̄2 + S̄T2 S̄1

2
+ ĒT

1 v Ē1

Γ14 = ε
S̄T1 + S̄T2

2
, Γ22 = −Q + ĒT

2 v Ē2
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Ā p =
⎡

⎣
P11A 0 0

ᾱP22B∗
c C P22A∗

c 0
ᾱ R̄C 0 S̄

⎤

⎦ , Ā pα =
⎡

⎣
0 0 0

P22B∗
c C 0 0

R̄C 0 0

⎤

⎦ ,

D̄p1 =
⎡

⎣
P11F1 P11M1

P22B∗
c F1 P22B∗

c M1

R̄F1 R̄M1

⎤

⎦ ,

Thus, the observer gain can be obtained by:

Ac = (P33)
−1 S̄, Bc = (P33)

−1 R̄

Proof Consider the following Lyapunov–Krasovskii functional:

V (k) = ξT(k)Pξ(k) +
k−1∑

i=k−τ(k)

ξT(i)Q ξ(i)

+
−τm∑

j=−τM+1

k−1∑

i=k+ j

ξT(i)Q ξ(i)

(39)

and the following criterion:

J l∞ =
l−1∑

k=0

(
re

T(k)re(k) − κdT(k)d(k)
)

(40)

where l is an arbitrary positive integer. For any initial condition ξ(0) = 0, we have:

J l∞ =
l−1∑

k=0

(
re

T(k)re(k) − κdT(k)d(k) − �V (k)
)

+ V (k) (41)

With attention to LK functional (39) and inequality (15) for the nonlinear term,
system (12) is stable with the H∞ performance index, if:

E
{
re

T(k)re(k) + ξT(k + 1)P ξ(k + 1)
}

− ξT(k)Pξ(k)

+ (τM − τm + 1)ξT(k)Q η(k)

− ξT(k − τ(k))Qξ(k − τ(k)) − κdT(k)d(k)

− ε

[
ξ(k)

g(H̄ξ(k))

]T [
S̄T1 S̄2+S̄T2 S̄1

2 − S̄T1 +S̄T2
2

− S̄1+S̄2
2 I

][
ξ(k)

g(H̄ξ(k))

]
< 0 (42)

By substituting system (12) into Eq. (42), and considering an augmented matrix
ψ̄(k) = [

ξT(k) ξT(k − h(k)) dT(k) gT(H̄ξ(k))
]T
, then:
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ψ̄T(k)Πψ̄(k) < 0 (43)

where:

Π =

⎡

⎢
⎢
⎣

Π11 Π12 Π13 Π14
∗ Π22 Π23 Π24

∗ ∗ Π33 D̄T
1 P N̄

∗ ∗ ∗ −ε I + N̄TP N̄

⎤

⎥
⎥
⎦

Π11 = − P + (τM − τm + 1)Q − ε
S̄T1 S̄2 + S̄T2 S̄1

2

+ (
Ā + � Ā

)T
P

(
Ā + � Ā

) + C̄TC̄ + β̄2C̄T
α C̄α + β̄2 ĀT

αP Āα

Π12 = (
Ā + � Ā

)T
P

(
Āh + � Āh

)

Π13 = C̄T D̄2 + (
Ā + � Ā

)T
P D̄1

Π14 = (
Ā + � Ā

)T
P N̄ + ε

S̄T1 + S̄T2
2

Π22 = − Q + (
Āh + � Āh

)T
P

(
Āh + � Āh

)

Π23 = (
Āh + � Āh

)T
P D̄1

Π24 = (
Āh + � Āh

)T
P N̄

Π33 = − κ + D̄T
2 D̄2 + D̄T

1 P D̄1

System (12) is stable if Π < 0. Now, Lemma 1 is used for uncertain terms, and the
Schur complement is used to achieve a LMI. However, some slack matrices should be
defined to overcome the nonlinear terms, as follows:

P = diag
(
P11 P22 P33

)

S̄ = P33Ac, R̄ = P33Bc

Āp = P Ā, Ā pα = P Āα, D̄p1 = P D̄1

(44)

Then, LMI (38) is obtained. The proof of the third Theorem is completed. �	
Remark 3 Theobserver gains obtained fromTheorem3might be very small; therefore,
one can define design parameters for the model matching section as follows:

P33 < μP I, S̄ > μS I (45)

where μp and μs are positive scalars.

Remark 4 With the aimof the proposedmethod, the effect of fault in the residual signal
is increased while the disturbance effect is minimized at the same time. Accordingly,
in the residual evaluation signal the effect of fault is more clear, and therefore, the fault
can be detected at the early stages.However, it should be noted that developed theorems
present sufficient conditions, which may be difficult to obtain a feasible solution.
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4 Numerical Example

Consider a class of nonlinear NCS represented by (1), in which:

A =
[
0.6 0.2
0 0.7

]
, Ah =

[
0.03 0
0.02 0.03

]
, N =

[−0.1 0
0 0.1

]
,

M1 =
[
0.8
0.3

]
, F1 =

[−1
0.6

]
C =

[
0.2 −0.1
0.3 −0.2

]
, M2 =

[
0.6
0.7

]
,

F2 =
[−0.9

0.3

]
, L =

[
0.1
0.2

]
, E1 = [−0.1 0.1

]
,

E2 = [
0.2 0

]
, τM = 2, τm = 1, F(k) = 0.4 sin(π/6k).

The nonlinear term is considered as [25]:

g(x(k)) =
⎡

⎣
−0.1x1(k) + 0.15x2(k) + 0.1x2(k) sin(x1(k))√

x21 (k)+x22 (k)+10

−0.05x1(k) + 0.05x2(k)

⎤

⎦

With attention to equation (3), S1, S2 is obtained as:

S1 =
[−0.4 0

−0.2 −0.3

]
, S2 =

[
0.2 0.3
0.1 0.4

]

Data packet modeled as Bernoulli-distributed white sequences:

E {α(k)} =
{

0.8 α(k) = 1

0.2 α(k) = 0

It is clear that ᾱ = 0.8 and β̄ = 0.16. As mentioned in the previous section, our aim
is to obtain a minimum value for λ, e and a maximum value for γ such that Theorems
1 and 2 are feasible. The best values for these parameters are obtained as follows:

λ = 0.1, γ = 10, e = 2

where design parameter is λz = 37. Obtained reference gain is used in Theorem 3 to
achieve observer gain. Consider H∞ gain κ = 0.15 and model matching designing
parameter μP = 50, μS = 1; therefore, the observer gain is achieved as:

Ac =
[
0.3565 0.0176
0.0175 0.3508

]
, Bc =

[
0.0073 −0.0044

−0.0043 0.0195

]
,

V =
[

4.2288 −2.7685
−2.7685 1.9421

]

Disturbance is assumed to be a random variable in interval [0, 0.75] for 1 < k <

100, and also fault is an abrupt signal that occurs between 50 to 70, as follows:
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f (k) =
{

1, 50 < k < 70

0, otherwise

With the aim of designed observer, residual signal is computed. The results of the
proposed observer are compared with the presented approach in [25]. If an abrupt fault
occurs in the system, the response of residual signal considering the initial conditions
x(0) = [π/8, 0]T, x̂(0) = [0, 0]T is illustrated in Fig. 2. It is clear that using the
proposed approach the effect of fault is more clear in the residual signal. The threshold
after 1000 Monte Carlo run is computed Jth= 6.8645. Residual evaluation signal is
shown in Fig. 3. By comparing the residual evaluation signal with the threshold Jth
in Fig. 3, it is clear that the fault can be detected in the first step. In other words, the
proposed H−/H∞ approach can make an earlier alarm by increasing the fault effect,
while the disturbance effect is minimized in the residual signal.

5 Practical Example

In this section, a mass–spring system with two masses and two springs as explained
in [24] is considered. In terms of nonlinear networked control system represented by
(1), the parameters are obtained as follows:

A =

⎡

⎢⎢
⎣

0.5172 0.2290 0.5316 0.0562
0.4017 0.5734 0.1123 0.452

−0.9509 0.4193 0.2524 0.1728
0.6658 −0.7781 0.3456 0.1281

⎤

⎥⎥
⎦ , M1 =

⎡

⎢⎢
⎣

0.2663
0.2507
0.5878
0.5575

⎤

⎥⎥
⎦ ,
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Fig. 2 Residual signals of the proposed method and method of [25]
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Fig. 3 Residual evaluation signal of the proposed method and method of [25]

F1 =

⎡

⎢⎢
⎣

0.1
0.2
0.15
0.2

⎤

⎥⎥
⎦ N =

⎡

⎢⎢
⎣

−0.1 0 0 0
0 −0.085 0 0
0 0 0.125 0
0 0 0 −0.15

⎤

⎥⎥
⎦ , M2 =

⎡

⎣
0.1
0.1
0.1

⎤

⎦ ,

C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , M2 =
⎡

⎣
0.1
0.1
0.1

⎤

⎦ , F2 =
⎡

⎣
0.2

−0.3
0.2

⎤

⎦ .

Suppose:

L =
[
0.1
0.2

]
, E1 = [−0.1 0.1

]
, F(k) = 0.4 sin(π/6k).

The nonlinear term is considered as:

g(x(k)) =

⎡

⎢⎢⎢
⎣

−0.7x1(k) + 0.05x2(k) + 0.05x3(k)
−0.05x1(k) + 0.85x2(k)

−0.05x1(k) − 0.47x2(k) + x3(k) sin(x1(k))√
x21 (k)+x22 (k)+20

0

⎤

⎥⎥⎥
⎦

With attention to equation (3), S1 and S2 are obtained as:

S1 =

⎡

⎢⎢
⎣

−0.9 0 0.1 0
−0.1 0.8 0 0
0 0 −0.75 0
0 0 0 0

⎤

⎥⎥
⎦ , S2 =

⎡

⎢⎢
⎣

−0.5 0.1 0 0
0 0.9 0 0

−0.1 0 −0.2 0
0 0 0 0

⎤

⎥⎥
⎦
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Here, data packet dropout is assumed to be a Bernoulli-distributed white sequences:

E {α(k)} =
{

0.9 α(k) = 1

0.1 α(k) = 0

It is clear that ᾱ = 0.9 and β̄ = 0.09. As mentioned in the previous section, our
aim is to obtain a minimum value for λ, and e, and a maximum value for γ such that
Theorems 1 and 2 are feasible. The best values for these parameters are obtained as
follows:

λ = 2, γ = 6, e = 4

The design parameter is obtained λz = 37. The obtained reference gain is used
in Theorem 3 to achieve observer gain. Assume H∞ attenuation level κ = 0.25 and
model matching design parameters μP = 50, μS = 1, and therefore, the observer
gain is achieved as:

Ac =

⎡

⎢
⎢
⎣

0.1078 0.0840 0.0855 0.0834
0.0705 0.0930 0.0725 0.0704
0.1370 0.1386 0.1557 0.1324
0.1902 0.1913 0.1885 0.2085

⎤

⎥
⎥
⎦ , Bc =

⎡

⎢
⎢
⎣

0.0239 −0.0011 0.0054
−0.0011 0.0227 0.0109
0.0017 0.0023 0.0244
0.0016 0.0014 −0.0052

⎤

⎥
⎥
⎦ ,

V =
⎡

⎣
2.1709 −1.4668 −0.4179

−1.4668 1.2980 0.3275
−0.4179 0.3275 0.6116

⎤

⎦

Disturbance is supposed to be a randomvariable in interval [0, 0.5] for 1 < k < 100.
Moreover, a fault with an abrupt behavior that occurs between 50 to 70 is considered
as follows:

f (k) =
{

1, 50 < k < 70

0, otherwise

With the aim of designed observer, residual signal is computed. If an abrupt fault
occurs in the system, the response of residual signal considering the initial conditions
x(0) = [0, 0, 0, 0]T, x̂(0) = [0, 0, 0, 0]T is illustrated in Fig. 4. It is clear that the
effect of fault appears in the residual signal. The threshold after 1000MonteCarlo run is
computed Jth = 0.5753. Residual evaluation signal is shown in Fig. 5. By comparing
the residual evaluation signal with the predefined threshold Jth in Fig. 5, the fault can
be clearly detected in the first steps. Accordingly, the proposed H−/H∞ filter can
detect faults in the incipient stages by increasing the fault effect and decreasing the
disturbance effect in the residual signal. This ability introduces it as an appropriate
approach for fault detection of nonlinear networked control systems.



82 Circuits Syst Signal Process (2019) 38:63–84

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k (Sample Time)

A
m

pl
itu

de

r
1
(k)

r
2
(k)

r
3
(k)

Fig. 4 Residual signal
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Fig. 5 Residual evaluation signal

6 Conclusions

In this paper, the problem of robust H−/H∞ fault detection for nonlinear networked
control systems with data packet dropout has been investigated. The sector-bounded
condition is used to analyze the nonlinear terms. Data packet dropout, in data transmis-
sion, is considered as a Bernoulli-distributed white sequences. H−/H∞ performance
index is exploited to maximize the effect of fault, and minimize the effect of distur-
bance in the residual signal. One advantage of using Lyapunov–Krasovskii functional
is that the results are developed as LMIs. Finally, the effectiveness of the proposed
approach is studied using numerical and practical examples.

As a future work, delay and packet dropout can be modeled by Markov process,
and the proposed approach can be developed for the Markovian jump system.
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