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Abstract State estimation of nonlinear systems over sensor networks is a current
challenge. This work pertains to the study of the target estimation in sensor networks
using impulsive control. We first propose an impulse-based filtering scheme of a class
of nonlinear systems over sensor networks. Based on impulsive control theory and a
comparison theorem,we then present generic criteria for estimation under the designed
impulse-based filter. The performance is illustrated with simulations in a network with
four sensor groups.
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1 Introduction

With the development of integrated micro-sensor technology, sensor networks have
been applied into many control areas [2,16,19,23]. The problem of state estimation
or filtering in dynamical systems has also received increasing attention in the con-
trol areas. In particular, many efforts have been devoted to the study of estimation
and control over sensor networks [1,3,9,10,14,16,18,21,22]. For instance, Based on
the Kalman filtering approach, Olfati-Saber and Jalalkamali presented three novel
distributed Kalman filtering algorithms for sensor networks in [16]. Calafiorea and
Abratea exploited a distributed consensus diffusion scheme that relies only on bidirec-
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tional communication amongneighbor nodes in [3]. In [18], Shen et al. addressed a new
distributed H∞ consensus filtering problem over a finite-horizon for sensor networks
with multiple missing measurements and designed two kinds of robust distributed fil-
ters. In [1], Açıkmeşe et al. proposed a decentralized observer with a consensus filter
for discrete-time linear distributed systems and proved the exponential convergence
of the state estimating error of the proposed observer.

It is worth noting thatmost existingworks in this area are based on the continuously-
measured output of the system under consideration. Such an assumption restrains
the applications of digital sensors where often the outputs of many control systems
are only available at discrete sampled instants [4]. We believe that results depend-
ing on such continuously-measured condition among sensors with limited resources
should lead to extensive communication requirements. To reduce the communica-
tion cost or bandwidth, the impulsive models or impulsive estimation approaches
may be a potential solution [5,11–13,17]. In an impulsive fashion, the measurements
are only sampled at discrete-time instants, which results in impulsive error dynam-
ics. In contrast to continuous-time observers [1,3,10,14,18], such an impulse-based
observers/estimators will save the bandwidth of networks and communication cost
among the measured-information transmissions at discrete-time instants. Therefore,
we believe that impulse-based estimation methods should play a prominent role in
estimation of sensor networks in view of the wide applications of digital sensors and
communication networks. However, general results on impulse-based or hybrid esti-
mator design do not seem to have received much attention so far in the context of
sensor networks, being the main reason the absence of a proper impulsive control tool
for such applications.

By exploiting the impulsive control theory in [20] for such purpose, we are able to
establish the following key contributions for the study of target estimation problem of
nonlinear systems over sensor networks in an impulsive fashion:

– A constructive method is developed to handle the impulse-based estimation prob-
lem of nonlinear systems over sensor networks, through an array of sensing devices
providing time-triggered measurements from the target. We do not assume that the
output of the nonlinear system under consideration is measured continuously.

– In our proposed framework, each sensing device estimates the states of the non-
linear systems and exchanges the estimations within its neighbors.

– A parameter-dependent Lyapunov function is utilized to ensure the asymptotic
convergence of the state estimation error. Based on the Lyapunov function and
comparison principle, a generic criterion is presented, where impulsive interval
can be time-varying and the introduction of a positive function K (t) makes the
conditions more flexible.

– The proposed results are illustrated through a numerical example and can be
applied to synchronization in complex networks.

The organization of the paper is as follows. In Sect. 2, we present needed notations
and some preliminaries. Section 3 presents some additional definitions and lemmas
in impulsive systems, and proves the stability of the error dynamics of the distributed
filters. In Sect. 4, numerical simulations on a four-sensor network are provided to show
the effectiveness of the proposed results. Section 5 concludes the paper.
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2 System Description and Preliminaries

The notation used in this paper is fairly standard. Specifically, Rn denotes the n-
dimensional real space. R+ is the set of non-negative real numbers. Denote Nn =
{1, 2, . . . , n}. A� and A-1 represents the transpose of matrix A and the inverse of
matrix A, respectively. Given matrices A, B with proper dimensions, A ⊗ B defines
the Kronecker product. Given a vector x ∈ R

n, x� denotes its transpose. ‖x‖ =
(
∑n

i=1 x
2
i )

1/2 denotes the Euclidean norm.
The plant is described by the following class of nonlinear systems

ṡ(t) = f (t, s(t)), (1)

where s(t) ∈ R
n is the state of the target.

Consider a sensor network of size N and assume that each sensor i can measure
partial states of s(t) ∈ R

n, that is,

yi (t) = Cis(t) (2)

where yi (t) ∈ R
m is the measurement of sensor i on target s(t) and Ci ∈ R

m×n

(i ∈ NN ) are knownmatrices with appropriate dimensions.We assume rank(Ci ) = m,
i ∈ NN . Notice that each yi (t) here measures all signals of partial states of the target
s(t). However, to reduce the communication cost or bandwidth in sensor networks,
the measurements are only sampled at discrete-time instants in our next proposed
framework instead of measured continuously.

Note that there are many sensors that can measure the target s(t) from observations
yi (t), i ∈ NN . We assume that the full state is observable through these partial mea-
surements of target s(t). However, how to carry out the data fusion is still a challenging
problem if there is not a centralized processor capable of collecting all the measure-
ments from the sensors. Therefore, the objective here is to design an impulse-based
distributed filter to track the states of the target s(t).

Assumption 1 [22]. For all x, y ∈ R
n , there exists a constant θ such that

(x − y)�( f (t, x) − f (t, y)) ≤ θ(x − y)�(x − y), ∀t ∈ R.

In the sensor network, the information available for the filter on sensor node i comes
from not only sensor i but also its neighbors. Motivated by this fact, we can design a
filter of the following structure on sensor node i :

ẋi (t) =
⎡

⎣ f (t, xi (t)) + c
∑

j∈Ni

Gi j (x j (t) − xi (t))

⎤

⎦ , t 	= τr ,

Δxi (t) = Bir (Ci xi (t) − yi (t)), t = τr , i ∈ NN (3)

for t ≥ 0, r = 1, 2, . . . , where Ni denotes the set of neighbors of sensor node i ,
xi (t) ∈ R

n is the state estimate of sensor node i , c is the coupling strength, Bir
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is the impulsive control gain with respect to i and r . The time sequence {τr }∞r=1 is
varying and satisfy τr−1 < τr , limr→∞ τr = +∞, and for a given positive constant
ε, τ2r+1−τ2r ≤ ε(τ2r −τ2r−1), ∀r ∈ {1, 2, . . .}.DenoteΔ1 = supr {τ2r+1−τ2r }, and
Δ2 = supr {τ2r − τ2r−1} where Δ1 and Δ2 are positive. Δxi (τr ) = xi (τ+

r ) − xi (τ−
r )

is the ’jump’ of the state xi (t) at time t = τr in which xi (τ+
r ) = limt↘τ+

r
xi (t).

Without loss of generality, we assume that limt↗τ−
r
xi (t) = xi (τr ), which means the

solution xi (t) is continuous from the left. The initial conditions of (3) are given by
xi (0) = φi (0) ∈ R

n, where φi (·) represent the initial functions. The coupling matrix
G = (Gi j )N×N denotes the Laplacian, where Gi j = G ji ≥ 0 denotes the coupling
coefficient from vertex j to vertex i, for all i 	= j,withGii = −∑N

j=1, j 	=i Gi j . Then,
(3) can be written as

ẋi (t) =
⎡

⎣ f (t, xi (t)) + c
N∑

j=1

Gi j x j (t)

⎤

⎦ , t 	= τr ,

Δxi (t) = BirCi (xi (t) − s(t)), t = τr , i ∈ NN . (4)

Letting ei (t) = xi (t) − s(t), we can obtain the following system that governs the
filtering error dynamics for the sensor network:

ėi (t) =
⎡

⎣ f (t, xi (t)) − f (t, s(t)) + c
N∑

j=1

Gi j e j (t)

⎤

⎦ , t 	= τr ,

Δei (t) = BirCi ei (t), t = τr , i ∈ NN . (5)

The impulse-based control is said to solve the estimation problem if the states
between the target and sensors satisfy limt→∞ ‖xi (t) − s(t)‖ = 0.

3 Main Results

In this section, we present impulse-based estimation results for system (1) with N
sensors within a given topology. To support our analysis, some additional definitions
and lemmas are needed based on the following impulsive differential equations

ẋ(t) = f (t, x(t)), t 	= τr ,

Δx(t) = Ir (x(t)), t = τr ,

x(t0) = x0, r = 1, 2, . . . (6)

where x(t) ∈ R
n is the state variable, f : R+ × R

n → R
n is left continuous func-

tion. Δx(τr ) = Ir (x(τr )) = x(τ+
r ) − x(τ−

r ), in which x(τ+
r ) = limt→τ+

r
x(t),

limt→τ−
r
x(t) = x(τr ) (r = 1, 2, . . .). The instant sequence {τr }∞r=1 satisfy τr−1 < τr

and limr→∞ τr = +∞.

Definition 1 [6] The function V : [t0,∞) × R
n → R

+ belongs to class V0 if it
satisfies the following conditions:
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(1) the function V is continuous on each of the sets (τr−1, τr ] × R
n and for all

t ≥ t0, V (t, 0) ≡ 0;
(2) V (t, x) is locally Lipschitzian in x ∈ R

n;
(3) for each r ∈ Z, there exist finite limits

lim
(t,y)→(τ−

r ,x)
V (t, y) = V (τ−

r , x) = V (τr , x),

lim
(t,y)→(τ+

r ,x)
V (t, y) = V (τ+

r , x). (7)

Definition 2 [20] Let V ∈ V0, for t ∈ (τr−1, τr ], we define

D+V (t, x(t)) = lim
h→0+ sup

1

h
[V (t + h, x(t + h)) − V (t, x(t))].

The following two lemmas are introduced for self-containedness.

Lemma 1 [20] Assume that the following three conditions

(i) V : R+ ×R
n → R

+, V ∈ V0, then there exists a integer number β ≥ 1, such
that:

K (t)D+V (t, xβ) + D+K (t)V (t, xβ) ≤ g(t, K (t)V (t, xβ)), t 	= τr

where g : R+ ×R
+ → R is continuous and K (t) ≥ m > 0, limt→τ−

r
K (t) =

K (τr ), i.e., K (t) is left continuous at t = τr also: limt→τ+
r
K (t) exists, r =

1, 2, . . . , and D+K (t) = limh→0+ sup 1
h [K (t + h) − K (t)];

(ii) K (τ+
r )V (τ+

r , (x + Ir (x))β) ≤ Ψr (K (τr )V (τr , xβ)), r = 1, 2, . . . ;
(iii) V (t, 0) = 0 and α1(‖x‖β) ≤ V (t, xβ) onR+ ×R

n,where α1(·) ∈ K (class of
continuous strictly increasing functions α1 : R+ → R

+ such that α1(0) = 0)
are satisfied. Then, the global asymptotic stability of the trivial solution ω = 0
of the comparison system

ω̇(t) = g(t, ω(t)), t 	= τr ,

ω
(
τ+
r

) = Ψr (ω(τr )), t = τr ,

ω
(
t+0
) = ω0 ≥ 0, (8)

implies global asymptotic stability of the trivial solution of impulsive system (6).

Lemma 2 [20] Let g(t, ω) = λ̇(t)ω, λ ∈ C1[R+,R+], Ψr (ω) = drω, dr ≥ 0 for
all r = 1, 2, . . . . Then, the origin of system (6) is globally asymptotically stable if the
conditions of Lemma 1 and the following conditions hold:

(i) λ(t) is nondecreasing, and limt→τr λ(t) = λ(τr ), i.e. λ(t) is left continuous at
t = τr , also limt→τ+

r
λ(t) = λ(τ+

r ) exists, for all r = 1, 2, . . . ;
(ii) supr {dr exp(λ(τr+1) − λ(τ+

r ))} = ε0 < ∞;
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(iii) there exists an μ > 1 such that

λ(τ2r+3) + λ(τ2r+2) + ln(μd2r+2d2r+1) ≤ λ
(
τ+
2r+2

)+ λ
(
τ+
2r+1

)

holds for all d2r+1d2r+2 	= 0, r = 1, 2, . . . , or there exists an μ > 1 such that
λ(τr+1) + ln(μdr+1dr ) ≤ λ(τ+

r ) for all k;
(iv) V (t, 0) = 0 and there exists an α1(·) in class K such that α1(‖x‖) ≤ V (t, x).

Remark 1 Lemma 2 indicates that, global asymptotical stability of the impulsive sys-
tem (6) not only depends on dynamical characteristic of the system at t 	= τr , but also
is heavily determined by the impulsive control gain dr .

Next, we present the main result of this paper.

Theorem 1 Suppose that Assumption 1 holds. The state s(t) of the system (1) can
be asymptotically estimated by the impulse-based filter (3) if there exists a constant
μ > 1 and a differentiable at t 	= τr and nonincreasing function K (t) which satisfies
condition of Lemma 1, such that the following conditions hold:

(C1) (I + BirCi )
�(I + BirCi ) ≤ γi (r)I, where γi (r) (i ∈ N(1, N ), r = 1, 2, . . .)

are positive constants;
(C2)

sup
r

{

ρ(r)exp

[

α(τr+1 − τr ) + ln
K (τr+1)

K
(
τ+
r
)

]}

< ∞,

where α = 2θ + 2cλM (G ⊗ In), ρ(r) = maxi (γi (r));
(C3)

α(1 + ε)Δ2 + ln

[
K (τ2r+3)

K
(
τ+
2r+2

)

]

+ ln

[
K (τ2r+2)

K
(
τ+
2r+1

)

]

≤ − ln(μρ(2r + 2)ρ(2r + 1)), (9)

or

αmax{Δ1,Δ2} + ln

[
K (τr+1)

K
(
τ+
r
)

]

≤ − ln(μρ(r + 1)ρ(r)); (10)

(C4)

α + D+K (t)

K (t)
≥ 0.

Proof For any t > 0, there exists an integer r > 0 such that t ∈ [τr , τr+1). Define
V (t) = ∑N

i=1 e
�
i (t)ei (t) and W (t) = K (t)V (t). By Assumption 1, one can obtain

e�
i (t) f (t, xi (t)) − f (t, s(t)) ≤ θe�

i (t)ei (t). (11)
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Then, computing the derivative ofW (t) along with the system (5), we have that for
t ∈ [τr , τr+1)

Ẇ (t) = K (t)
N∑

i=1

⎧
⎨

⎩
2e�

i (t)

⎡

⎣ f (t, xi (t)) − f (t, s(t)) + c
N∑

j=1

Gi j e j (t)

⎤

⎦

⎫
⎬

⎭
+ D+KV (t)

≤ K (t)

⎡

⎣
N∑

i=1

2θe�
i (t)ei (t) + 2c

N∑

i=1

N∑

j=1

Gi j e
�
i (t)e j (t)

⎤

⎦+ D+KV (t)

≤ K (t)(2θ + 2cλM (G ⊗ In))
N∑

i=1

e�
i (t)ei (t) + D+KV (t)

=
[

α + K̇ (t)

K (t)

]

W (t), (12)

where α = 2θ + 2cλM (G ⊗ In).
When t = τr , by means of condition (C1), we have

W
(
τ+
r

) = K
(
τ+
r

)
V
(
τ+
r

)

= K
(
τ+
r

) N∑

i=1

[
e�
i (τr )(In + BirCi )

�(In + BirCi )e
�
i (τr )

]

≤ max
i

(γi (r))K (τr )V (τr )

= ρ(r)W (τr ), (13)

where ρ(r) = maxi (γi (r)).
Now consider the following comparison system:

ω̇(t) =
[

α + K̇ (t)

K (t)

]

ω(t), t 	= τr ,

ω
(
τ+
r

) = ρ(r)ω(τr ), t = τr ,

ω
(
t+0
) = ω0 ≥ 0. (14)

By letting λ̇(t) = α + K̇ (t)
K (t) and dr = ρ(r), system (14) is in accord with (8).

Therefore, condition (ii) in Lemma 2 is guaranteed by condition (C2) in Theorem 1
as a result of

sup
r

{

ρ(r)exp

[

α(τr+1 − τr ) + ln
K (τr+1)

K
(
τ+
r
)

]}

≤ sup
r

{ρ(r)}eα max{Δ1,Δ2} < ∞.
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Accordingly, in order to ensure condition (iii) in Lemma 2, we need

∫ τ2r+3

τ2r+2

[

α + K̇ (t)

K (t)

]

dt +
∫ τ2r+2

τ2r+1

[

α + K̇ (t)

K (t)

]

dt

+ ln(μρ(2r + 2)ρ(2r + 1)) ≤ 0,

or

∫ τr+1

τ+
r

[

α + K̇ (t)

K (t)

]

dt + ln(μρ(r + 1)ρ(r)) ≤ 0,

where μ > 1.
After some arrangements, we have that

α(τ2r+3 − τ2r+2) + α(τ2r+2 − τ2r+1)

+ ln

[
K (τ2r+3)

K (τ+
2r+2)

]

+ ln

[
K (τ2r+2)

K (τ+
2r+1)

]

+ ln(μρ(2r + 2)ρ(2r + 1))

≤ α(Δ1 + Δ2) + ln

[
K (τ2r+3)

K (τ+
2r+2)

]

+ ln

[
K (τ2r+2)

K (τ+
2r+1)

]

+ ln(μρ(2r + 2)ρ(2r + 1))

≤ α(1 + ε)Δ2 + ln

[
K (τ2r+3)

K (τ+
2r+2)

]

+ ln

[
K (τ2r+2)

K (τ+
2r+1)

]

+ ln(μρ(2r + 2)ρ(2r + 1)) ≤ 0 (15)

or

α(τr+1 − τr ) + ln

[
K (τr+1)

K
(
τ+
r
)

]

+ ln(μρ(r + 1)ρ(r))

≤ αmax{Δ1,Δ2} + ln

[
K (τr+1)

K
(
τ+
r
)

]

+ ln(μρ(r + 1)ρ(r)) ≤ 0
(16)

which are guaranteed by the condition (C3) in Theorem 1. Therefore, using the con-
dition (C4) in Theorem 1, all conditions in Lemma 2 are satisfied, which means that
the error system (5) is globally asymptotically stable, i.e., all estimating states xi (t)
globally converge to the target s(t). This completes the proof. ��
Remark 2 It is indicated from Theorem 1 that the estimation of the target (1) not
only depends on the dynamical characteristic of each sensor, but also the impulsive
control gain Bir and the impulsive intervals (Δ1,Δ2). Here, Bir does not require to
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be symmetric, neither does ‖I + BirCi‖ ≤ 1. Thus, our result can be used for a wide
class of nonlinear systems. It is also worth noting that impulsive interval here can
be time-varying and the introduction of positive function K (t) makes the conditions
more flexible, which is different from previous studies on impulsive control [15,25].

To be convenient, when the impulsive intervals are set to be constant, i.e., Δ1 =
Δ2 ≡ Δ, we have the following corollary.

Corollary 1 Suppose that Assumption 1 holds. The state s(t) of the system (1) can
be asymptotically estimated by the impulse-based filter (3) if there exists a constant
μ > 1 and a differentiable at t 	= τr and nonincreasing function K (t) which satisfies
condition of Lemma 1, such that the following conditions hold:

(C1′) (I + BirCi )
�(I + BirCi ) ≤ γi (r)I, where γi (r) (i ∈ N(1, N ), r = 1, 2, . . .)

are positive constants;

(C2′) sup
r

{
ρ(r)exp

[
α(τr+1 − τr ) + ln K (τr+1)

K (τ+
r )

]}
< ∞,whereα = 2θ+2cλM (G⊗

In), ρ(r) = maxi (γi (r));

(C3′) αΔ + ln
[
K (τr+1)

K (τ+
r )

]
≤ − ln(μρ(r + 1)ρ(r));

(C4′) α + D+K (t)
K (t) ≥ 0.

If K (t) ≡ 1 and the impulsive intervals are fixed to be constant in Theorem 1, then
we can obtain the following corollary.

Corollary 2 Suppose that Assumption 1 holds. The state s(t) of the system (1) can
be asymptotically estimated by the impulse-based filter (3) if there exists a constant
μ > 1 such that the following conditions hold:

(B1) (I + BirCi )
�(I + BirCi ) ≤ γi (r)I, where γi (r) (i ∈ N(1, N ), r = 1, 2, . . .)

are positive constants;
(B2) sup

r

{
ρ(r)exp

[
α(τr+1 − τr )

]}
< ∞, where α = 2θ + 2cλM (G ⊗ In), ρ(r) =

maxi (γi (r));
(B3) αΔ ≤ − ln(μρ(r + 1)ρ(r)) and α ≥ 0.

Remark 3 The approach used here can be extended to analyze synchronization in com-
plex networks [24] or asymptotic stability of impulsive control systems with impulses
[8]. The method used in [24] can be regarded as a special case of our results if the
time-varying positive function K (t) is set to be constant one and the impulsive inter-
vals are fixed to be constant. The nonlinear functions in the system considered in [24]
are required to satisfy Lipschitz continuous condition, while the nonlinear function
f here only needs to satisfy Assumption 1. In addition, when N = 1 (that is, the
estimation problem is considered by one sensor node rather than in a network envi-
ronment) and K (t) is a constant number in Theorem 1, we obtain Theorem 3 of [8]. If
a constant number α > 0 and let K (t) satisfy (C3), then ln(K (τ2r+3)

/
K (τ+

2r+2)) ≤ 0
and ln(K (τ2r+2)

/
K (τ+

2r+1)) ≤ 0 as K (t) is nonincreasing function. Hence, condition
(22) in [8] cannot be derived from (9). Thus, Theorem 1 is less conservative than
Theorem 3 of [8].
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Remark 4 The conditions in Theorem 1 are flexible and easy to be verified. Given an
arbitrary nonlinear system satisfying Assumption 1 with some constant θ , impulsive
sequence {tr } and impulsive control gain matrix Bir (i ∈ N(1, N ), r = 1, 2, . . .)must
exist. One can construct the impulse-based filter (3) under some network topology
between sensor nodes. Letting the impulsive control gain Bir satisfies condition (C1)
for positive constants γi (r) and define a positive function K (t) such that (C4) holds.
Finally, determine the impulsive interval bounds Δ1 and Δ2 such that (C2) and (C3)
hold. If the impulsive intervals satisfying (C2) and (C3) are not available, one can
choose other positive constants γi (r), impulsive control gains Bir and the positive
function K (t), and redesign the impulsive intervals. In Sect. 4, we provide a way to
choose the positive function K (t). At times, one might be interested in a way without
choosing the positive function K (t). Such case can be handled by Corollary 2 or
Theorem 1 with K (t) ≡ 1.

4 Simulation

In this section, a numerical example is employed to illustrate our results. Simulation
results show that the proposed impulse-based filtering scheme is valid.

Example 1 The target model is described by the chaotic Lorenz oscillator described
as follows

ṡ1 = 10(s2 − s1),

ṡ2 = 28s1 − s2 − s1s3,

ṡ3 = s1s2 − 8

3
s3. (17)

Since s(t) = [s1, s2, s3]� is a chaotic orbit and locates in a bounded region [7], i.e.,
|s1(t)|, |s2(t)| ≤ M1 = 28.918, and |s3(t)| ≤ M2 = 56.918, for all t , by some
arrangements we have (x − s)�( f (x)− f (s)) ≤ θ(x − s)�(x − s), with θ = 51.918.
Consider a sensor network of size N = 4 with the coupling matrix

G =

⎡

⎢
⎢
⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 1 0 −2

⎤

⎥
⎥
⎦ .

Assume that y1(t) = 0.6s1(t), y2(t) = 0.4s2(t) and y3(t) = y4(t) = 0.5s3(t),
which implies that each sensor measures different partial states of target. By The-
orem 1, to asymptotically estimate the states of system (17), we further need to
verify conditions (C1)–(C4). For simplicity, we consider the impulsive control gain
Bir = −0.8 all i = 1, 2, 3, 4, and r = 1, 2, . . . , then (I + BirCi )

�(I + BirCi ) ≤
γi (r)I = 0.78I for all i ∈ N4, and thus ρ(t) = maxi (γi (r)) = 0.78. If we choose
c = 3, μ = 1.1, ε = 0.5 and
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K (t) =
{
e−r + 1, t = τr ,

e−t+τr−r + 1, t ∈ (τr−1, τr ),
(18)

for all r = 1, 2, . . . , then it can be derived that α = 2θ + 2cλM (G ⊗ In) = 103.836.
Hence, when we choose τ2r − τ2r−1 ≤ Δ2 = − ln(μρβ(2r +2)ρβ(2r +1))/[αβ(1+
ε)] = 0.0201, and τ2r+1 − τ2r ≤ Δ1 = 0.5Δ2 ≈ 0.01, all conditions of Theorem 1
are satisfied, which means the states of the target (17) can be fully estimated under the
impulse-based filter. To examine the estimation effects, define the estimation error

E(t) =
3∑

i=1

√
√
√
√

N∑

j=1

(xi j (t) − si (t))2, (19)

which reflects the ensemble of estimation. Each dimension of the target states s(t) and
the estimated states xi (t) of all sensors are depicted in Fig. 1a–c, respectively. Figure
1a shows the time evolutions between the first dimensional state s1(t) of target shown
in blue and the states xi1(t) of sensor i , i = 1, 2, 3, 4. It is found that all states xi1(t)
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Fig. 1 The trajectories of the target states s(t) and the estimated states xi (t) of all sensors, and the evolutions
of the estimation error E(t) defined in (19)
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finally converge to each other and the state s1(t) is estimated after ten seconds. It is also
revealed from Fig. 1a that, since only the signal s1(t) is measured by sensor 1 which is
impulsively and directly acted on the state x11(t), the state x11(t) vibrates frequently
during the initial times while other three states xi1(t), i = 2, 3, 4 evolve smoothly.
Similarly, Fig. 1b (respectively, Fig. 1c) shows the time evolutions between the state
s2(t) (respectively, s3(t)) of target shown in blue and the states xi2(t) (respectively,
xi3(t)) of sensor i , i = 1, 2, 3, 4. It is shown that the states s2(t) and s3(t) has been
estimated. In addition, due to different measurement information of sensors, the state
x22(t) of sensor 2 vibrates frequently during the initial times in Fig. 1b, and the state
x33(t) of sensor 3 the state x43(t) of sensor 4 vibrate frequently during the initial
times in Fig. 1c. The evolution of estimation error defined in (19) is shown in Fig.
1d. It is shown that the error asymptotically converges to zero, which implies that the
impulse-based filter does achieve the estimation of the states of the target.

5 Conclusion

In this paper, we have analyzed the impulse-based estimation problem of nonlinear
systems over sensor networks. By constructing a parameter-dependent Lyapunov func-
tion and utilizing the comparison system, we have proved the asymptotic convergence
of the state estimation error based on the designed impulse-based filter, even when the
impulsive controls are imposed in varying intervals. Numerical simulations of coupled
Lorenz oscillator have also been provided to verify the usefulness and practicability
of proposed theoretical results.
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