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Abstract Digital images are mostly noised due to transmission and capturing distur-
bances.Hence, denoising becomes a notable issue because of the necessity of removing
noise before its use in any application. In denoising, the important challenge is to
remove the noise while protecting true information and avoiding undesirable mod-
ification in the images. The performance of classical denoising methods including
convex total variation or some nonconvex regularizers is not effective enough. Thus, it
is still an ongoing research toward better denoising result. Since edge preservation is a
tricky issue during denoising process, designing an appropriate regularizer for a given
fidelity is a mostly crucial matter in real-world problems. Therefore, we attempt to
design a robust smoothing term in energy functional so that it can reduce the possibil-
ity of discontinuity and distortion of image edge details. In this work, we introduce a
new denoising technique that inherits the benefits of both convex and nonconvex regu-
larizers. The proposed method encompasses with a novel weighted hybrid regularizer
in variational framework to ensure a better trade-off between the noise removal and
image edge preservation. A new algorithm based on Chambolle’s method and itera-
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tively reweighting method is proposed to solve the model efficiently. The numerical
results ensure that the proposed hybrid denoising approach can perform better than
the classical convex, nonconvex regularizer-based denoising and some other methods.

Keywords Image denoising · Total variation · Euler Lagrange equation · Nonconvex
regularizer · Dual projection

1 Introduction and Motivation

Digital images are mostly noised in many ways during image transmission and captur-
ing. Therefore, it is necessary to remove the unwanted noise from the captured image
for improving visual quality. Basically, image noise is a random deviation of color
information or unnecessary signals in the images. It can be incurred due to imper-
fect instruments and distortion in data acquisition process. Digital images may inherit
different noises from different sources. Although the types of noise are very hard to
identify exactly in some cases, there still have different models to address different
types of noise in practice.

Denoising refers to the process of manipulating image data and eliminating noise
from the original signal to produce a visually high-quality image. Undoubtedly, image
denoising as a preprocessing scheme plays a vital role in digital image analysis. It
becomes notable due to the need of denoised images before utilizing to the applica-
tions. Themain objective of denoising is to remove unwanted noises as best as possible
from the original image without losing true information. Over a period of time, differ-
ent methods have been comprehensively studied to analyze and improve traditional
denoising algorithms. So far, the most important concern for solving image denois-
ing problems is maintaining a good balance between noise removal and image true
details preservation. Therefore, denoising is still a challenging task for the researchers
especially in the community of computer vision and pattern analysis.

To eliminate the unwanted noises as well as improving the performance, many
denoising techniques have been proposed in scientific literature. The significant con-
cerns for denoising have been noted in a number of diverse techniques including
classical filtering-based methods [1,32], relaxed median filtering [27], Laplacian-
based filtering method [59], isotropic and anisotropic filtering models [33], based
on anisotropic diffusion [63], the radial basis function (RBF)-based denoising method
[69], maximum flow [12] and split Bregman [22,25] are used in the applications.
There are few other methods in image denoising domain also reported in the literature,
such as adaptive soft-thresholding [43], Bayesian and wavelet-based [37,56], wavelet
thresholding-based [13,17,19], wavelet transform [57], speckle denoising method
using monogenic wavelet transform and Bayesian framework [20], based on support
vector machine (SVM) [26,75], contourlet transforms [55], based on curvelet trans-
form [2], fuzzy theory-based method [62], homogeneity and similarity-based [10,58],
nonlocal-based image denoising [18,36,41,52,66,70,72], nonlocal similarity and TV
wavelet-based model [64], Laplacian and nonlocal low-rank approximation method
[35], nonlocal-based sparse coding strategy [42], shearlet-based denoising method
[15]. Empirical mode decomposition (EMD)-based method [40], dictionary learning-
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based methods [16,39,49,74], correlation sparse representation and dictionary-based
approach [5], the structural sparse representation (SSR) approach for image restora-
tion [76], image deblurring method based on the choice of appropriate regularization
parameters [73] and total generalized variation (TGV) method [6].

Recently, variational calculus becomes a powerful tool for model analysis and
solutions. Therefore, variational and partial differential equation (PDE)-based meth-
ods have been used widely to tackle denoising concerns with a great influence to
preserve image edges. PDE-based methods [3,23,45,71] and variational approaches
[9,11,11,29–31,44,60,61,65,68] are remarkable. In application, convex total varia-
tion (TV)-based approaches are extensively used in image denoising. The nonconvex
approaches [28,46,50,53,78] are also reported in the literature. The nonconvex regu-
larizer can restrain image details from oversmoothing. It has a significant influence to
reduce staircase artifacts efficiently as well as protecting edges or boundary objects.
A number of numerical methods [4,8] have been proposed for solving total varia-
tion minimization problems. The aim of TV-denoising approach is to overcome the
basic limitations of regularization algorithms.Many algorithms for TV-denoising have
been designed, especially the algorithms based on duality [77], Newton-based method
[51] and iteratively reweighting method [54]. The nonlocal-based algorithms such as
BM3D [14] is incorporated with 3D transform collaborative filter for denoising and
preserving image true details. In application, the nonlocal-based algorithms are quite
efficient than local-basedmethods in case of image texture preservation. But nonlocal-
basedmethod is also computationally expensive because it involves in selecting similar
blocks, group in 3D arrays, filtering and comparing many patch groups in implemen-
tation. Some of recently proposed denoising algorithms are also reported in image
analysis domain such as: (a) proximal algorithms [34] as a domain-specific language
and compiler for image optimization problems with different problem formulations
and algorithm choices. The language uses proximal operators as basic building blocks
and compiler to translate a problem formulation, as well as select the optimization
algorithm for efficient implementation, (b) the algorithm based on color monogenic
wavelet transform and trivariate shrinkage filter [21], (c) image enhancement algo-
rithm based on contrast limited adaptive histogram equalization (CLAHE) [48], and
(d) fixed-point algorithm [47] are also proposed in the recent literature. Moreover, TV-
based image restoration models are broadly discussed by Rudin, Osher and Fatemi
(ROF) in [60]. The ultimate goal of this model is preserving sharp discontinuities
(edges) in an image while removing unwanted details. The ROF then extended to
image deblurring in [61]. In [60], ROF proposed a time-marching approach in associ-
ation with Euler–Lagrange equation for the solution of a parabolic PDE. Chambolle’s
methods [7,8] are well known and effective for minimizing the total variation of an
image. The Chambolle’s projection algorithm in [7] is proved for regularizing noisy
images without much isotropic affect of the boundary objects.

From the aforesaid discussion, it is observed that several denoising techniques have
been applied till now, but the respective researches are still continuing toward better
noise removal. Although few techniques are effective in some context, the solutions
of these models are tough to be discussed in theoretical analysis. In estimation, the
difficulty is choosing a reliably prior distribution and designing a regularizer to ensure
a better trade-off with a given fidelity. Therefore, designing an appropriate regular-
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izer for a given fidelity is mostly a challenging and sensitive issue in denoising . For
example, the authors Rudin et al. in their work [60] use the classical convex total
variation (TV) regularizer to preserve image edges. The advantage of ROFmodel [60]
is the existence of unique solution due to the nature of its convexity. However, the
numerical experiments of ROF model depict the isotropic influence for oversmooth-
ing some important image details while increasing iteration. It is observed that the
regularizer used in ROF model is certainly a limitation as it tends to blur important
image information, especially when number of iteration increases. To overcome this
limitation, Han et al. proposed a nonconvex regularizer in their works [28,30]. They
used nonconvex regularizer which can preserve image details from oversmoothing. In
[30], they proved that the nonconvex regularizer is an ideal regularizer for removing
noise and preserving image details simultaneously. In spite of improving performance,
there still have some drawbacks of Han’s model. It cannot promise unique solution of
the model because of its nonconvexity properties. In fact, the direct solution of their
model is hard to prove and computationally much more expensive than other models.
Moreover, the nonconvex regularizer in Han’s model considers the noise as image
true details when it contains high-intensity noise, especially in homogeneous regions.
As a remedy of this problem, we proposed a variational model in our previous work
[38]. Even though the model performed well to address the problems and ensure edge
preservation ability, it is still not effective enough for some benchmark problems.

Therefore, the objective of this work is to overcome the limitations of classical
denoising methods and motivate to a research with a new approach, and substan-
tially improving denoising performance both visually and quantitatively. Since edge
preservation is a tricky issue during denoising process, this research also focuses on
designing an appropriate regularizer in energy functional so that it can reduce the
possibility of discontinuity and distortion of image edge details. For the purpose, we
pull out our works and introduce a new denoising technique which utilizes the benefits
of both convex and nonconvex regularizers. The proposed model encompasses with a
novel weighted hybrid regularizer in variational framework to ensure a better trade-off
between the noise removal and image details preservation.

Rest of the paper is divided as follows: Sect. 2 provides the preliminaries of image
denoising techniques. The proposed model is presented in Sect. 3. Section 4 illustrates
experimental studies. Performance evaluation of proposed technique is presented in
Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

Images are a collection of pixel data or signal that carries information which can
be incurred unwanted interference during acquisition. These unwanted interferences
hinder the true images and form its degraded version. Let u(t) is the original clean
image where u : Ω ⊂ R2 → R and Ω refers to the image domain, u0(t) is the noisy
image degraded with zero mean, and η(t) is the white Gaussian noise; then, the image
with noise can be modeled mathematically as Eq. (1).

u0(t) = u(t) + η (t). (1)
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The aim is to recover the original image from its degraded version as shown in (1). To
solve such a problem, it needs to reconstruct u from u0. Assuming that η is additive
white Gaussian noise uniformly distributed, i.e., independent and identical distributed
(i.i.d.). An approximation to u can be found from the optimization problem (2).

min
∫

Ω

|u0 − u| 2dx . (2)

A regularization term as in Eq. (3) is needed to add to the energy signal as proposed
in [67] to resolve the minimization problems (2):

F (u) =
∫

Ω

|u0 − u| 2dx + λ

∫
Ω

|∇u| 2dx . (3)

In Eq. (3), the first term refers the fidelity or data term and second term denotes
the smoothing term that regularizes the problem. A real positive constant is λ which
balances the trade-off between the smoothness and fidelity. Theminimization problem
(3) can promise a unique solution by dint of Euler–Lagrange equation as the following
way:

u − u0 − λΔu = 0 (4)

with the Neumann boundary conditions: δu
δM = 0 on ∂Ω , M is the outward normal

to ∂Ω . The solution of Eq. (4) is not a suitable candidate for the original restoration
problem. Thus, the bounded variation (BV) regularization introduced by Rudin et al.
in [60]. It uses the L1 norm of ∇u instead of L2 in (4) which defines the smoothing
term as a BV semi-norm; for smooth functions, it can be expressed as:

λ

∫
Ω

|∇u| . (5)

The term (5) denotes the total variation of u . Minimization of (5) is problematic for
large gradients. Therefore, choosing an appropriate regularization term is important
for the quality of the solution [67]. A common ROF denoising technique is a subject
to minimize a functional of gradient as (6).

J (u) = min
u

{
1

2

∫
Ω

|u0 − u| 2dx + λ

∫
Ω

|∇u| dx
}

. (6)

The regularization term in (6) is proposed byRudian et al. [60]which can remove noise
and ensure the existence of the unique solution. At the same time, it also removes some
important image details (image edges) due to isotropic effect of its gradient operator
with respect to iteration. As a solution of this problem, Han et al. [28,30] proposed
the nonconvex regularizer as (7).

∫
Ω

Φ(|∇u|) dx . (7)
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The function Φ(s) = θs
1+ θs , where θ is a positive parameter. In practice, the non-

convex regularizer (7) is quite effective to restrain image details from high isotropic
polishing effect. But it treats noise as the true details especially in the high-intensity
image (edges) regions, and the model cannot ensure unique solution. To seek a solu-
tion of these problems, we investigate and experiment a variational approach on a set
of samples images in our previous work [38]. Even though the model in [38] performs
well to reduce noise as well as protect edge details, still it is not effective enough for
some sample images.

Therefore, by incorporating the benefits of TV regularizer and nonconvex regu-
larizer, we attempt to design an efficient and reliable weighted hybrid regularizer for
much noise reduction while keeping the image true information during the denoising
process.

3 Aspects of Proposed Model

In this work, we attempt to retrieve an image from its degraded version and produce
a new image which would be visually close to the original image. In other word,
the reconstructed image must be good quality in a technical sense that the varia-
tion between a pixel and its neighborhood keeps smaller as much as possible. As we
noticed, designing an appropriate regularizer in variational framework is a crucial issue
because of its significant influence on edge preservation ability during denoising. An
efficient regularizer is always promising to reduce the discontinuity and distortion of
edge details. It can also maintain a proper balance between noise reduction and over-
smoothing in practice. Therefore, we propose a novel hybrid regularizer in association
with convex and nonconvex TV regularizer as Eq. (8).

∫
Ω

|∇u|dx +
∫

Ω

Φ(|∇u|)dx . (8)

In (8), convex TV regularizer mostly inherits the benefit of noise reduction and non-
convex regularizer influences to preserve edge details efficiently from oversmoothing.
Therefore, our model encompasses both the convex and nonconvex regularizers as in
the following form of functional (9).

J (u) = 1

2

∫
Ω

|u0 − u| 2dx + ε

∫
Ω

|∇u|dx

+ (1 − ε)

∫
Ω

Φ(|∇u|)dx .
(9)

Comparing (6) and (7), we can see that ε in model (9) is a trade-off parameter between
two different regularizers used in models (6) and (7). When ε = 1, model (9) acts
as ROF convex model (6), and when ε = 0 it acts as Han’s nonconvex model (7).
Thus, the proposed model (9) includes hybrid regularizer to inherit the benefits both
from convex and nonconvex methods in practice. The technical merit of using these
combined regularizers in variational framework is to ensure better generalization in
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aspect of removing noise and preserving edge details simultaneously. In model (9),
the convex TV regularizer

∫
Ω

|∇u|dx plays a vital role in much noise reduction from
its given fidelity; on the other hand, the nonconvex regularizer

∫
Ω

Φ(|∇u|) dx has a
significant influence to reduce staircase artifacts efficiently as well as protecting edges
or boundary objects from oversmoothing. The variational principles of our model rely
on the solution of following minimization problem:

min
u

{ 1
2

∫
Ω

|u0 − u| 2dx + ε
∫
Ω

|∇u| dx
+ (1 − ε)

∫
Ω

Φ(|∇u|) dx
}

. (10)

But the direct solution of (10) is complicated due to nonconvex smoothing term used
in the model. Therefore, instead of solving the minimization problem (10) directly,
we turn to define the regularizer by iteratively reweighted method as:

Φ(|∇u|) =
(

1 + θ

1 + θ |∇u|
)

|∇u| = w |∇u| . (11)

In (11), we define weight w as:

w = 1 + θ

1 + θ |∇u| , (12)

where θ is a positive random parameter ranges [0.01, 0.09]. Thus, the model can be
represented as (13).

J (u) = 1

2

∫
Ω

|u0 − u| 2dx +
∫

Ω

(ε + (1 − ε)w) |∇u| dx . (13)

Finally, the issue is to solve the model (13) as following minimization problem (14)
for removing noise and reconstructing visually high-quality image:

min
u

{
1

2

∫
Ω

|u0 − u|
2

dx +
∫

Ω

(ε + (1 − ε)w) |∇u| dx
}

. (14)

The above model (13) is convex since w is given and the existence of the unique
solution is promised. We introduce the Chambolle’s projection algorithm [7] to obtain
the solution of the minimization problem (14), which is given as (15).

ui = u0i − λ div pi , (15)

where div p is the divergence of the vector, p : Ω → R × R represents a vector
function, and pi ∈ Rn can be resolved by a fixed-point method: p0 = 0 given is an
initial guess and let time-step=τ , and then we iterate the following scheme (16):

pn+1
i = pni + τ∇(div pi n − u0i )

1 + (τ/ε + (1 − ε)w) |div pi n − u0i | . (16)
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a

b

Fig. 1 a Original images and b their noisy version with intensity N = 25 *Corresponding rows represent
original and noisy images respectively

Based on calculus variation and some necessary assumptions, we can prove that the
minimization problem has a unique minimizer. In practice, our proposed denoising
method is more efficient because it not only complies much noise reduction ability,
but also preserves image features or boundary objects effectively. In fact, this kind of
weighted hybrid regularizer can inherit the benefit of both removing noise in homoge-
neous regions from the convex TV regularizer and protecting edge information from
nonconvex regularizer simultaneously. In implementation, an algorithmic overview of
the method is described as Algorithm 1.

Algorithm 1. The weighted hybrid regularizer-based noise reduction
Input: Noised images N
Output: Denoised images D
1: Initialization: give parameters λ, ε, η, τ > 0 and θ , p0i = 0 and set k = 0
2: repeat
3: update weight wi by formula (12) (inner loop is needed);
4: update uk0 by formulas (15) (inner loop is needed);
5: update uki by (15) and (16);
6: k = k + 1;
7: until a stopping criterion is satisfied.

4 Experimental Studies

In this section, experimental results are presented to verify the effectiveness of different
methods including the proposed method in this paper. For the efficient solution of the
models, the corresponding algorithms are executed in MATLAB 10.0 simulation on a
computer configured with core-i5 and 3.20 GHz. We carry out several experiments on
a set of sample images and record the results to validate the denoising performance of
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Table 2 SSIM performance evaluation for different denoising methods (i.e., different models proposed in
[30,38,60] and our proposed model)

Name N Noise image Model [60] Model [30] Model [38] Proposed model

Lena 15 0.502 0.712 0.834 0.899 0.938

20 0.468 0.673 0.791 0.855 0.916

25 0.423 0.633 0.737 0.815 0.839

Peppers 15 0.539 0.742 0.853 0.938 0.957

20 0.497 0.705 0.812 0.908 0.929

25 0.438 0.649 0.759 0.828 0.866

House 15 0.498 0.701 0.814 0.891 0.923

20 0.468 0.652 0.767 0.846 0.911

25 0.423 0.619 0.729 0.809 0.834

Boat 15 0.467 0.658 0.785 0.877 0.924

20 0.448 0.637 0.752 0.836 0.907

25 0.416 0.609 0.726 0.803 0.825

Barbara 15 0.528 0.731 0.862 0.938 0.944

20 0.488 0.694 0.801 0.908 0.919

25 0.426 0.638 0.739 0.818 0.856

Bold values indicate the corresponding maximum value

differentmethods.During the evaluation process, the results generated by our proposed
method are also comparedwith someclassicalmethods, including themodels proposed
in [28,30], the ROF model in [60] and our previous model in [38]. For each of these
models, we discussed parameters selection criterion in Sect. 4.1.

In order to measure the improvement in noise images, the performance indicated
parametersmust be estimated visually and quantitatively. For quantitative comparison,
a set of reference original images are shown in (a) of Figs. 1, 4 and 5, respectively. Dur-
ing simulations, each of these images is degraded by different levels of noise intensity
that are simulated by sampling from the Gaussian distributions. The parameter N is
related to the standard deviation of noise η. Tominimize the length of our paper, we are
mostly motivated to choose these noise parameters N from the set {15, 20, 25} in most
of the cases. Furthermore, for few cases, we experimented our model on a large set of
N ranges as {5, 10, 15, 20, 25, 30, 35, 40, 50} to validate the prospect and significance
of our proposed method. It is noted that higher N means the intensity of the noise
is stronger. The comparisons are generated based on noised and denoised images in
terms of mean squared error (MSE), signal-to-noise ratio (SNR), peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index . To reveal the superiority of the
proposed approach, we used SNR, PSNR and SSIM as the evaluation indicators. These
indicators are measured between clean and reconstructed images. Let ū represent the
image recovered from the noisy image uo , and let σ 2

u represent the average variance
of the clean image u. Then, we define the SNR indicator by formula (17).

SNR = 10 log10

(
σu

2

MSE

)
, (17)
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Fig. 2 Denoising performance using different models, c model in [60], d model in [30], e model in [38], f
proposed model

where the value of MSE is computed as MSE = 1
|Ω|

∫
Ω

(u − ū)2dx and the PSNR is
defined as (18).

PSNR = 10 log10

(
|max u|2
MSE

)
. (18)

We also used structural similarity (SSIM) as perceptual image quality indicator. The
SSIM indicates the similarity between the clean image and denoised image. The value
of SSIM index varies between 0 and 1. The high value indicates more structure sim-
ilarity between the original image u and denoised image ū. It is measured between
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Fig. 3 Performance comparison using different models and proposed model for denoising:model-a repre-
sents model in [60],model-b represents model in [30],model-c represents the model in [38]. a SNR values
using Couple image. b PSNR values using Couple image. c SNR values using Canal-Mini image. d PSNR
values using Canal-Mini image. e Total time of denoising for all images

clean and reconstructed images. The SSIM is computed as formula (19).

SSIM = (2μuμū + v1) (2σuū + v2)(
μu

2 + μū
2 + v1

) (
σu2 + σū2 + v2

) , (19)

whereμu and μū are themean values of the original and denoised image, respectively.
Similarly, σu and σū are the variance values of the original and denoised image,
respectively. σuū is the covariance of images u and ū; v1 and v2 are two variables to
stabilize the division with a weak denominator.
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4.1 Parameters Selection Criterion

Parameter selection is an important issue for implementing algorithms as well as
converging the corresponding models efficiently. To experiment the algorithms of all
corresponding models, several parameters such as λ, ε, τ and θ are needed to be
initialized. The size of all images is needed to be normalized as 256 × 256 before
tuning the parameters. Then, it is necessary to adjust the image gray intensity ranges
to be [1, 256]. As a trade-off parameter, ε has a great influence on different regularizers
in model (13). Through a lot of experiments, the best values of parameter λ can be
chosen same as noise level. The parameter ε is chosen from a fixed ranges [0, 0.6] as
proposed in works [28,30]. For our model, the parameter ε can be selected randomly
between [0, 1]. The parameters both λ and ε play the important role in controlling the
smoothness degree of the reconstructed image. The parameter τ in (16) is the time-step
of the iteration method. The parameter τ has influence to make Chambolle’s algorithm
converging. This parameter is proved to be smaller than 1

8 and equal to 1
15 as in the

works [28] and [30], respectively. In our case, we fix it for any random value ranges
[0 < τ < 1] that can be a better choice to make a good trade-off between running
time and the denoising performance. The value of θ during this experiment is random
and ranges [0.01, 0.09]. However, we do not mean that our denoising method only
works in these intervals or suggested parameters. Through a lot of experiments, it is
seen that these parameters and intervals initialization are more promising to reduce
the searching time for achieving model convergence.

5 Performance Evaluation

To evaluate denoising performance of differentmodels,we implemented several exper-
iments on a set of sample images and computed SNRs, PSNRs, SSIMs andCPUtimes
as evaluation indicators. We recorded and compared the best SNRs, PSNRs and SSIM
obtained from our proposed model as well as the models in [30,38,60]. The results in
Tables 1 and 2 show the effectiveness of our approach. We also demonstrated different
denoised results in (c)–(f) of Figs. 2, 4 and 5 for visual evaluation. Both the quantitative
and visual results reveal the outstanding performance of our proposed method. From
the evaluation indexes in Tables 1 and 2, it is seen that our approach averagely gets
higher SNRs, PSNRs and SSIMs than the other approaches. Most of the cases, our
model can produce better results except some running time penalties as shown in (e) of
Fig. 3. The results in (a)–(e) of Fig. 3 demonstrated that the ROF model is quite faster,
but has poor performance. The average CUP times on twenty-two images are calcu-
lated during denoising process. It is true that the proposed method is computationally
little slower than ROF model since our model handles both convex and nonconvex
cases. But in image denoising study, noise reduction, edge preservation ability, tackle
overshooting artifacts and its trade-off are the fundamental concerns and tricky issues
for performance evaluation. Denoising or edge preservation ability is always much
more appreciative than some computational time penalty. In (e) of Fig. 3, even though
our approach may outlay in running time than ROF model, it is still faster than the
model in [30]. However, as a whole, the running time of our model is comparable
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Fig. 4 Denoising performance with different models a original image, b noise image having N = 25, c
model in [60], d model in [30], e model in [38], f proposed model
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Fig. 5 Denoising performance with different models a original image, b noise image having N = 25, c
model in [60], d model in [30], e model in [38], f proposed model
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Fig. 6 Enlarged denoising results: c model in [60], d model in [30], e model in [38], f proposed model

and inexpensive than some other methods in the literature. For example, our method
is computationally convenient than some nonlocal-based methods (e.g., BM3D [14])
because it is local-based approach in variational framework. Moreover, our proposed
method can be generalized into nonlocal method using the nonlocal operator as pro-
posed in [24] for more texture preservation. However, in this work we emphasize
to inherit the benefits of both convex and nonconvex regularizers, as well as attain
the better convergence using a novel weight function. The performance comparisons
among the convex or nonconvex variational-based approaches are the ultimate target
of this work. Here, we also explain how our proposed method is comparable and more
influential than the methods [30,38,60] in order to clarify the context of our contribu-
tions. For all reference original images, the reconstructed images are shown in (c)–(f)
of Figs. 2, 4 and 5. Comparing these denoising results, we can say that our method
can remove much noise and protect image true details, especially in homogeneous
regions. As for example, the denoised results in (c) of Figs. 2, 4 and 5 generated by the
model in [60] still include some visible noise. The ROFmodel in [60] produced image
oversmoothing while iteration increased. It mostly blurred the images due to its high
isotropic polishing effects. The images recovered from Han’s model are shown in (d)
of Figs. 2, 4 and 5. These results indicate that the noise is notwell removed and the edge
detail of the restored image also seems oversmoothed. In comparison with the results
shown in (c)–(d) of Figs. 2, 4 and 5, the respective denoising results in (e) demonstrated
that the model in [38] can achieve better noise-removing and edge-preserving ability
than the models in [30,60] except few samples with different levels of noise intensity.
To verify the generalization of different models, we performed intensive experiments
on Canal-Mini and Couple images with large ranges of noise intensities, and the
corresponding results are shown in (a)–(d) of Fig. 3. In this figure, we observed that
the performance of models in [30,38,60] fluctuates based on the levels of noise inten-
sities. From Fig. 3, it is seen that the model in [30] cannot perform well at low noise
intensities, whereas our proposed model can denoise efficiently at any level of noise
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intensities. In case of homogeneous regions of restored images, we observe that some
image true details are also removed in (d) and oversmoothed in (c) than the image
shown in (f) of Figs. 2, 4 and 5. In (f) of Figs. 2, 4 and 5, the reconstructed edges
are much sharper and more image details are recovered. It means that the proposed
model simultaneously can remove more noise in homogeneous regions and preserve
edge details efficiently than the models in [30,38,60].

For visual performance improvement, we observe the significance of our proposed
method for both noise reduction and edge preservation ability than the other methods
[30,38,60]. As for reference, in Fig. 6, we include two enlarged denoising results for
more precise analysis. From visual observation, we can find that the images restored
from the proposed method (shown in Fig. 6(f) are better than those restored from
models [30,38,60] as shown (c)–(e) in Fig. 6, respectively. In fact, Fig. 6(c) contains
some visible noise; the model [38] generates better denoising results than model [30].
However, themodels [30,38] usually cannotmake a good trade-off between smoothing
homogeneous regions and image edges preservation, whereas the proposed model
generates better denoising results whose details are well preserved, and at the same
time noise is also well cleaned.

From the local reference enlarged results (shown in Fig. 6), we can conclude the
performance more precisely as i) model [60]: noise not well cleaned in the white
region and edge is oversmoothed; ii) model [30] and [38]: both noise and image
details are preserved; iii) proposed method: noise is cleaned, and edges are preserved
simultaneously. Thus, noise reduction and edge preservation ability, as well as better
trade-off between fidelity and smoothing termmake the proposedworkmore attractive
than the works [30,38,60].

6 Conclusion

In this paper, we have investigated and incorporated a robust hybrid regularizer in
variational framework for better trade-off between data fidelity and smoothing terms
in functional minimization. This kind of hybrid regularizer incorporated with a novel
designed weight in appropriate parameters estimation for protecting more geometric
structural details of images from oversmoothing and removing more noise simul-
taneously. Our proposed method significantly inherited the benefits of both convex
and nonconvex regularizers. Its efficiency is experimentally validated on a variety
of images and noise levels. Numerical results on different benchmark images have
depicted that our proposed method can effectively achieve the highest SNR, PSNR
and SSIM values to ensure very competitive and promising denoising performance.
The obtained results during the experimental simulation inspire us to draw a conclusion
that our proposed approach is more efficient than some state-of-the-art denoising tech-
niques i.e., both in quantitative and visual aspects especially in background smoothing
and edge preservation from oversmoothing. The proposed approach can be extended
and generalized to RGB images with different types of noises. Moreover, the find-
ings of this work also encouraged us to generalize our model for comparing other
non-variation-based methods in future works.
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