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Abstract The analysis of stability and H∞ performance of two-dimensional (2-D)
Roesser-like continuous systems with delayed states is solved here. Firstly, based on
the delay partitioning method, and on the use of an auxiliary function-based integral
inequality, a new delay-dependent sufficient condition for asymptotical stability of
these systems is developed. Then, the obtained result is extended to H∞ performance
analysis, with all conditions formulated as linear matrix inequalities. Finally, some
numerical examples are provided to demonstrate the effectiveness and benefits of the
proposed methodology.
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1 Introduction

Two-dimensional (2-D) systems are an active area of research, with applications in
digital data filtering, image processing [24], thermal power engineering [17], etc.
Thus, a considerable interest is being devoted to stability of 2-D systems, with a
significant number of results already available in the literature. To mention a few, the
stability analysis problem has been considered in [1,9,14,20] and the stabilization in
[19,25,28].

This paper concentrates on 2-D systems that are affected by delays in the states. This
is prompted by the fact that several multidimensional systems (for example, mechan-
ical systems, communication networks, chemical processes, etc.) are, by nature,
affected by significant delays. These delays are a potential source of instability and
performance degradation. Existing stability results for systems with state delays are
classified into two categories: delay-independent and delay-dependent stability crite-
ria. In the first case, stability criteria do not depend on the magnitude of the delay; this
is clearly restrictive when information on the delays is available, which is frequently
the case. To make use of this information on the delays to reduce conservatism, delay-
dependent stability criteria are developed here. Themajority of previous results for 2-D
systems focus on the discrete case [7,22,23,27], except for a few recent papers [2,3,16]
where a Lyapunov approach is applied to continuous Roesser models. For instance, in
[3], the authors dealt with delay-independent stability and stabilization conditions for
2-D continuous systems with delays. In [2], the problem of delay-dependent stability
and stabilization with saturation on the control were studied. Recently, a new delay
decomposition approach to solve the stability and stabilization problems of continuous
2-D delayed systems with saturation has been proposed in [16].

In addition to stability, performance is important for practical problems: This paper
uses an H∞ technique to reduce the impact of external perturbations on the system
states. H∞ performance analysis of 2-D systems has already been studied for the
discrete case [4,18,26], but there are few results on H∞ disturbance attenuation of 2-
D continuous systems, in particular in the presence of delays, due to the difficulties of
evaluating unidirectional derivatives. We can cite [15], where the delay-independent
robust H∞ filtering for 2-D continuous systems described by Roesser model with
delays has been presented. The robust stability and H∞ control of uncertain 2-D
continuous systems with time-varying delays have been discussed in [12].

Although the conditions in [16] have provided delay-dependent criteria that are less
conservative than the conditions given in [2,3,6], revisiting this problem shows that the
stability condition in [16] still leaves much room for improvement. For example, the
estimates of single integrals in [16] are obtained by using Jensen inequality [13], which
is more conservative than that of the auxiliary function-based integral inequality [21].
Thus, by using the augmented Lyapunov functional and the auxiliary function-based
integral inequality, the results are further improved here.

Motivated by the above discussion, this paper focuses on delay-dependent stability
and H∞ performance analysis of 2-D continuous state-delayed systems. By exploiting
a delay decomposition approach for the horizontal and vertical states combined with
the auxiliary function-based integral inequality, new delay-dependent stability and
H∞ performance analysis criteria are derived in the LMI framework. Some numerical
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examples are provided to show the validity of the obtained results, and the reduced
conservatism when compared with results in the recent literature.

The remainder of this paper is organized as follows: The problem formulation and
a necessary lemma are given in Sect. 2. In Sect. 3, the main results are developed.
Numerical examples are given to show the effectiveness of the proposed method in
Sect. 4. Finally, some conclusions are provided in Sect. 5.

Notations Throughout the paper, Rn denotes the n-dimensional real Euclidean
space and R

n×m denotes the set of n × m matrices. I and 0 represent identity matrix
and zero matrix, respectively. ||.|| denotes the Euclidean norm. The superscripts T
and −1 stand for the matrix transpose and inverse, respectively. P > 0 means that
P is real symmetric and positive definite. An asterisk (∗) represents a term induced
by symmetry, and diag{...} denotes a block diagonal matrix. sym(M) is the shorthand
notation for M + MT . The L2 norm of a 2-D signal ω(t1, t2) is given by

||ω(t1, t2)||2 =
√∫ ∞

0

∫ ∞

0
ωT (t1, t2)ω(t1, t2)dt1dt2,

where ω(t1, t2) is inL2{[0,∞), [0,∞)} or, for simplicity, inL2 if ||ω(t1, t2)||2 < ∞.

2 Problem Formulation and Preliminaries

Consider the following 2-D continuous state-delayed Roesser-like model:

[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
=
[
A11 A12
A21 A22

] [
xh(t1, t2)
xv(t1, t2)

]
+
[
Ad11 Ad12
Ad21 Ad22

] [
xh(t1 − h1, t2)
xv(t1, t2 − h2)

]

+
[
B1
B2

]
ω(t1, t2),

z(t1, t2) = [
C1 C2

] [ xh(t1, t2)
xv(t1, t2)

]
+ Dω(t1, t2), (1)

where xh(t1, t2) ∈ R
nh and xv(t1, t2) ∈ R

nv are the horizontal and vertical
states, respectively; ω(t1, t2) ∈ R

ω is the disturbance input (which belongs to
L2{[0,∞), [0,∞)}); z(t1, t2) ∈ R

z is the output; and h1 and h2 are the delays in
the horizontal and vertical directions, respectively. Finally, A11, A12, A21, A22, Ad11,
Ad12, Ad21, Ad22, B1, B2, C1, C2, and D are constant matrices with appropriate
dimensions.

The boundary conditions are given by:⎧⎪⎪⎨
⎪⎪⎩
xh(θ, t2) = fθ (t2), −h1 ≤ θ ≤ 0, 0 ≤ t2 ≤ T2,
xh(θ, t2) = 0, −h1 ≤ θ ≤ 0, t2 ≥ T2,
xv(t1, δ) = gδ(t1), −h2 ≤ δ ≤ 0, 0 ≤ t1 ≤ T1,
xv(t1, δ) = 0, −h2 ≤ δ ≤ 0, t1 ≥ T1,

(2)

where T1 < ∞ and T2 < ∞ are positive constants, fθ (t2) and gδ(t1) are given vectors.
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A lemma is now recalled that provides a condition for asymptotic stability; for
this, consider a disturbance-free situation, where the state-feedback equation in (1)
becomes[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
=
[
A11 A12
A21 A22

] [
xh(t1, t2)
xv(t1, t2)

]
+
[
Ad11 Ad12
Ad21 Ad22

] [
xh(t1 − h1, t2)
xv(t1, t2 − h2)

]
. (3)

Definition 1 [10] The 2-D continuous system (3) with boundary conditions (2) is said
to be asymptotically stable if

lim
(t1+t2)→∞

( ||xh(t1, t2)|| + ||xv(t1, t2)||
) = 0. (4)

Definition 2 [9] Let V (t1, t2) = V h(t1, t2) + V v(t1, t2) be a Lyapunov functional of
the system (3), and then its unidirectional derivative is given by

V̇u(t1, t2) = ∂V h(t1, t2)

∂t1
+ ∂V v(t1, t2)

∂t2
. (5)

Lemma 1 [3] The 2-D system (3) is asymptotically stable if its unidirectional deriva-
tive (5) is negative definite.

A performance condition is now provided in the presence of disturbances:

Definition 3 [12] The 2-D continuous state-delayed systems (1) is said to have an H∞
disturbance attenuation level γ if it is asymptotically stable and under zero boundary
conditions satisfies

||z(t1, t2)||2 < γ ||ω(t1, t2)||2. (6)

Lemma 2 (Auxiliary function-based integral inequality [21]) For a positive definite
matrix Z > 0, and a function y(u), differentiable in u ∈ [a, b], the following inequality
holds: ∫ b

a
ẏT (α)Z ẏ(α)dα ≥

3∑
i=0

2i + 1

b − a
ΩT

i ZΩi , (7)

where

Ω0 = y(b) − y(a),

Ω1 = y(b) + y(a) − 2

b − a

∫ b

a
y(α)dα,

Ω2 = y(b) − y(a) + 6

b − a

∫ b

a
y(α)dα − 12

(b − a)2

∫ b

a

∫ b

β

y(α)dαdβ,

Ω3 = y(b) + y(a) − 12

b − a

∫ b

a
y(α)dα + 60

(b − a)2

∫ b

a

∫ b

β

y(α)dαdβ

− 120

(b − a)3

∫ b

a

∫ b

λ

∫ b

β

y(α)dαdβdλ.
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3 Main Results

3.1 Stability Analysis

In this subsection, the problem of stability analysis of system (3) is investigated:

Theorem 1 Given an integer m ≥ 1, the 2-D delayed continuous system (3) is asymp-
totically stable if there exist matrices P = diag{Ph, Pv} > 0, Qi = diag{Qh

i , Q
v
i } >

0, i = {1, ..., 5}, such that the following LMI is feasible

Ξ < 0, (8)

where

Ξ = sym(XT
1 PX2) + Y T

1 Q1Y1 − Y T
2 Q1Y2 + ET

1 (H2Q2 + H3Q3 + H4Q4

+H5Q5)E1 − ET
2 Q2E2 − ET

3 Q2E3 − ET
4 Q2E4 − ET

5 Q2E5 − FT Q3F

−GT Q4G − LT Q5L , (9)

and

X1 =
[
X11
X12

]
, X2 =

[
X21
X22

]
,Y1 =

[
Y11
Y12

]
,Y2 =

[
Y21
Y22

]
, E1 =

[
E11
E12

]
,

E2 =
[
E21
E22

]
, E3 =

[
E31
E32

]
, E4 =

[
E41
E42

]
, F =

[
F1
F2

]
,G =

[
G1
G2

]
,

L1 =
[
L1
L2

]
,

H2 = diag
{(

h1
m

)
Inh ,

(
h2
m

)
Inv

}
, H3 = 1

2
diag

{(
h1
m

)2
Inh ,

(
h2
m

)2
Inv

}
,

H4 = 1

6
diag

{(
h1
m

)3
Inh ,

(
h2
m

)3
Inv

}
, H5 = 1

24
diag

{(
h1
m

)4
Inh ,

(
h2
m

)4
Inv

}
,

X11 =

⎡
⎢⎢⎢⎢⎢⎣

ϒ1 0nh ,(m+3)n

0nh ,(m+1)n
h1
m ϒ1 0nh ,2n

0nh ,(m+2)n

(
h1
m

)2
ϒ1 0nh ,n

0nh ,(m+3)n

(
h1
m

)3
ϒ1

⎤
⎥⎥⎥⎥⎥⎦ , X12 =

⎡
⎢⎢⎢⎢⎢⎣

ϒ2 0nv,(m+3)n

0nv,(m+1)n
h2
m ϒ2 0nv,2n

0nv,(m+2)n

(
h2
m

)2
ϒ2 0nv,n

0nv,(m+3)n

(
h2
m

)3
ϒ2

⎤
⎥⎥⎥⎥⎥⎦ ,

X21 =

⎡
⎢⎢⎢⎢⎣

A11 A12 0nh ,(m−1)n Ad11 Ad12 0nh ,3n
ϒ1 0nh ,(m−1)n −ϒ1 0nh ,3n
h1
m ϒ1 0nh ,mn − h1

m ϒ1 0nh ,2n
1
2

(
h1
m

)2
ϒ1 0nh ,(m+1)n −

(
h1
m

)2
ϒ1 0nh ,n

⎤
⎥⎥⎥⎥⎦ ,
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X22 =

⎡
⎢⎢⎢⎢⎣

A21 A22 0nv,(m−1)n Ad21 Ad22 0nv,3n

ϒ2 0nv,(m−1)n −ϒ2 0nv,3n
h2
m ϒ2 0nv,mn − h2

m ϒ2 0nv,2n

1
2

(
h2
m

)2
ϒ2 0nv,(m+1)n −

(
h2
m

)2
ϒ1 0nv,n

⎤
⎥⎥⎥⎥⎦ ,

Y11 =

⎡
⎢⎢⎢⎣

ϒ1 0nh ,(m+3)n

0nh ,n ϒ1 0nh ,(m+2)n
...

0nh ,(m−1)n ϒ1 0nh ,4n

⎤
⎥⎥⎥⎦ ,Y12 =

⎡
⎢⎢⎢⎣

ϒ2 0nv,(m+3)n

0nv,n ϒ2 0nv,(m+2)n
...

0nv,(m−1)n ϒ2 0nv,4n

⎤
⎥⎥⎥⎦ ,

Y21 =

⎡
⎢⎢⎢⎣

0nh ,n ϒ1 0nh ,(m+2)n

0nh ,2n ϒ1 0nh ,(m+1)n
...

0nh ,mn ϒ1 0nh ,3n

⎤
⎥⎥⎥⎦ ,Y22 =

⎡
⎢⎢⎢⎣

0nv,n ϒ2 0nv,(m+2)n

0nv,2n ϒ2 0nv,(m+1)n
...

0nv,mn ϒ2 0nv,3n

⎤
⎥⎥⎥⎦ ,

E11 = [
A11 A12 0nh ,(m−1)n Ad11 Ad12 0nh ,3n

]
,

E12 = [
A21 A22 0nv,(m−1)n Ad21 Ad22 0nv,3n

]
,

E21 =
√

m

h1

[
ϒ1 −ϒ1 0nh ,(m+2)n

]
, E22 =

√
m

h2

[
ϒ2 −ϒ2 0nv,(m+2)n

]
,

E31 =
√
3m

h1

[
ϒ1 ϒ1 0nh ,(m−1)n −2ϒ1 0nh ,2n

]
,

E32 =
√
3m

h2

[
ϒ2 ϒ2 0nv,(m−1)n −2ϒ2 0nv,2n

]
,

E41 =
√
5m

h1

[
ϒ1 −ϒ1 0nh ,(m−1)n 6ϒ1 −12ϒ1 0nh ,n

]
,

E42 =
√
5m

h2

[
ϒ2 −ϒ2 0nv,(m−1)n 6ϒ2 −12ϒ2 0nv,n

]
,

E51 =
√
7m

h1

[
ϒ1 ϒ1 0nh ,(m−1)n −12ϒ1 60ϒ1 −120ϒ1

]
,

E52 =
√
7m

h2

[
ϒ2 ϒ2 0nv,(m−1)n −12ϒ2 60ϒ2 −120ϒ2

]
,

F1 = √
2
[
ϒ1 0nh ,mn −ϒ1 0nh ,2n

]
, F2 = √

2
[
ϒ2 0nv,mn −ϒ2 0nv,2n

]
,

G1 =
√
6h1
m

[ 1
2ϒ1 0nh ,(m+1)n −ϒ1 0nh ,n

]
,

G2 =
√
6h2
m

[ 1
2ϒ2 0nv,(m+1)n −ϒ2 0nv,n

]
,

L1 = √
24

h1
m

[ 1
6ϒ1 0nh ,(m+2)n −ϒ1

]
, L2 = √

24
h2
m

[ 1
6ϒ2 0nv,(m+2)n −ϒ2

]
,
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ϒ1 = [
Inh 0nh ,nv

]
, ϒ2 = [

0nv,nh Inv

]
, n = nh + nv.

Proof Wechoose the following Lyapunov–Krasovskii functional candidate for system
(3) : V (t1, t2) = V h(t1, t2) + V v(t1, t2), with

V h(t1, t2) =
5∑

i=0

V h
i (t1, t2),

V h
0 (t1, t2) = ζ hT (t1, t2)P

hζ h(t1, t2),

V h
1 (t1, t2) =

∫ t1

t1− h1
m

Γ hT (α, t2)Q
h
1Γ

h(α, t2)dα,

V h
2 (t1, t2) =

∫ 0

− h1
m

∫ t1

t1+β

ẋ hT (α, t2)Q
h
2 ẋ

h(α, t2)dαdβ,

V h
3 (t1, t2) =

∫ 0

− h1
m

∫ 0

λ

∫ t1

t1+β

ẋ hT (α, t2)Q
h
3 ẋ

h(α, t2)dαdβdλ,

V h
4 (t1, t2) =

∫ 0

− h1
m

∫ 0

δ

∫ 0

λ

∫ t1

t1+β

ẋ hT (α, t2)Q
h
4 ẋ

h(α, t2)dαdβdλdδ,

V h
5 (t1, t2) =

∫ 0

− h1
m

∫ 0

ε

∫ 0

δ

∫ 0

λ

∫ t1

t1+β

ẋ hT (α, t2)Q
h
5 ẋ

h(α, t2)dαdβdλdδdε,

and

V v(t1, t2) =
5∑

i=0

V v
i (t1, t2),

V v
0 (t1, t2) = ζ vT (t1, t2)P

vζ v(t1, t2),

V v
1 (t1, t2) =

∫ t2

t2− h2
m

Γ vT (t1, α)Qv
1Γ

v(t1, α)dα,

V v
2 (t1, t2) =

∫ 0

− h2
m

∫ t2

t2+β

ẋvT (t1, α)Qv
2 ẋ

v(t1, α)dαdβ,

V v
3 (t1, t2) =

∫ 0

− h2
m

∫ 0

λ

∫ t2

t2+β

ẋvT (t1, α)Qv
3 ẋ

v(t1, α)dαdβdλ,

V v
4 (t1, t2) =

∫ 0

− h2
m

∫ 0

δ

∫ 0

λ

∫ t2

t2+β

ẋ hT (t1, α)Qv
4 ẋ

v(t1, α)dαdβdλdδ,

V v
5 (t1, t2) =

∫ 0

− h2
m

∫ 0

ε

∫ 0

δ

∫ 0

λ

∫ t2

t2+β

ẋ hT (t1, α)Qv
5 ẋ

v(t1, α)dαdβdλdδdε,
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where

ζ h(t1, t2) =

⎡
⎢⎢⎢⎢⎢⎣

xh(t1, t2)∫ t1
t1− h1

m

xh(α, t2)dα∫ 0
− h1

m

∫ t1
t1+β

xh(α, t2)dαdβ∫ 0
− h1

m

∫ 0
λ

∫ t1
t1+β

xh(α, t2)dαdβdλ

⎤
⎥⎥⎥⎥⎥⎦ ,

ζ v(t1, t2) =

⎡
⎢⎢⎢⎢⎢⎣

xv(t1, t2)∫ t2
t2− h2

m

xv(t1, α)dα∫ 0
− h2

m

∫ t2
t2+β

xv(t1, α)dαdβ∫ 0
− h2

m

∫ 0
λ

∫ t2
t2+β

xv(t1, α)dαdβdλ

⎤
⎥⎥⎥⎥⎥⎦ ,

Γ h(α, t2) =

⎡
⎢⎢⎢⎣

xh(α, t2)
xh(α − h1

m , t2)
...

xh(α − m−1
m h1, t2)

⎤
⎥⎥⎥⎦ , Γ v(t1, α) =

⎡
⎢⎢⎢⎢⎣

xv(t1, α)

xv
(
t1, α − h2

m

)
...

xv
(
t1, α − m−1

m h2
)

⎤
⎥⎥⎥⎥⎦ ,

and ẋ h(α, t2) = ∂xh(t1,t2)
∂t1

|t1=α , ẋv(t1, α) = ∂xv(t1,t2)
∂t2

|t2=α .

Denote

xh = xh(t1, t2), xv = xv(t1, t2), xhτ = xh(t1 − τ, t2),

xv
τ = xv(t1, t2 − τ), xh(s) = xh(s, t2), xv(s) = xv(t1, s).

The unidirectional derivative of the Lyapunov–Krasovskii functional results in the
following equality:

V̇u(t1, t2) = 2ζ hT Ph ζ̇ h + 2ζ vT Pvζ̇ v + Γ hT (t1, t2)Q
hΓ h(t1, t2)

−Γ hT
(
t1 − h1

m
, t2

)
QhΓ h

(
t1 − h1

m
, t2

)
+ Γ vT (t1, t2)Q

vΓ v(t1, t2)

−Γ vT
(
t1, t2 − h2

m

)
QvΓ v

(
t1, t2 − h2

m

)

+ẋ hT
(
h1
m

Qh
2 + h21

2m2 Q
h
3 + h31

6m3 Q
h
4 + h41

24m4 Q
h
5

)
ẋ h

+ẋvT
(
h2
m

Qv
2 + h22

2m2 Q
v
3 + h32

6m3 Q
v
4 + h42

24m4 Q
v
5

)
ẋv

−
∫ t1

t1− h1
m

ẋhT (α1)Q
h
2 ẋ

h(α1)dα1 −
∫ t2

t2− h2
m

ẋvT (α2)Q
v
2 ẋ

v(α2)dα2

−
∫ 0

− h1
m

∫ t1

t1+β1

ẋ hT (α1)Q
h
3 ẋ

h(α1)dα1dβ1
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−
∫ 0

− h2
m

∫ t2

t2+β2

ẋvT (α2)Q
v
3 ẋ

v(α2)dα2dβ2

−
∫ 0

− h1
m

∫ 0

λ1

∫ t1

t1+β1

ẋ hT (α1)Q
h
4 ẋ

h(α1)dα1dβ1dλ1

−
∫ 0

− h2
m

∫ 0

λ2

∫ t2

t2+β2

ẋvT (α2)Q
v
4 ẋ

v(α2)dα2dβ2dλ2

−
∫ 0

− h1
m

∫ 0

δ1

∫ 0

λ1

∫ t1

t1+β1

ẋ hT (α1)Q
h
5 ẋ

h(α1)dα1dβ1dλ1dδ1

−
∫ 0

− h2
m

∫ 0

δ2

∫ 0

λ2

∫ t2

t2+β2

ẋvT (α2)Q
v
5 ẋ

v(α2)dα2dβ2dλ2dδ2,

which, applying Lemma 2, gives

∫ t1

t1− h1
m

ẋhT (α)Qh
2 ẋ

h(α)dα ≥
3∑

i=0

(2i + 1)m

h1
ΘT

i Qh
2Θi , (10)

∫ t2

t2− h2
m

ẋvT (α)Qv
2 ẋ

v(α)dα ≥
3∑

i=0

(2i + 1)m

h2
ΦT
i Qv

2Φi , (11)

where

Θ0 = xh − xhh1
m

,

Θ1 = xh + xhh1
m

− 2m

h1

∫ t1

t1− h1
m

xh(α)dα,

Θ2 = xh − xhh1
m

+ 6m

h1

∫ t1

t1− h1
m

xh(α)dα − 12m2

h21

∫ 0

− h1
m

∫ t1

t1+β

xh(α)dαdβ,

Θ3 = xh + xhh1
m

− 12m

h1

∫ t1

t1− h1
m

xh(α)dα + 60m2

h21

∫ 0

− h1
m

∫ t1

t1+β

xh(α)dαdβ,

−120m3

h31

∫ 0

− h1
m

∫ 0

λ

∫ t1

t1+β

xh(α)dαdβdλ,

Φ0 = xv − xv
h2
m

,

Φ1 = xv + xv
h2
m

− 2m

h2

∫ t2

t2− h2
m

xv(α)dα,

Φ2 = xv − xv
h2
m

+ 6m

h2

∫ t1

t2− h2
m

xv(α)dα − 12m2

h22

∫ 0

− h2
m

∫ t2

t2+β

xv(α)dαdβ,
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Φ3 = xv + xv
h2
m

− 12m

h2

∫ t2

t2− h2
m

xv(α)dα + 60m2

h22

∫ 0

− h2
m

∫ t2

t2+β

xv(α)dαdβ,

−120m3

h32

∫ 0

− h2
m

∫ 0

λ

∫ t2

t2+β

xv(α)dαdβdλ.

Applying the Jensen inequality to the double, triple and quadruple integral terms in
V̇u(t1, t2) leads to

∫ 0

− h1
m

∫ t1

t1+β
ẋhT (α)Qh

3 ẋ
h(α)dαdβ ≥ 2

(
xh − m

h1

∫ t1

t1− h1
m

xh(α)dα

)T

Qh
3

×
(
xh − m

h1

∫ t1

t1− h1
m

xh(α)dα

)

×
∫ 0

− h2
m

∫ t2

t2+β
ẋvT (α)Qv

3 ẋ
v(α)dαdβ

≥ 2

(
xv − m

h2

∫ t2

t2− h2
m

xv(α)dα

)T

Qv
3

×
(
xv − m

h2

∫ t2

t2− h2
m

xh(α)dα

)

×
∫ 0

− h1
m

∫ 0

λ

∫ t1

t1+β
ẋhT (α)Qh

4 ẋ
h(α)dαdβdλ

≥ 6h1
m

(
1

2
xh −m2

h21

∫ 0

− h1
m

∫ t1

t1+β
xh(α)dαdβ

)T

×Qh
4

(
1

2
xh − m2

h21

∫ 0

− h1
m

∫ t1

t1+β
xh(α)dαdβ

)

×
∫ 0

− h2
m

∫ 0

λ

∫ t2

t2+β
ẋvT (α)Qv

4 ẋ
v(α)dαdβdλ

≥ 6h2
m

(
1

2
xv −m2

h22

∫ 0

− h2
m

∫ t2

t2+β
xv(α)dαdβ

)T

×Qv
4

(
1

2
xv − m2

h22

∫ 0

− h2
m

∫ t2

t2+β
xv(α)dαdβ

)

×
∫ 0

− h1
m

∫ 0

δ

∫ 0

λ

∫ t1

t1+β
ẋhT (α)Qh

5 ẋ
h(α)dαdβdλdδ

≥ 24h21
m

(
1

6
xh − m3

h31

∫ 0

− h1
m

∫ 0

λ

∫ t1

t1+β
xh(α)dαdβdλ

)T

×Qh
5

(
1

6
xh −m3

h31

∫ 0

− h1
m

∫ 0

λ

∫ t1

t1+β
xh(α)dαdβdλ

)
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×
∫ 0

− h2
m

∫ 0

δ

∫ 0

λ

∫ t2

t2+β
ẋvT (α)Qv

5 ẋ
v(α)dαdβdλdδ

≥ 24h22
m

(
1

6
xv − m3

h32

∫ 0

− h2
m

∫ 0

λ

∫ t2

t2+β
xv(α)dαdβdλ

)T

×Qv
5

(
1

6
xv −m3

h32

∫ 0

− h2
m

∫ 0

λ

∫ t2

t1+β
xv(α)dαdβdλ

)
.

Define

ξ(t1, t2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ

xhh1
xv
h2

m
h1

∫ t1
t1− h1

m

xh(α)dα

m
h2

∫ t2
t2− h2

m

xv(α)dα

m2

h21

∫ 0
− h1

m

∫ t1
t1+β

xh(α)dαdβ

m2

h22

∫ 0
− h2

m

∫ t2
t2+β

xv(α)dαdβ

m3

h31

∫ 0
− h1

m

∫ 0
λ

∫ t1
t1+β

xh(α)dαdβdλ

m3

h32

∫ 0
− h2

m

∫ 0
λ

∫ t2
t2+β

xv(α)dαdβdλ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xh

xv

xhh1
m

xv
h2
m
...

xhm−1
m h1

xv
m−1
m h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

From all the consequent terms above, it can seen that

V̇u(t1, t2) ≤ ξ T (t1, t2)
{
sym(XT

1 PX2) + Y T
1 Q1Y1 − Y T

2 Q1Y2

+ET
1 (H2Q2 + H3Q3 + H4Q4 + H5Q5)E1 − ET

2 Q2E2

−ET
3 Q2E3 − ET

4 Q2E4 − ET
5 Q2E5 − FT Q3F − GT Q4G

−LT Q5L
}
ξ(t1, t2). (13)

Hence, it is clear that if (8) is satisfied, then we obtain V̇u(t1, t2) < 0. This completes
the proof. 	

Remark 1 The Lyapunov function defined in this paper is more general, thanks to
the use of the augmented vectors ζ h(t1, t2), ζ v(t1, t2), Γ h(t1, t2) and Γ v(t1, t2). For
example:

• When Ph = diag{P1, 03n,3n}, the function V h
0 (t1, t2) in this paper reduces to

V h
1 (x) in [2,16], and the first function of V1(t1, t2) in [3].

• When Pv = diag{P2, 03n,3n}, the function V v
0 (t1, t2) in this paper reduces to

V v
1 (x) in [2,16], and the first function of V2(t1, t2) in [3].

• When Qh = diag{Q1, Q1, . . . , Q1}, the function V h
2 (t1, t2) in this paper reduces

to V h
3 (x) in [2], and the second function of V1(t1, t2) in [3].
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• When Qv = diag{Q2, Q2, . . . , Q2}, the function V v
2 (t1, t2) in this paper reduces

to V v
3 (x) in [2], and the second function of V2(t1, t2) in [3].

In addition, compared with the existing Lyapunov function for 2-D continuous sys-
tems with delays, the one proposed in this paper contains some triple, quadruple and
quintuple integral terms which are very effective in the reduction of conservatism
[8,21]. This is an additional reason to justify that our results are less conservative than
the existing ones.

Remark 2 The number of decision variables in Theorem 1 is N = (m
2

2 + 10)n2 +
(m2 + 4)n.

Remark 3 From Remark 2, it can be seen that the number of decision variables N is
related to the delay partitioning parameter m, and it will increase if m increases. The
examples at the end of the paper show how increasing m makes possible to further
reduce the conservatism, although with the trade-off of increasing the computational
cost.

3.2 H∞ Performance Analysis

This subsection presents a sufficient condition to guarantee a given H∞ disturbance
attenuation level for system (1).

Theorem 2 Given an integer m ≥ 1, the 2-D delayed continuous system (1) with the
zero boundary condition is asymptotically stable with a H∞ disturbance attenuation
level boundγ if there existmatrices P = diag{Ph, Pv} > 0, Qi = diag{Qh

i , Q
v
i } > 0,

i = {1, ..., 5}, such that the following LMI is feasible

Ξ̂ + ÊT
z Êz − γ 2 ÊT

ω Êω < 0, (14)

where

Ξ̂ = sym(X̂ T
1 P X̂2) + Ŷ T

1 Q1Ŷ1 − Ŷ T
2 Q1Ŷ2 + ÊT

1 (H2Q2 + H3Q3 + H4Q4

+H5Q5)Ê1 − ÊT
2 Q2 Ê2 − ÊT

3 Q2 Ê3 − ÊT
4 Q2 Ê4 − ÊT

5 Q2 Ê5 − F̂T Q3 F̂

−ĜT Q4Ĝ − L̂T Q5 L̂

and

X̂1 = [
X1 04n,nω

]
, Ŷ1 = [

Y1 0mn,nω

]
, Ŷ2 = [

Y2 0mn,nω

]
, Ê2 = [

E2 0n,nω

]
,

Ê3 = [
E3 0n,nω

]
, Ê4 = [

E4 0n,nω

]
, Ê5 = [

E5 0n,nω

]
, F̂ = [

F 0n,nω

]
,

Ĝ = [
G 0n,nω

]
, L̂ = [

L 0n,nω

]
,

Êz = [
C1 C2 0nz ,(m+3)n D

]
, Êω = [

0nω,(m+4)n Inω

]
,

X̂2 =
[
X21 B1
X22 B2

]
, Ê1 =

[
E11 B1
E12 B2

]
,B1 =

[
B1

03nh ,nω

]
,B2 =

[
B2

03nv,nω

]
.



Circuits Syst Signal Process (2018) 37:5333–5350 5345

X1, Y1, Y2, E11, E12, E2, E3, E4, E5, F, G, L, H2, H3, H4 and H5 share the same
expressions as those in Theorem 1.

Proof By defining

J =
∫ ∞

0

∫ ∞

0

{
zT (t1, t2)z(t1, t2) − γ 2ωT (t1, t2)ω(t1, t2)

}
dt1dt2,

under the zero boundary condition we have

J ≤
∫ ∞

0

∫ ∞

0

{
V̇u(t1, t2) + zT (t1, t2)z(t1, t2) − γ 2ωT (t1, t2)ω(t1, t2)

}
dt1dt2.

That is,

J ≤
∫ ∞

0

∫ ∞

0
ξ̂ T (t1, t2)

{
Ξ̂ + ÊT

z Êz − γ 2 ÊT
ω Êω

}
ξ̂ (t1, t2)dt1dt2,

where ξ̂ (t1, t2) = [
ξ T (t1, t2) ωT (t1, t2)

]T
.

The matrix inequality in (14) implies that

||z(t1, t2)||22 < γ 2||ω(t1, t2)||22.

The proof is thus completed. 	

Remark 4 The reduced conservatism of Theorem 1 and 2 is guaranteed by the con-
struction of the new Lyapunov functional by combining a delay partitioning method
with the auxiliary function-based integral inequality. This constitutes the major dif-
ference from existing results in the literature.

Remark 5 The delay-dependent stability and H∞ performance conditions proposed
in this paper have been derived for the nominal system. Nonetheless, it is pointed out
that it is not difficult to further extend the results to systems with uncertainties, where
the system matrices in (1) contain parameter uncertainties that are norm-bounded or
polytopic, which is left as further work.

4 Numerical Examples

Example 1 Consider the 2-D continuous state-delayed system (3) with the following
system matrices and parameters:

A11 =
⎡
⎣−1 −0.5 0.4

0 −2 2
0 0 −3

⎤
⎦ , A12 =

⎡
⎣0.1 −1 1

0 0 0.1
1 1 0

⎤
⎦ ,

A21 =
⎡
⎣−1 0 0

0 0 0.1
1 1 1

⎤
⎦ , A22 =

⎡
⎣−0.5 −0.3 0

0 −1 −0.6
0 0 −2

⎤
⎦ ,
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Table 1 Comparisons of maximum allowed h2 for different h1

Methods h1 = 2 h1 = 3 h1 = 4 h1 = 5

[2] 1.91 1.26 1.02 0.90

[16] Theorem 4.1N1=2 N2=2 2.88 1.72 1.32 1.12

[16] Theorem 4.1N1=4 N2=4 3.19 1.86 1.40 1.18

Theorem 1 (m = 1) 3.725 2.041 1.512 1.256

Theorem 1 (m = 2) 3.734 2.046 1.519 1.263

Fig. 1 LMI feasibility domain for stability

Ad11 =
⎡
⎣−0.5 −0.25 0.2

0 −1 1
0 0 −1.5

⎤
⎦ , Ad12 =

⎡
⎣0.02 −0.2 0.2

0 0 0.02
0.2 0.2 0

⎤
⎦ ,

Ad21 =
⎡
⎣−0.2 0 0

0 0 0.02
0.2 0.2 0.2

⎤
⎦ , Ad22 =

⎡
⎣−0.2 −0.12 0

0 −0.4 −0.24
0 0 −0.8

⎤
⎦ .

The stability of this 2-D system cannot be determined by the delay-independent cri-
terion in [3], but can be treated with the approach here when bounds on the delay are
available (which is frequently the case in practice). For example, for a given h1, the
maximum allowable delay h2 which ensures the asymptotic stability of the system
using the method developed here is given in Table 1. From these results, it is clear that
Theorem 1 is less conservative than results recently reported in [2,16].

The feasibility domain is plotted in Fig. 1: It is clear that the stability domain
obtained using Theorem 1 includes the domains obtained using [2] and [16].

Example 2 Consider the well-known dynamical system (involved in gas absorption
water stream heating and air drying) described by the following Darboux equation
with time delays [5]:
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Table 2 Comparison of
maximum allowed delays h2

Method h2

[6] 2.4601

[2] 3.7416

[16] Theorem 4.1N1=2 N2=2 4.0772

[16] Theorem 4.1N1=3 N2=3 4.0772

Theorem 1 (m = 1) 4.6815

Theorem 1 (m = 3) 4.6815

∂2q(x, t)

∂x∂t
= a1

∂q(x, t)

∂t
+ a2

∂q(x, t)

∂t
+ a0q(x, t) + a3q(x, t − h2) + bu(x, t),

(15)

where q(x, t) is unknown function at x(space) ∈ [0, x f ] and t (t ime) ∈ [0,∞), a0,
a1, a2, a3 and b are real coefficients, h2 is the time delay, and u(x, t) is the input
function. Let us define

xh(x, t) = ∂q(x, t)

∂t
− a2q(x, t), xv(x, t) = q(x, t).

It is easy to verify that equation (15) can be converted into the model (3) with[
A11 A12
A21 A22

]
=
[
a1 a0 + a1a2
1 a2

]
,

[
Ad11 Ad12
Ad21 Ad22

]
=
[
0 a3
0 0

]
.

To carry out a numerical study, the following parameters are also fixed: a0 = 0.2,
a1 = −3, a2 = −1, a3 = −0.4, b = 0.

The stability for these parameters cannot be solved by the delay-independent cri-
terion in [3]. On the contrary, using Theorem 1, a feasible solution can be found for
delays bounded as shown in Table 2.

Example 3 Consider the following 2-D continuous state-delayed system borrowed
from [16][

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
=
[−2 0

0 −0.9

] [
xh(t1, t2)
xv(t1, t2)

]
+
[−1 0

−1 −1

] [
xh(t1 − h1, t2)
xv(t1, t2 − h2)

]
,

where the maximum delays acceptable for stability are h1 = ∞ and h2 = 6.1725.
A detailed comparison between the maximum delays that ensure stability, which are
obtained using Theorem 1, and the delay-dependent methods proposed in [2,16] is
summarized in Table 3.

In order to analyze H∞ performance, a disturbance is considered, following (1),
modeled with the following system matrices:

B1 = 1, B2 = 0, C1 = 2, C2 = 1, D = 0.
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Table 3 Comparison of
maximum delays

Methods h1 h2

[2] 2.5800 4.4721

[16] Theorem 4.1N1=2 N2=2 ∞ 5.7175

[16] Theorem 4.1N1=3 N2=3 ∞ 5.9677

[16] Theorem 4.1N1=4 N2=4 ∞ 6.0568

Theorem 1 (m = 1) ∞ 6.1719

Theorem 1 (m = 2) ∞ 6.1725

Table 4 Comparison of minimum H∞ performance γmin for different h

Methods h = 0.2 h = 0.3 h = 0.4 h = 0.5 h = 0.6

[12] 0.6832 0.7082 0.7709 0.9137 1.0754

Theorem 2 (m = 1) 0.6677 0.6734 0.7354 0.8443 0.9697

Theorem 2 (m = 2) 0.6677 0.6730 0.7346 0.8440 0.9684

Theorem 2 (m = 3) 0.6677 0.6730 0.7344 0.8438 0.9680

Fig. 2 Minimum H∞ performance γmin for different h

Now, we apply Theorem 2 in this paper to calculate the minimum γmin for different
values of a constant delay (h = h1 = h2) with the system asymptotically stable and
the H∞ disturbance level is guaranteed to be at least γmin . The comparison results are
listed in Table 4.

Figure 2 shows the variation of the achieved performance γmin obtained using
Theorem 2 and [12], for different h.
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5 Conclusion

This paper has investigated in detail the problems of delay-dependent stability and
H∞ performance, for a class of 2-D continuous state-delayed systems. By combining a
delay partitioningmethodwith an auxiliary function-based integral inequality, stability
and H∞ performance criteria have been developed, which are less conservative than
the existing results, as demonstrated on several numerical examples. The results can be
easily extended to the uncertain case. Furtherwork can be done to include stabilization,
control and filter design.
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