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Abstract This paper proposes a method using speech-specific knowledge to detect
the begin and end points of speech under degraded condition. The method is based
on vowel-like region (VLR) detection and uses both excitation source and vocal tract
system information. Existing method for VLR detection uses excitation source infor-
mation. Vocal tract system information from dominant resonant frequency is used to
eliminate spurious VLRs in background noise. Foreground speech segmentation using
excitation and vocal tract system information is carried out to remove spuriousVLRs in
the background speech region. Better localization of the end points is done using more
detailed information about excitation source in terms of glottal activity to detect the
sonorant consonants and missed VLRs. To include an unvoiced consonant, obstruent
region detection is done at the beginning of the first VLR and at the end of last VLR.
Detected begin and end points are evaluated by comparing with manually marked end
points as well as by conducting the text-dependent speaker verification experiments.
The proposed method performs better than some of the existing techniques.
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1 Introduction

Speech communication is one of the most widely used methods of communication.
Therefore, human beings always prefer to communicate with and send commands to
machines by voice. Among all the applications involving in speech, speaker verifi-
cation (SV) has expanded significantly over the years since its inception. SV is the
technology that is used to authenticate the identity claim of a person based on his/her
speech utterance. Depending on the text used during enrollment and testing phases, SV
system can be classified into text-dependent and text-independent SV system [1,3,15].
In text-dependent SV (TDSV) system, the verification text is fixed during the enroll-
ment and testing phase and is already known to the system. In a text-independent SV
system, there are no such constraints used for enrollment and testing phase. In TDSV
system, the system takes the user’s voice sample and the identity claim as input to the
system and decides whether the given input speech utterance belongs to the particular
claimed user or not. In this paper, all studies are presented for a TDSV system suited
for cooperative users specifically under degraded conditions like environmental noise
and Babble noise.

The state-of-the-art SV systems provide good performance when the speech utter-
ance is of high quality and free from any mismatch [17]. Such a speech utterance is
treated as clean speech in the present work. However, in most practical operating con-
ditions, the speech signal is affected by different degradations like background noise,
background speech, sensor mismatch, channel mismatch, lip smacks, chirping noise,
heavy breathing, and other environmental conditions, resulting in degraded speech that
degrades the TDSV system performance significantly [11,23,53]. There are numer-
ous techniques available for dealing with training and testing speech conditions due to
degradation [29,35]. To deal with such degraded speech signals, the compensation is
done at the signal level, feature level, model level, score level or all of them together.
In this paper, we aimed at the signal-level compensation methods used for removing
the effect of noise from the degraded speech utterances. The main goal is to develop a
robust and accurate begin and end points detector which can improve the performance
of the SV system. The accurate begin and end points detection gives faster response,
as useful frames are passed for further processing.

Accurate begin and end points detection is very crucial in text- dependent speaker
verification task [10,33,38,54]. In such systems, first begin and end points are detected,
and then, feature vectors belonging to the speech region specified by the end points
are considered for preparing the templates for training and testing. The testing tem-
plate is compared with the reference templates using pattern matching technique like
dynamic time warping (DTW) [10]. The most widely used end point detection method
is based on the voice activity detection (VAD) [2,18,20], where voicing decision is
made by considering the average energy as a threshold. Most of the existing end point
detectionmethods use energy-based voice activity detection [41,46,51]. Energy-based
techniques perform well for clean speech conditions and fail badly in degraded condi-
tions [29]. Figure 1 shows speech signal for the utterance “Get into the hole of tunnels”
with non-overlapping background noise [in (a)] and its short-term energy contour [in
(b)]. The background noise includes both speech and non-speech background noise.
The high energy in the background noise leads to incorrect detection of begin and
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end points. In [13,14], pitch information is used for end point detection. However,
pitch extraction is also a challenging task in degraded speech condition. In [50], a
method for robust end point feature selection is proposed based on a self-adaptive
approach. The periodicity-based VAD perform better compared to the conventional
energy-based VAD [14]. The statistical model-based VAD was effectively developed
based on the decision-directed parameter estimation for the likelihood ratio test which
is robust to detect the speech regions under degraded conditions [50]. A better SV
system was developed under degraded speech conditions by using speech, only from
the less affected speech regions [41]. This robustness is achieved by exploiting the
knowledge of vowel-like regions (VLRs) which are relatively high signal-to-noise-
ratio (SNR) regions [28,29]. Another method using vowel onset point (VOP) was
proposed to detect begin and end points in [54]. Although this VOP-based method is
found to be better than the energy-based methods, there exist several drawbacks in
the method. This end point detection is based on the VOP-based method developed in
[36]. After detecting the VOPs, begin and end points were detected using the knowl-
edge of first and last VOPs. In some cases, there may be a consonant at the beginning
of the sentence and instead of detecting this consonant, begin point is marked 200 ms
before the first VOP. Similarly, end point is marked 200 ms after the last VOP without
estimating the length of the vowel. Therefore, the begin and end points detected in that
way may not be correct, and some explicit consonant region detection may be more
useful. Moreover, instead of using the last VOP, vowel end points (VEPs) can be used.
An algorithm for vowel-like region (VLRs) detection by detecting VLR onset points
(VLROPs) and VLR end points (VLREPs) was proposed in [29], and the method
was further improved in [27,35]. VLRs include vowels, diphthongs and semivowels.
Since objective is to detect speech end points, instead of using VOP, VLR can be used
as it will provide both VLROP and VLREP. Figure 1a shows the manually marked
VLROPs and VLREPs along with the speech signal. Although the begin point is near
to the first VLROP, the end point is much deviated from the last VLREP of the speech
region. The obstruent region at the end of the sentence must be detected to correctly
detect the end point.

Another disadvantage of VOP-based method is the use of only excitation source
information. Excitation source information normally captures the impulse-like excita-
tion of the source. Sometimes impulse-like noise present in the signal is also captured
by the instantaneous source information and detects them as spurious VLRs [43].
Therefore, vocal tract system information is required for eliminating the spurious
detections. Moreover, VOPs are detected well when there is a consonant attached to
it, for example, in case of an obstruent–vowel unit. It is because the signal strength
changes suddenly at the onset of the vowel when there is a stop consonant or a fricative.
In case of semivowel–vowel units, the VOP detection performance degrades [34,37].
Vowel end points (VEPs) are also detected well when there is a consonant at the end.
In the absence of a consonant, the vowel energy decreases slowly and it becomes
difficult to detect the VEP. Such vowel regions with very low strength can be detected
by exploring more detailed information of the excitation source in terms of glottal
activity. Glottal activity detection (GAD) will detect some other sonorant consonants
along with the VLRs. But in this work, those sonorants are desirable as the final goal
is to detect the end points of speech.
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Fig. 1 (a) Speech signal containing non-overlapping background noise and background speech. Dark
vertical lines show the ground-truth begin and end points. Dotted lines are manually marked vowel-like
region onset and offset points in the speech region. (b) Short-term energy of the signal in (a). Dotted lines
show the end points detected by the energy-based end points detection

In Fig. 1, it can be seen that the speech is degraded with background speech, and
VLROPs andVLREPs are detected in the background speech regions as well. In such a
scenario, a foreground speech segmentationmodulemay be required to properly detect
the begin and end points. It is also observed that the proposed method does not work
where non-speech and background speech regions are overlappedwith speech regions.

Taking all these issues into consideration, this work proposes a method to detect the
begin and end points using some speech-specific knowledge. The proposed method
uses both excitation source and vocal tract system information to reduce the spurious
detection. Following is the step-by-step process of the proposed method.

– The vowel-like regions (VLRs) are detected using excitation source information.
– The vocal tract system information obtained from dominant resonant frequency
(DRF) is used to reduce spurious detection in background noise.

– Glottal activity detection is used to detect the sonorant consonants present at the
beginning and end of the speech signal, which cannot be detected by VLRs detec-
tion.

– Obstruent consonants are detected by using a sub-fundamental frequency filtering
method.

– To eliminate background speech, a foreground speech segmentation module is
used.

– Finally, speech duration knowledge is used to further refine the output of the begin
and end points detection.

Depending on the background speech and the presence of different kinds of degra-
dation, a poor system performance may be encountered. To improve such system,
speech-specific knowledge is applied on the degraded speech so as to improve the per-
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formance in a better way. Even though most of these are existing techniques, our con-
tribution is in terms of exploiting the advantages of different individual techniques and
combining them in a suitable manner for robust end point detection in a TDSV system.

The rest of the paper is organized as follows: Section 2 describes significance of
different speech-specific knowledges for the detection of speech end points. Section 3
illustrates the procedure for robust end point detection. Experimental evaluation of
the proposed end point detection (EPD) method is performed in Sect. 4. The use
of the proposed EPD in text-dependent speaker verification system is described in
Sect. 5. Section 6 evaluates the proposed text-dependent speaker verification system,
and Sect. 7 summarizes the work and concludes.

2 Significance of Speech-Specific Knowledge for End Point Detection
(EPD)

The task of end point detection involvesmarking the starting and end points of a speech
utterance. The presence of background noise makes it difficult to locate the end points.
In practical environment, there are different types of background noises present. Each
background noise has their own type of characteristics. Therefore, looking the end
point detection problem from speech knowledge point of view is more appreciable
in practical environment. Some of the existing methods indirectly use speech-specific
knowledge. However, those methods fail because the speech knowledge used in those
systems is not sufficient. In this section, speech-specific knowledge required for elim-
inating the limitations of energy-based and VOP-based methods is described in detail.

2.1 Vowel-Like Region Onset and End Point Information

Vowels, semivowels and diphthongs are considered as the vowel-like regions (VLRs).
VLRs are high SNR regions and easier to detect in degraded condition [27,30]. There
are many methods in the literature for the VLR detection [27,45]. Most of these meth-
ods are based on detection ofVLROP andVLREP.Knowledge ofVLREPs can be used
for detecting the speech end points, instead of using the lastVOP.Vowels are of variable
duration, and many languages have long and short version of the same vowel. Detect-
ing the last VOP andmarking the end point 200ms after the VOP are not a good idea in
such cases, rather the use of VLREP may be more accurate. The method described in
[27] is used for VLRs detection in this work. Although VLROP and VLREP detection
uses excitation source information only, it uses two different evidences to explore the
information unlike the previous method [54], where VOPs are detected using only a
single evidence. One VLROP evidence is obtained using theHilbert envelope (HE) of
linear prediction (LP) residual by processing the speech signal through the following
steps : The speech frame is processed in blocks of 20-ms frame size with a frame shift
of 10 ms. For each 20-ms frame size, 10th-order LP analysis is performed to estimate
the linear prediction coefficients (LPCs) [22]. The speech frame is passed through
the inverse filter to extract the LP residual. This excitation source characteristics are
further enhanced by determining the HE of LP residual [32]. The detailed method
used to detect the VLROP evidences using HE of LP residual is described below.
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Method 1: VLROP evidence using HE of LP residual

→ Let l(n) is the LP residual signal
→ Its analytic signal is la(n) is given by

la(n) = l(n) + jlh(n)·
where, lh(n) is the Hilbert transform of l(n)

→ Let hl (n) be HE, which is the magnitude of la(n)

hl (n) = |la(n)|
hl (n) =

√
l2(n) + l2h (n)

→ This HE of LP residual enhances information about glottal closure instants (GCIs)
→ The evidence is further enhanced by taking maximum value of the HE of LP residual
for every 5-ms block with one sample shift
→ The smooth contour is convolved with a first-order Gaussian differentiator (FOGD)
window of length 100 ms and standard deviation of one-sixth of window
→ The output of the convolution is the VLROP evidence using HE of LP residual

Low-frequency components are accommodated in the HE (hl(n)), and relatively
high-frequency components are accommodated in phase (Φ(n)) of the analytic signal
[47]. Hence, the HE of LP residual enhances speaker information about glottal closure
instants (GCIs) [34,35].

Following steps are used for computing another evidence from the zero-frequency
filtered signal (ZFFS). The output of zero-frequency filter (ZFF) consists of excita-
tion information which is mainly impulses due to excitation. The rate of change of
excitation strength is the main event at VLROP [35].

Method 2: VLROP evidence using ZFFS

The algorithmic steps for computing VLROP evidence from ZFFS are as follows:
→ Difference the speech signal s(n)

d(n) = s(n) − s(n − 1)
→ Compute the output of a cascade of two ideal digital resonators at 0 Hz

y(n) = −
4∑

k=1
ak y(n − k) + d(n)·

where, a1 = 4, a2 = − 6, a3 = 4, a4 = − 1 and d(n) is the differenced speech signal
→ Remove the trend, i.e.,

ŷ(n) = y(n) − ȳ(n)·
where ȳ(n) = 1

(2N+1)

N∑
m=−N

y(n + m) and 2N + 1 corresponds to the average pitch period computed

over a longer segment of speech
→ The signal (ŷ(n)) obtained after removing the trend is the ZFFS
→ The strength of excitation at the epochs is extracted by computing the first-order difference of ZFFS
→ The second-order difference of ZFFS contains change in the strength of excitation
→ This change is detected by convolving with a FOGD
→ The convolved output is called the VLROP evidence using ZFFS

Final VLROP evidence using the excitation source information is obtained by
adding the two evidences and normalizing by themaximum value of sum. The location
of peaks between two successive positive- to-negative zero crossings of the combined
evidence represents the hypothesizedVLROPs. To find theVLREP evidences, both the
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Fig. 2 (a) Speech signal containing non-overlapping background noise, (b) VLROP and (c) VLREP
evidences obtained using excitation source information. (d) Detected VLRs marked using dark lines

smoothed HE of LP residual and second-order difference of ZFFS are convolved with
FOGD from right to left as opposed to left to right in case ofVLROPs and all other steps
are kept same [25]. The locations of peaks between two successive positive-to-negative
zero crossings of the combinedVLREP evidence represent the hypothesized VLREPs.

The number of hypothesized VLROPs and VLREPs will be different due to inde-
pendent detection, with misses and spurious detections occurring for both events. To
get the most optimum sets of VLROP and VLREP, an algorithm is proposed using
some speech-specific knowledge [27]. The algorithm forced the detection of miss-
ing cases in one evidence, if other evidence is sufficiently strong. The algorithm also
reduces spurious detection of one event using knowledge of the other. Refined sets of
VLROP and VLREP are used to obtain the VLRs.

Figure 2a shows the same speech signal as shown in Fig. 1a containing speech and
non-speech background noise. Figure 2b–d shows the VLROP and VLREP evidences
and detectedVLRs, respectively. The non-speech background noise present in between
0 and 0.5 smay also have impulse-like characteristic due towhich the region is detected
as VLR. Some portion of speech background present in between 3 and 4 s are also
detected as VLRs. These spurious detections will lead to wrong detection of the begin
and end points. Therefore, some vocal tract system information should be explored to
reduce the spurious detection.

2.2 Dominant Resonant Frequency Information

To remove missed spurious VLRs, dominant resonant frequency (DRF) can be used
as vocal tract system information. DRF is the frequency which is resonated the most
by the vocal tract [31]. DRF is computed from the Hilbert envelope of numerator
group delay (HNGD) spectrum of zero-time windowed speech [12,56]. DRF is less
than 1 kHz for vowel-like regions. Non-speech noise mostly contains high-frequency
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Fig. 3 (a) Speech signalwith non-overlapping backgroundnoise.HypothesizedVLRs are shownusing dark
lines. (b) DRF contour of the speech along with refined VLRs. Spurious VLRs in non-speech background
region are removed after using the DRF information

components. Hence, DRF is more than 1 kHz for non-speech noise. This knowledge
can be used for identifying and removing the spurious VLRs.

Figure 3a shows speech with background noise along with the detected VLRs. The
DRF contour is shown in Fig. 3b. The DRF values are low for VLRs and high for
background noise. The VLRs where DRF value is more than 1 kHz are considered
as non-speech region. In Fig. 2b, the refined VLRs are shown using dotted lines. It is
seen that spurious VLRs in the non-speech background noise region in between 0 and
0.5 s is removed. Thus, DRF can be used for removing some of the spurious VLRs.

The procedure for detection of non-speech background noise using DRF is
described below:

Method 3: Detection of non-speech background noise using DRF

→ Differenced speech signal s[n] is multiplied two times with a zero time window (w1[n])
w1[n] =

{
0, n = 0

1
4sin2(πn/2N )

, n = 1, 2, . . . , N − 1 ·
where N is window length. In this work, N is considered to be samples equivalent to 5 ms
→ Zero time windowing operation is performed to get better time resolution
→ The truncation effect at the end of the window is
reduced by multiplying with a tapering window function w2[n] given by

w2[n] = 4cos2( πn
2N ), n = 0, 1, . . . N − 1

→ Numerator group delay function (g[k]) of the resultant signal is obtained to nullify the loss in
frequency resolution

g[k] = XR [k]YR [K ] + XI [k]YI [K ], k = 0, 1 . . . , N − 1·
where X [k] = Xr [k] + j X I [k] is the N-point discrete Fourier transform (DFT) of the
windowed signal x[n] and Y [k] = Yr [k] + jYI [k] is the N-point DFT of the sequence
y[n] = nx[n]

→ Final spectrum is obtained by taking Hilbert envelope of the differenced numerator group
delay function

→ The frequency corresponding to the maximum value in the spectrum is considered as the DRF
→ The VLRs where DRF value is more than 1 kHz are declared as non-speech region
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2.3 Foreground Speech Segmentation

The speech of the speaker who is close to the microphone sensor and directly com-
municates to a speech application is known as the foreground speech. The rest of the
acoustic background captured by the sensor is known as the background degradation
[5]. Background degradation contains both speech and non-speech noises. Non-speech
noise can be removed by usingDRF as described in the previous subsection. To remove
the background speech, a foreground speech segmentation is necessary. A foreground
speech segmentation algorithmwas proposed in [5], whichwas furthermodified in [6].
The modified version of the foreground speech segmentation method is used in this
work. The method uses excitation source and vocal tract system information. Exci-
tation source information is extracted using ZFFS analysis, and vocal tract auditory
features are extracted from the modulation spectrum energy.

Method 4: Detection of foreground speech segmentation

The foreground speech segmentation algorithm is described as follows:
→ Excitation source information is extracted using ZFF analysis
→ The ZFF signal is processed in blocks of 50 ms with shift of one sample
→ Normalized first-order autocorrelation coefficients and strength of excitation are extracted
→ The features show high value in the foreground speech regions compared to background
speech region

→ Vocal tract articulatory features are extracted from the modulation spectrum energy using
compressive Gamma chirp auditory filter

→ The linear combination of these features are further subjected to an end point detection
algorithm to segment the foreground speech regions over a longer segment of speech

Figure 4a shows speech signal with background speech in the 3–4 s region. Fig-
ure 4b shows the final evidence obtained from the foreground segmentation algorithm
along with the segmented boundaries (in dotted lines). With the help of foreground
segmentation, the spurious VLRs in the background speech region can be removed
and the VLRs present in the foreground speech region can be retained.

2.4 Glottal Activity Information

After detecting theVLRs, glottal activity information can be explored to add a sonorant
consonant at the begin or at the end of speech utterance. GAD detects the VLRs as
well as other sonorant consonant regions, such as voice bars and nasals. Therefore,
better localization of voiced region can be done by using GAD. This GAD method
also helps to minimize the VLRs miss detection rate.

A procedure for detection of voiced region using ZFFmethod is described in [8,24].
Detection of voiced speech involves detection of significant glottal activity in speech.
Rest of the regions include unvoiced speech, silence as well as background noise. The
method exploits the nature of ZFFS that the addition of a small amount of noise to
the speech signal does not affect the zero crossings of ZFFS in the voiced region,
whereas it leads to zero crossings at random locations in unvoiced and silence regions.
The reason behind this is the glottal closure that takes part in producing the most
significant impulse-like excitation in voiced speech. The epochs due to such impulse-
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Fig. 4 (a) Speech signal with non-overlapping background noise. Detected VLRs are shown using dark
lines. (b) Final evidence for foreground speech segmentation. Vertical dotted lines show the segmentation
boundaries. Spurious VLRs in speech background can be removed using foreground speech segmentation

like excitations are robust to noise and can be locatedwith high accuracy in the presence
of degradation. On the other hand, unvoiced and silence region do not contain any
significant excitation and result in zero crossings located at random instants. The drift
in the epoch location after the addition of a little amount of noise is used to segment
the voiced regions from rest of the regions. Additional spurious epochs are eliminated
using the knowledge of pitch and jitter information. The detailed method for detection
of voiced regions is as follows:

Method 5: Detection of voiced regions using GAD

Procedure for detection of voiced region using ZFF is described in the following way:
→ Obtain the epoch locations of speech using ZFF
→ Add 20 dB of white Gaussian noise to the clean speech
→ Obtain the epoch locations of noisy speech using ZFF
→ If the difference between the epoch locations obtained in the two cases is less than 2 ms,
then retain it. otherwise discard the epoch
→ Calculate the instantaneous pitch period using the epoch locations and eliminate the epoch
if its pitch period is more than 15 ms
→ Calculate the instantaneous jitter and eliminate the epoch if jitter is more than 1 ms

Figure 5 shows speech signal along with the hypothesized VLRs [in (a)] and
detected glottal activity region [in (b)]. It is seen that there are some missed VLRs at
the end of speech utterance (around 2.4 s). These missed VLRs are detected by the
glottal activity detection algorithm. Further, there is one nasal sound in between 1 and
1.2 s which is not considered as VLR. GAD will be helpful if such sonorant is present
at the beginning or at the end of speech utterance. Detection of such sonorant sound
is required for appropriately detecting the end points.
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Fig. 5 Speech signal with hypothesized (a) VLRs and (b) glottal activity regions. Missed VLRs and the
sonorant consonants are detected by using glottal activity detection

2.5 Obstruent Information

Stop consonants, fricatives and affricates are known as obstruents. There may be an
obstruent consonant at the begin and end of speech utterance. The obstruents are not
detected by the VLR detection. To include them in the speech region, an obstruent
detection algorithm is required. In [44], a method is proposed to detect the dominant
aperiodic regions in speech using sub-fundamental frequency filtering. Since aperiodic
component is dominant in burst and frication region ofmost of the obstruents, the same
method is used in this work to detect the obstruents. The method is a modification of
the ZFF method. The steps involved in the method are described below.

Method 6: Detect the dominant aperiodic regions in speech

Procedure for detection of dominant aperiodic region is described in the following way:
→ Pass the speech signal through a 0-Hz resonator four times
→ Obtain the sub-fundamental frequency filtered signal by removing the trend four times using
a window size of three pitch periods
→ Enhance the filtered signal in the dominant aperiodic region by squaring it
→ Smooth the enhanced signal using a 5-ms window
→ For further smoothing, locate the peaks in the signal using a peak picking algorithm and
repeat the peak value till the next peak is obtained
→ A FOGD of 100 ms length is convolved with the signal to get the final evidence
→ A positive peak in the final evidence gives the probable onset of an obstruent
→ The first positive peak present within 100 ms before a VLROP is considered as the onset of
obstruent and
→ The last negative peak present within 100 ms after the VLREP is considered as the offset
of an obstruent
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Fig. 6 (a) Speechwith hypothesizedVLRs after spurious removal. (b) Final obstruent evidence. (c) Speech
with refined begin and end points. Vertical dark lines show the detected end points, and long vertical dotted
lines show ground-truth end points. Burst region at the beginning and the frication region at the end of the
signal are included after the refinement

Figure 6a shows a speech signal with hypothesized end points detected by the VLR
detection method. Vertical dotted lines show the ground-truth end points. The first
VLROP and last VLREP are much deviated from the ground-truth marking. Figure 6b
shows the final obstruents evidence. The first positive peak present within 100 ms
of first VLROP is considered as the refined begin point, and the last negative peak
present within 100-ms region of the last VLREP is considered as the refined end point.
In Fig. 6c, it can be observed that the end points are detected with more accuracy after
using obstruent detection.

2.6 Speech Duration Knowledge

Sometimes database is collected froman unknown environmentwithout any restriction
on the testing condition. The subject is not restricted to speak the given sentence in a
proper way, but left free to speak in a very casual way. In such cases, the subject may
try to speak one or two words several times. For example instead of saying ”Lovely
picture can only be drawn”, one may say “Lovely [pause] lovely picture can only be
drawn”. Sometimes one may repeat a word twice and can speak something which is
not part of the sentence. When these extra words are uttered without any pause, it
is not possible to do any further rectification. However, if these words are uttered at
the beginning or at the end leaving some silence in between the actual utterance and
the extra word, it is possible to remove the extra utterance by using speech duration
knowledge (SDK). In normal speech, distance between two subsequent VLRs cannot
be more than 300 ms [36]. If it is more than 300 ms, then it is not part of the given
sentence. This knowledge will also help to remove other non-speech spurious VLRs
which are detected 300 ms away from the speech utterance. Following procedure is
followed to use the SDK.
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Method 7: Detection of speech regions using speech duration knowledge

Procedure for detection of refined end point regions is described in the following way:
→ First, location of all the VLROPs are obtained
→ Average of the Euclidean distances from one VLROP to all other VLROPs are computed
→ The VLROP having the minimum average Euclidean distance is considered as the center
(C) of the speech utterance

C = arg mini
1

N−1

N∑
j=1,�=i

(Vi − Vj )
2·

where 1 ≤ i ≤ N , 1 ≤ j ≤ N , C is the detected center of speech utterance, N is the number of detected
VLRs and Vi is the i

th VLROP in number of samples
→ Now, starting from the center of the speech, duration between two successive VLRs is
calculated on either side until the duration is found to be greater than 300 ms or the peripheral
VLR is reached
→ If the duration between two successive VLRs is found to be greater than 300 ms, then
between the two VLRs, the one which is closure to C is declared as the peripheral VLR

3 Robust End Point Detection Using Speech-Specific Knowledge

The speech-specific knowledge described in the previous section can be systemati-
cally used to detect the end points in practical conditions containing both speech and
non-speech degradation. Figure 7 shows the block diagram for the proposed method.
First VLRs are detected from the speech signal. Spurious VLRs in the non-speech
background are removed by using DRF information. Spurious VLRs in speech back-
ground are removed using foreground speech segmentation. Then, missed VLRs and
sonorant consonants present at the begin or end are detected using GAD. The obstru-
ent consonants present at the begin or end are detected, and end points of peripheral
VLRs are modified. Finally, SDK is used to further remove the spurious VLRs. The
VLROP of first VLR and VLREP of last VLR are declared as the begin and end points,
respectively.

Figure 8 illustrates the proposed detection procedure. The same speech files used
in the previous sections are used for the illustration. Figure 8a shows the speech signal
with non-overlapping non-speech noise and speech background. First step is to detect
theVLRs. Figure 8b shows thedetectedVLRs. Second step is to remove thenon-speech
noise using the DRF information. The spurious VLRs where the DRF is exceeding
1 kHz are removed, and refined VLRs are shown in Fig. 8c. Third step is to remove
the speech background which is done using foreground speech segmentation. The
detected boundaries and refined VLRs obtained after foreground speech segmentation
are shown in Fig. 8d. In the next step, the glottal activity regions are detected. The
detected glottal activity regions are added to VLRs and are shown in Fig. 8e. This
includes some sonorant regionswhich are not detected by theVLRdetection algorithm.
Fifth step is to detect the obstruents at the beginning and at the end of the speech
utterance. The modified begin and end points using obstruent evidence are shown in
Fig. 8f. The arrow in Fig. 8f shows the center of speech utterance detected. Starting
from this point, the duration between successive VLRs is computed in both sides. For
this utterance, the inter-VLR time interval is less than 300 ms for all cases, and hence,
no further modification is incorporated using the SDK knowledge.
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Fig. 7 Block diagram of proposed end point detection. SP1 and SP2 denote spurious VLRs in non-speech
and speech background, respectively
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Fig. 8 Illustration of the begin and end point detection procedure. (a) Speech signal with non-speech
noise and background speech. (b) Detected VLRs. (c) VLRs after removing the non-speech noise using
DRF information. (d) VLRs after removing the speech background using foreground speech segmentation.
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VLRs is less than 300 ms. Therefore, no further modification is made using SDK knowledge. Dotted line
shows ground-truth manual marking
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4 Experimental Evaluation of Proposed EPD

4.1 Databases

In order to evaluate the robustness of proposed algorithm in degraded speech condi-
tions, we conducted the text-dependent SV experiments on the two databases, namely
the IITG database [4,7] and the RSR2015 database [19]. The RSR2015 database is
mainly designed for text-dependent speaker recognitionwith pre-defined pass phrases.
This database contains 71 h of audio recording, recorded on a set of six portable devices
including mobile phones and tablets, in a closed office environment. The speech data
is recorded from 300 English speakers (143 females and 157 males) decorating the
variety of accents spoken in Singapore. These 300 speakers were selected to be repre-
sentative of the ethnic distribution of Singaporean population, with age ranging from
17 to 42 years old. Each of the speakers recorded 9 sessions; each session consists of
30 pre-defined pass phrases. In this work, three pass phrases are optionally have been
selected for the experimental studies. The duration of the utterances varies between
3 and 5 s. Out of 9 utterances (sessions) for every pass phrase, 3 utterances are used
for training, and remaining 6 utterances are used for testing. The pass phrases used in
this study are shown below.

TD-1 : “Only lawyers love millionaires”.
TD-2 : “I know I did not meet her early enough”.
TD-3 : “The Birthday party has cupcake and ice-cream”.

As theRSR2015database is collected in a closed office environment, it is considered
as clean database. To evaluate the proposed method in degraded condition, the speech
signal is corrupted with babble noise [52]. The energy level of the noise is scaled such
that the overall signal-to-noise ratio (SNR) of the degraded speech varies from 20 to
0 dB, in steps of 5 dB.

The IITG database was collected from the course students with attendance as an
application to address issues in the practical deployment of text-dependent SV system
[4,7,16,21]. The speech biometric-based attendance system developed for course stu-
dents of IITGwas used on a regular basis formarking attendance [4,7,49]. The students
used to call to a voice server-based toll-free number to mark attendance using fixed set
of mobile handsets kept at the department office. In the enrollment phase, three pre-
defined pass phrases were recorded for each enrolled speaker in an anechoic chamber.
The data were recorded in three different sessions using a set of mobile handsets.

The three pass phrases from the IITG database are:

TD-1 : “Don’t ask me to walk like that”.
TD-2 : “Lovely pictures can only be drawn”.
TD-3 : “Get into the hole of tunnels”.

During the testing phase, the speakers are prompted to utter one of the three pre-
defined utterances randomly selected by the voice server. Collection of the testing
data was continued for an entire academic semester from a population of 325 speakers
(286 males and 39 females). On an average, 30 utterances are available per speaker
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for each phrase. These speakers constitute an age group in between 25–35 years. The
duration of the utterances of the database varies between 3 and 5 s. During collection
of the testing database, the speakers could move freely within, and in and out of the
open hall in the department office and also are allowed in free environment. This
makes the testing data more practical because the data include background noise,
background speech and other environmental conditions. Due to mismatches in sensor,
style of speech and environment between the enrollment and the testing phases, the
TDSV task becomes more challenging in IITG database. Hence, there is no need to
add artificial noise in the IITG database for the assessment of the TDSV system.

4.2 Performance Evaluation

The performance of the end point detection (EPD) algorithm is evaluated in terms of
twometrics : Identification rate (IR) and Identification error (IE) [48]. These utterances
are markedmanually for ground-truth begin and end points of the speech signal. These
begin and end points are called as reference points. The begin and end points detected
by applying different automatic detection algorithms are called as estimated points.
Let lre fb and lre fe denote the midpoints (in ms) of the begin and end frames of a speech
utterance/signal. All speech frames before the begin frame and after the end frame
are considered as silence frames. Let lestb and leste denote the midpoints (in ms) of
the begin and end frames of the speech signal, as estimated by the EPD algorithm.
If lestb ∈ lre fb ± 500ms, then the begin point is considered to be correctly estimated.

Similarly, if leste ∈ lre fe ± 500 ms, then the end point is considered to be correctly
estimated. We may define IR and IE as:

IR (%): Percentage of speech utterances for which the begin point (end point) is
correctly estimated.
IE (ms): For every begin point (end point) that is correctly estimated, the absolute
difference between the reference begin point (end point) and its estimate is calcu-
lated. In other words, | lestb − lre fb | (| leste − lre fe |) is calculated. The average value
of the absolute difference for all the correctly estimated begin points (end points)
is denoted as IE.

4.2.1 Performances on the RSR2015 Database Under Clean and Degraded
Conditions

The performance of proposed begin and end point detection method is evaluated for
clean speech using 300 speakers data from the RSR2015 database for three utterances
“Only lawyers love millionaires”,“I know I did not meet her early enough”, and “The
Birthday party has cupcake and ice-cream”. The begin and end points are marked
manually to obtain the ground truths.

In Table 1, performance of automatically detected begin and end points is shown
for TD-1 phrase of clean RSR2015 database. The proposed method is compared with
different existing methods in terms of IR and IE. The evaluation is also carried out
at different stages in the block diagram of the proposed method so that comparison
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is made with the individual methods as well as with different possible combinations.
It can be seen that the VLR-based detection gives around 1.75% improvement over
energy-based detection for begin and end points. In case of GAD-based detection,
performance increases by around 1.75% for begin points and decreases by around
7% for end points compared to energy-based detection. In case of FSS, the perfor-
mance decreases for both begin and end points. It is also observed that performance of
begin point detection increases for different combinations. For the proposed detection
method which uses combination of all individual methods, the performance increases
by around 2.5 and 2% for begin and end points, respectively. In terms of IE, the pro-
posedmethod shows better performance compared to the individual methods for begin
points. However, the IE is found to be very high in case of the end points.

To evaluate the robustness of the proposed begin and end point detection algorithm,
the testing utterances of the RSR2015 database are corrupted with babble noise from
NOISEX-92 database [52]. The SNR is varied from 20 to 0 dB in steps of 5 dB. In
Table 2, the performance is shown for TD-1 phrase of the RSR2015 database. Due to
degradation in the speech signal, the performance is quite low compared to the clean
condition. The energy-based end point detection shows around 10% decrement in per-
formance for 20 dB SNR. Similar decrement is observed for other individual methods.
However, for the proposed method using combination of all the algorithms, an overall
improvement is observed across all 5 levels of degradation. In some cases, we can
observe that the individual method is performing better than the proposed method in
terms of IR or IE or both. For example in case of 10 dB SNR, GAD is showing 99.28%
IR and 298 ms IE for begin points, which is slightly better than the performance of
the proposed method. However, for the GAD method with the same SNR, we can
observe that the performance of the proposed method is significantly higher than the
GAD for end point detection. Similarly, although FSS is performing better than the
proposed method for end points, it is under performing with a significant margin for
the begin points. On an average, the performance of the proposed method is found
to be better than the individual methods and different intermediate combinations of
the individual methods. Complementary advantages of the individual methods lead to
improved performance for the proposedmethod. Results for TD-2 andTD-3 phrases of
RSR2015 database are shown in Fig. 9 for both clean and degraded speech conditions,
and similar trend is observed.

In Table 2, it can be observed that even though IR is better for the proposed meth-
ods, most of the times the IE in case of begin points is poorer compared to some of the
individual methods. This is because of the method used in this work for computing
IE, where only detected end points are considered. The end points beyond ± 500ms
of the reference mark are not considered for IE computation.

4.2.2 Performances on the IITG Database

Same experiments are reported for the IITG database which is more practical data
in terms of session, sensor, background degradation and environmental conditions.
Table 3 shows the performance of different detection algorithms on IITG database.
It can be observed that for the practical data, the performance of the energy-based
begin point detection is similar to that of the RSR2015 database. However, in case
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Fig. 9 Performance of the begin and end point detection using four individual methods and their six
different combinations are summarized on TD-2 and TD-3 test utterances in terms of the IR and IE on
RSR2015 database. The RSR2015 database is corrupted by babble noise, with SNR varying from 20 to
0 dB in steps of 5 dB

of end points, performance is around 10% less than the RSR2015 database. Among
different individual algorithms, GAD shows the best performance for both begin and
end points. The proposed method using combination of different individual methods
shows significantly improved performance for both begin and end points detection.
On an average, around 2 and 8% improvement is observed for begin and end points,
respectively.

4.3 Analysis of Failure Cases

The end points which are not detected by the proposedmethod are analyzed. Themajor
failure is due to the impulse-like non-speech background having higher low-frequency
energy content. Due to impulse-like nature, both the VLR detection algorithm and
GAD capture these regions as speech region. The DRF value computed from the
HNGD spectrum is less than 1000 Hz and therefore cannot remove these spurious
detections. Figure 10 explains the situation. Figure 10a shows a speech signal with
non-overlapping background noise. Figure 10b shows the DRF contour. The non-
speech background has DRF values less than 1000 Hz and are not removed by the
proposed method.

In a few cases, the speaker is repeating some words without leaving sufficient
space in between the repeated words. Speech duration knowledge is failing to remove
spurious detection in such cases. The proposed EPD method is a combination of
different algorithms, and every individual algorithm has limitations. Sometimes both
VLR and GAD algorithms fail to detect some voiced speech regions. Similarly the
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Fig. 10 (a) Speech signal with non-overlapping background noise along with hypothesized VLRs. (b)
DRF contour of the speech along with refined VLRs. Two vertical dotted lines show the begin and end
points. Spurious VLRs in non-speech background region are not removed after using the DRF information
because the noise has DRF value less than 1000 Hz

sub-fundamental frequency filtering method may fail to detect some obstruent region.
Foreground speech segmentation algorithm is threshold based and sometimes fails
to detect background speech. Due to the failure in the individual level, the proposed
algorithm fails giving a lesser identification rate in such cases.

5 Development of Text-Dependent Speaker Verification

The TDSV systems are usually based on template/model-sequence matching tech-
niques in which the time axes of an input speech utterance and reference models of
registered speakers are aligned, and the similarities between them are accumulated
from the beginning to the end of utterance [9,10,26,40,55]. When the linguistic con-
tent of the utterance is known, speaker verification systems perform better. This is
because such systems can better able to model the characteristics of specific pho-
netic content contained in the speech signal. To make a speaker verification system
more suitable for practical applications, the proposed system should be designed such
that it should be language, sensor independent and session independent and robust to
background degradations.

From the commercial speech-based authentication systems as an application point
of view, the enrolled user is free to provide the test speech at the testing phase with no
constraints on the quality, recording conditions, duration, channel mismatch and other
environmental noises. Accordingly, the performance of speaker verification systems
is influenced bymany of these possible variabilities. Among these variabilities, lexical
content and channel variations are the most detrimental [19]. Compared to channel
variability due to uncontrolled environmental factors, lexical variability can be man-
ageable. In case of text-dependent scenario, lexical variability is not present. Matching



5530 Circuits Syst Signal Process (2018) 37:5507–5539

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Train feature

T
es

t f
ea

tu
re

(a)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Train feature

T
es

t f
ea

tu
re

(b)

Fig. 11 Evidences for degraded and clean speech utterances for Don’t ask me to walk like that (a) speech
utterances containing non-overlapping background noise and background speech and showedDTWwarping
path deviated away from the regression line, (b) speech utterances containing clean speech region after
detecting the begin and end points using algorithms and showed DTW warping path along the regression
line

of short duration phrases during training and testing with high accuracy makes it an
attractive option for commercial speech-based person authentication systems.

The accuracy of a speaker verification system depends on the match between the
speaker model and test features [17]. The performance may improve after applying the
proposed end point detection algorithm. Figure 11a, b shows the DTW warping path
for an utterance before and after using the proposed end point detection algorithm. It
can be seen that detection of end points brings the DTW warping path closure to the
regression line.

In thiswork, aTDSVsystem is developed using 39-dimensionalmel-frequency cep-
stral coefficient (MFCC) features and DTW as a template matching technique. The
training phase of speakers includes 3 sessions of 3 different texts. Features of these
training templates are extracted and kept as reference templates for further experi-
ments. In the testing phase, the test data are processed in a similar way as the training
data and MFCC features of these test data are extracted. DTW algorithm is used for
matching the train and test templates.

The dynamic programming algorithm provides a many-to-many mapping between
training and testingutteranceswhileminimizing the overall accumulateddistance.This
minimum accumulated distance is called as dynamic time warping (DTW) distance
[39,42]. The testing feature vectors are compared with reference to the claimed model
reference template by the DTW algorithm. To find the best match between the train
and test feature vectors, dynamic warping path minimizes the total distance between
the train and test feature vectors using DTW algorithm. An efficient solution of this
minimization is found by the dynamic programming due to its elastic distancemeasure.
DTWalgorithmcomputes the accumulateddistance score between the referencemodel
of the train template X and testing template T of different lengths by taking the DTW
warping path as,

DTWψ(X, T ) =
M∑
l=1

DTW(ψx (l), ψt (l))s(l)/Sψ (1)
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where DTWψ(X, T ) is the accumulated distance score between the test and reference
template, DTW(ψx (l),ψt (l)) is the shortest time spectral distortion, s(l) is a non-
negative warping path weighting coefficient and Sψ is the dynamic time warping path
normalizing factor. The test speech is matched with the claimed reference model using
DTW algorithm as given in Eq. 1 to give the minimum distance score. The decision
is taken with respect to a set of four cohort speakers by comparing the distance score
against them. The cohort approach is mainly based on a subset of enrolled speaker’s
models which represents the closest score to the claimed speaker. This cohort selec-
tion is made in advance (offline), which consists closest model to the claimed speaker.
The cohort-based method is faster than the traditional method of testing the model
against the imposters, reducing the unnormalized equal error rate. This is because the
utterance must be from a set of pre-defined phrases.

The performance evaluation of theTDSVsystem is based on two standardmetrics—
Equal Error Rate (EER) and minimum Detection Cost Function (mDCF). Let Sc =
{sc1, sc2, . . . , scS} represent the entire set of DTW scores obtained after matching
the testing utterances vs. the training utterances. The set Sc is normalized so that
{sci ∈ [0, 1] | i = 1, 2, . . . , S}. Let θ ∈ [0, 1] be the decision threshold, above
which the claim of the test utterance against the speaker is accepted. Let SG denote
the number of genuine/true claims that have been accepted, SI denote the number of
imposter/false claims that have been rejected, SM denote the number of genuine/true
claims that have been rejected and SF denote the number of imposter/false claims that
have been accepted. Therefore, S = SG + SI + SM + SF . We may now define EER
and DCF as follows:

EER (%) : For any given threshold, θ , theMiss Rate is given asMR = SM
SG+SM

×100%.

The False Alarm Rate is given as FAR = SF
SI+SF

× 100 %. At a particular threshold,
θ = θ0, MR = FAR. This error is known as the EER. In other words, EER = MR =
FAR, at θ = θ0.

mDCF : For any given threshold, θ , the Probability of Miss is given as PM = SM
SG+SM

.

The Probability of False Alarm is given as PF = SF
SI+SF

. Two parameters, CM and
CF , assign costs to the event of a miss (a genuine claim rejected), and that of a false
alarm (an imposter claim is accepted) respectively. Also, an a priori probability PT
is assigned, which assumes that out of all the test claims against a speaker, only a
fraction PT are genuine claims. The cost parameter of the mDCF, at any given θ , is
given by,

Cθ = CM × PM × PT + CF × PF × (1 − PT ) (2)

The mDCF is then given by,

mDCF = min
θ∈[0,1]Cθ (3)

In this work, CM = 10 , CF = 1, and PT = 0.01 are considered.
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6 Experimental Evaluation of Proposed EPD in TDSV System

In this section, we present the experimental results for the TDSV systems imple-
mented separately on the two databases, the RSR2015 and the IITG database. The
RSR2015 is a clean database; therefore, to examine the robustness of the proposed
begin and end point detection algorithm, the data are degraded by adding babble
noise.

6.1 Performance on the Clean RSR2015 Database

The performance of proposed TDSV system is evaluated on the clean RSR2015
database. Table 4 presents the performance metrics of the individual algorithms and
their combinations used for the begin and end points detection.

For the TD-1 utterance of the RSR2015 database [49], the energy-based and the
VLR-based methods provide an EER of 7.59 and 4.89%, respectively. The pro-
posed method without SDK (VLR+DRF+GAD+FSS+OBS) provides an EER of
4.8%, and the proposed method with SDK (VLR+DRF+GAD+FSS+OBS+SDK)
provides an EER of 4.54% which is around 3% improved result compared to the
energy-based detection. Among the individual methods, VLR-based method gives the
best performance which is comparable to the performance of the proposed method.
This result is expected in case of RSR2015 database, because except the channel effect,
there is no other type of degradation present in the database. The telephonic handsets
used for collecting the training and testing speech are same for maximum number
of speakers and the non-speech regions are mostly silence regions. For such type of
speech, the begin and end point detection can be performed accurately without much
difficulty. Similar performances are observed for the TD-2 and TD-3 utterances as
shown in Fig. 12.

6.2 Performances on the RSR2015 Database Under Degraded Condition

The testing utterances of the RSR2015 database are corrupted with babble noise of
the NOISEX-92 database. Table 5 presents the performances of different methods for
the TD-1 phrase. As can be seen from the table, the performance of TDSV decreases
as the SNR increases. Different individual methods such as FSS, VLR and GAD show
improved performance compared to the energy-based detection in case of all different
levels of degradation. The proposed method gives the best performance among all
different combinations. On an average, 4% improvement in EER across five levels
of degradation is observed for the proposed method compared to the energy-based
method. Experiments are performed for TD-2 and TD-3 phrases, and performances
are shown in Fig. 12. As can be seen from the figure, TD-2 and TD-3 phrases show
similar trend as TD-1 phrase in terms of EER.
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Fig. 12 Performances of the TDSV systems using different end point detection methods evaluated on the
TD-2 and TD-3 phrases of the RSR2015 database. The testing utterances are corrupted by babble noise,
with SNR varying from 20 to 0 dB in steps of 5 dB. The TDSV systems are built using 39-dimensional
MFCCs and DTW, and performance is evaluated in terms of EER and DCF

6.3 Performance on IITG Database

Similar to the RSR2015 database, the performance of the TDSV system is evaluated
on IITG database. The challenge in this case is to discriminate a large set of speakers,
considering the testing conditions are quite different from the training conditions.
Table 6 presents the performance metrics for the three phrases, namely TD-1, TD-2
andTD-3.VLR-, FSS- andGAD-basedmethods are giving 3–5% improvement inEER
over the energy-based method. The EER is further reduced when different individual
methods are combined in the proposed framework. Approximately 7% improvement
in EER is observed for the proposed method compared to the energy-based method.
Robustness of the proposed method in detecting the begin and end points is helping
the TDSV system to achieve the improved performance.

7 Summary and Conclusions

This work proposes a begin and end point detection algorithm using some speech-
specific information. The proposed algorithm aims at removing non-overlapping
speech as well as non-speech background degradations. The method is vowel-like
region detection based and uses vocal tract and source-related information to remove
background noise. Dominant resonant frequency information is used to remove non-
speech background, and foreground speech segmentation is performed to remove the
speech background. To detect the consonants at the beginning and at the end of the
VLRs, glottal activity and dominant aperiodic regions detection are performed. Fur-
ther, speech duration knowledge is used to remove some spurious VLRs. The proposed
algorithm is used to evaluate a text-dependent SV system. The TDSV system with the
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proposed method shows improved performance than the individual methods such as
energy-, FSS-, GAD- and VLR-based end point detection.

The proposed end point detection method works when there is an issue of
non-overlapping background speech and non-speech noise. In case of overlapping
background noise, the temporal and spectral enhancement methods may be useful for
robust TDSV system. Future work will be to use temporal and spectral enhancement
methods to remove the overlapping background degradation followed by the use of
speech-specific knowledge for removal of non-overlapping background degradation.
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