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Abstract Novel time–frequency (t– f ) methods are developed for the detection of
non-stationary signals in the presence of noise with uncertain power. The proposed
method uses instantaneous frequency estimation and de-chirping procedure to convert
a non-stationary signal into a stationary signal, thus allowing us to exploit temporal
correlation as an extra feature for signal detection in addition to the signal energy.
The proposed method can be used for both mono-sensor and multi-sensor recordings.
Area under receiver operating characteristic curve and probability of signal detection
are used as criteria for comparing the performance of the proposed signal detection
methods with the state of the art in the presence of noise power uncertainty. Simulation
results indicate the superiority of the proposed approach.

Keywords Non-stationary signal detection · De-chirping · Instantaneous frequency ·
Temporal correlation

1 Introduction

Frequency-modulated signals also known as chirp signals are frequently observed in
nature. Bats and dolphins use chirp signals for locating food and navigating in the
skies or oceans [23]. Similarly, in order to communicate with each other, whales use
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chirp-like signals to sing long and complex songs. In radar, sonar and remote sensing,
chirp signals are used to navigate and detect the desired targets [14]. In communication
systems, information can be transmitted using chirps, where transmitter encodes the
information by phase and frequency modulations. In astrophysics, gravitational waves
that emerge due to the disturbances in the curvature of space–time also posses chirp-
like characteristics [5]. Chirp signals are also used for jamming in electronic warfare
because of their wideband characteristics.

Detection of weak chirp signals in a very noisy environment is important for many
military and commercial applications [5]. Commonly used methods for signal detec-
tion include energy detector, matched filter and detectors exploiting cyclostationarity
[6,30,31]. The performance of these methods depends on the use of available prior
knowledge about signals. For example, if the signal is known to the receiver, matched
filter is an optimal detector [3]. Energy detector on the other hand does not require
knowledge about the signal, but requires the noise power to be known [30,31]. Energy
detector performs very poorly in the case of noise uncertainty as, in practice, obtain-
ing accurate estimates of noise powers is not possible [2,21,25,25,26]. Hence, there
is a need of completely blind detection schemes that require very little or no prior
information about signal and noise [3,6,30,31].

In many practical cases received signals are correlated in space or time due to the
presence of spatially or temporally correlated channels oversampling at the receiver,
or because of the inherent characteristics of a transmitted signal [28,32]. In order
to achieve better detection performances, extra features such as spatial or temporal
correlation could be exploited in addition to signal energy [2,3]. These correlations
can be considered as side information that can also be used to bring robustness to the
detection process against noise power uncertainty [2,3,31]. However, these methods
are used for stationary signals and are expected to under-perform for non-stationary
signals.

Time–frequency distributions (TFDs) are powerful tools for the analysis of non-
stationary FM signals. TFDs concentrate energy of such non-stationary signals along
their instantaneous frequencies while spreading the noise in entire t– f plane. One
commonly used t– f signal detection approach is to employ matched filtering or cor-
relation [20]. A given signal is transformed in the t– f domain and then correlated with
a set of predetermined templates. These methods have been successfully applied for
the detection of seizures in newborns [20]. Experimental results have shown that t– f
matched filtering can outperform conventional time-domain matched filter in case of
non-Gaussian noise [20].However, effective implementation of thesemethods requires
prior information regarding the nature of underlying signal to prepare templates [9].
For example, in case of EEG signals piecewise linear frequency modulation character-
istics of the seizure signals are exploited for preparing templates [9]. Similarly, signal
energy concentrated along the instantaneous frequency (IF) of a frequency-modulated
signal can be used as a test statistic for the detection of non-stationary signals [22].
This method does not require any prior information regarding the IF structure of the
given signal.

The aforementioned t– f -based detection methods either assume known signals,
or only exploit signal energy along IF curves for signal detection and fail to exploit
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spatial or temporal correlation in slowly changing amplitudes of signal components.
In this study, we develop a new completely blind scheme for signal detection that:

1. is completely blind and does not require prior information regarding the structure
of the desired signal.

2. assumes no knowledge about the noise and performs well even when noise power
is unknown. Therefore, the proposed scheme is robust against the noise power
uncertainty.

3. is equally applicable to both mono-sensor and multi-sensor recordings.

In order to achieve the above goals, the proposed detection scheme uses TFD to
estimate IF estimation, which is then employed to de-chirp the given signal. The de-
chirping results in a temporally correlated stationary version of a non-stationary signal.
This inherent correlation is then exploited using covariance matrix-based approach for
signal detection in both mono-sensor and multi-sensor recordings.

Experimental results indicate the superiority of the proposed method as compared
to conventional time-domain approaches while considering a challenging scenario
when noise power is uncertain.

2 Time–Frequency Mono-sensor Detector

2.1 Signal and System Model

In this section we consider a receiver with a single sensor that receives N samples
of the desired signals in the presence of additive white Gaussian noise (AWGN) with
uncertain noise power [25]. These N observed samples are stacked in a N × 1 vector
x, and the detection model for the received signal can be described as:

H1 : x = s + w

H0 : x = w, (1)

where s = [s [1] , s [2] , . . . , s [N ]] with s(n) = a(n) exp ( jϕ (n)) being the nth sam-
ple of noise-free desired signal, in which ϕ (n) is the instantaneous phase and a(n)

is the slowly varying instantaneous amplitude whose spectrum does not overlap with
the spectrum of e jϕ(n). With this received signal model, the goal is to design robust
detection scheme against noise power uncertainty.

2.2 Proposed Detection Scheme

Existing covariance-based approaches [1,3,4,30] are blind and assume no a priori
knowledge. They are robust against the noise power uncertainty as they instantly esti-
mate noise powers. However, these methods exploit temporal correlation assuming
that the given signal is stationary. The aim of this work is to extend the aforemen-
tioned detector for frequency-modulated signals. The aforementioned model of FM
signals indicate that instantaneous amplitude of such signals is correlated in time,
while non-stationarity is caused by e jϕ(n). In the following section, a t– f approach
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Fig. 1 Steps for stationarization of the received signals at mono-sensor receiver

will be developed to stationarize the received signal by first estimating the instanta-
neous frequency and then using it to stationarize the received signal. For the case of
non-stationary process, the proposed scheme that exploits both t– f techniques and
temporal correlation is described in the following subsections and illustrated in Fig. 1.

2.2.1 Computation of Time–Frequency Distribution

A TFD of a received signal {x (n)}Nn=1 is computed as:

ρ [n, k] =
∑

m

G [n,m] ∗
n
x [n + m] x∗ [n − m] e− j2πmk

N , (2)

where n is time index, k is frequency bin, N is total number of time-domain samples,
andG [n,m] is a time-lag kernel. In this study,wehave selectedmodifiedBdistribution
(MBD) though we can employ other sophisticated methods such as locally adaptive
directional TFDs to improve robustness against noise [7,10,15,19]. The selected time-
lag kernel is defined as:

G[n,m] = cosh−2β [n]
∑

i cosh
−2β [i] , (3)

where β = 0.2 in this study.

2.2.2 Instantaneous Frequency and Phase Estimation

After having clear TFD ρ [n, k] of the received signals, we estimate the instantaneous
frequency of the signal by detecting the location of the peak frequency at each time
instant as:

f̂ [n] = arg max
k

ρ [n, k] . (4)

Note that we can employ sophisticated methods such as random sample consensus
(RANSAC) and Viterbi-based algorithms to obtain accurate estimate of the instanta-
neous frequency [12,24]. For continuous time signals, the instantaneous phase, i.e.,
ϕ(t), is related to instantaneous frequency, i.e., f (t), by the integral operation [8].

ϕ (t) =
∫ t

0
f (τ )dτ . (5)
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In case of discrete signals, the instantaneous phase of the signal is estimated using the
following operation:

ϕ̂ [n] = ϕ̂ [n − 1] + 2π

N
f̂ [n] , (6)

where N is the total number of frequency bins in a TFD.Note that the above-mentioned
expression can estimate phase up to a constant as initial phase is not known and
assumed to be zero, i.e., ϕ̂ [n] = 0.

2.2.3 Time–Frequency Filtering (De-chirping)

Oncewe have the estimate of instantaneous phase, the next step is to de-chirp the given
signal using the estimated phase. The de-chirping operation converts a non-stationary
signal into a stationary signal by removing the frequency modulation. The de-chirping
operation has found widespread applications in non-stationary signal processing, such
as component extraction, signal analysis, parameter estimation, instantaneous fre-
quency estimation [11,13,18,27]. In case of a multi-component signal, the strongest
component is converted intoDCor stationary signal. The process in the case of hypoth-
esisH1 can be represented as:

y [n] = x [n] exp
(− j ϕ̂ [n]

)

= s [n] exp
(− j ϕ̂ [n]

) + w [n] exp
(− j ϕ̂ [n]

)

≈ α exp
(− j

(
ϕ̂ [n] − ϕ [n]

)) + w̃ [n]

α exp (− jφ) + w̃ [n]

≈ s̃ [n] + w̃ [n] ,

(7)

where φ is a constant phase. The above equation is based on the assumption that
estimated instantaneous phase is approximately equal to original instantaneous phase
up to a constant, i.e., ϕ̂[n] ≈ ϕ[n]+φ. The above equation illustrates that the de-chirped
signal, i.e., s̃ [n] = α exp (− jφ), is a constant as it has no time-varying part. Note
that this derivation is based on assumption that the observed signal is a frequency-
modulated signal, i.e., s[n] = α exp (− jϕ [n]), with no variations in instantaneous
amplitude. Such signals are frequently encountered in radars. The t– f signature of
such de-chirped signals is a straight line parallel to the time axis in the t– f plane [29],
e.g., Fig. 2 illustrates how t– f representation of a non-stationary signal changes when
it is stationarized by de-chirping.

The uncorrelated white Gaussian noise remains uncorrelated with the same power
even after de-chirping, i.e.,

E[w̃∗[n]w̃[n + l]] = e j2π(θ(n+l)−θ(n))E[w∗[n]w[n + l]] = σ 2δ(l). (8)

Now the N × 1 vector y = [y [1] , y [2] , . . . , y [N ]]T contains stationary version of
non-stationary signals in vector x. The detection problem becomes

H1 :y = s̃ + w̃

H0 :y = w̃,
(9)
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Fig. 2 Transformation of a non-stationary frequency-modulated signal into a stationary signal by
de-chirping. a Time–frequency representation of non-stationary quadratic chirp. b Time–frequency rep-
resentation of a stationarized signal

where s̃ = [
s̃ [1] , s̃ [2] , . . . , s̃ [N ]

]
and w̃ = [

w̃ [1] , w̃ [2] , . . . , w̃ [N ]
]
. The covari-

ance matrices of y and s̃ are given as:

�y = E[y(n)yT(n)]
�s = E[s̃(n)s̃T(n)]
�w = E[w̃(n)w̃T(n)].

These two covariance matrices �y and �s can be related as:

�y = �s + �w, (10)

where �w = σ 2I as noise remains uncorrelated even after de-chirping. Off-diagonal
elements of signal covariance matrix �s capture temporal correlation between signals
that can be exploited as side information to detect the presence of the desired signal in
the observed signals. Exploiting the temporal correlation using covariance matrix as
a priori information can effectively circumvent the problem against the noise power
uncertainty faced by the traditional energy-based detection mechanisms.
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2.2.4 Generalized Likelihood Ratio Test

The obtained signals, y = [y [1] , y [2] , . . . , y [N ]]T, posses temporal correlation. In
order to exploit the temporal correlation jointly with the energy of the signals, we need
to solve the following generalized likelihood ratio test (GLRT) equation [4]:

Λ
[
y
] =

max
Σ1,y

f
(
y;Σ1,y

)

max
Σ0,y

f
(
y;Σ0,y

)
H1
≷
H0

λ, (11)

where f
(
y;Σ1,y

)
and f

(
y;Σ0,y

)
are the probability distributions (likelihood func-

tions)withΣ1,y andΣ0,y exhibiting temporal correlation present in y under hypothesis
H1 andH0, respectively. In (11), max

Σ1,y
f
(
y;Σ1,y

)
and max

Σ0,y
f
(
y;Σ0,y

)
are maximum

likelihood estimation-based solutions under hypothesisH1 andH0, respectively. Solv-
ing (11), we get

�
[
y
] = detΣ̂1,y

detΣ̂0,y

H1
≷
H0

λ1, (12)

where det is short for determinate, Σ̂1,y = E
[
yyH

]
, and Σ̂0,y ≈ diagΣ̂1,y [3]. The

traditional GLRT scheme would be similar to (12) but replacing Σ̂1,y with Σ̂1,x =
E

[
xxH

]
in (11). It is to be noted that x is the preprocessed version of y. We further

remark that GLRT is asymptotically an optimal detection method [2].

2.2.5 Covariance Absolute Value Detector

The covariance absolute value (CAV) detector is a ratio between the sum of absolute
value of elements of the sample covariance matrix Σ̂1,y and the sum of diagonal
elements of it. Let T1 be defined as sum of all elements of Σ̂1,y

T1(y) =
N∑

n=1

N∑

m=1

abs(λnm), (13)

where λnm represents the elements of covariance matrix. Let T2 be defined as sum of
all elements of Σ̂0,y.

T2(y) =
N∑

n=1

abs(λnn). (14)

If signal is not present, i.e., �s = 0, then all off-diagonal elements of Σy become
equal to zero. In such scenario, sum of all elements ofΣy would be equal to sum of its
diagonal elements, i.e., T1 = T2 [31]. In case if signal is present then all off-diagonal
elements of Σy would be nonzero, which will make T1 > T2 [31]. This implies we
can use the following test static for signal detection.
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T (y) = T1(y)
T2(y)

H1
≷
H0

γ. (15)

The traditional CAV detector scheme is similar to the proposed methods expressed in
Eq. (15). For original time-domain detector, the covariance matrix is estimated from
original time-domain signal, whereas the proposed method uses de-chirped signal,
i.e., Σ̂1,y has replaced Σ̂1,x = E

[
xxH

]
.

2.3 Performance Comparison

Let us consider a non-stationary signal defined as:

s = e2π j (an+bn3), (16)

where a = 0.5 and b = 1.2207e − 05. The given signal is corrupted with white
Gaussian noise with uncertain noise power. The uncertain noise power is generated
as:

σ 2
un ∼ U

(
σ 2

αnu
, αnuσ

2
)

, (17)

where αnu ≥ 1 and αnu = 1 means no noise uncertainty [25]. In this study, we have
assumed αnu = 2. It is to be noted that σ 2 is mean noise power of σ 2

un . Such an
uncertainty in the noise power knowledge deteriorates the performance of detection
schemes. In the presence of such an uncertainty, the performance of the proposed
t– f signal detection techniques is compared with original time-domain covariance
methods [31], ridge energy detector [22], t– f correlator [20] and energy detector using
receiver operating characteristic (ROC) curve analysis, whereas the energy detector is
formulated as:

TEnergy (x) = 1

N

N∑

n=1

x2 (n)
H1
≷
H0

γ. (18)

The ROC curve obtained using GLRT and CAV detectors are shown in Figs. 3 and
4, respectively. It can be observed that the proposed schemes perform better than the
traditional schemes. Areas under each ROC curve (AUCs) for these two approaches
are given in Table 1. Note that the AUC is always between 0.5 (worst) and 1.0 (best).
It is because the worst ROC curve lies along the diagonal and it has an area of 0.5.
The best ROC curve has an area of 1. All of the above experimental results indicate
that the proposed signal detection method outperforms the conventional schemes.

In order to further analyze the proposed schemes in comparison with the traditional
schemes we plot the probability of detection at a false alarm rate of 1% versus SNR.
These plots are shown in Fig. 5 for GLRT and in Fig. 6 for CAV detectors. Once
again we can clearly see that the proposed methods achieve better performance as
compared to traditional methods. This improved performance is due to conversion of
a non-stationary signal into stationary one by the use of t– f processing thus allowing
us to exploit temporal correlation in addition to signal energy. These results are plotted
for the noise power uncertainty value αnu = 2.
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Fig. 3 Performance comparison between t– f generalized likelihood ratio test versus time-domain gener-
alized likelihood test [3,4], t– f ridge detector [22], t– f correlator [20] and energy detector Eq. (18). Noise
power uncertainty parameter αnu = 2

Fig. 4 Performance comparison between t– f covariance absolute value detector versus time-domain
covariance absolute value detector [31], t– f ridge detector [22], t– f correlator [20] and energy detec-
tor Eq. (18). Noise power uncertainty parameter αnu = 2

Table 1 Area under ROC curve of t– f detectors versus conventional detection methods

t– f CAV CAV [31] t– f GLRT GLRT [3] Energy detector Ridge energy detector [22]

0.9744 0.9392 0.9701 0.9436 0.7343 0.8856

Noise power uncertainty parameter αnu = 2

3 Extension to Multi-sensor Detection Scheme

In this section we consider the multi-sensor detector at the receiver side to exploit
the spatial correlation in addition to temporal correlation [3]. Earlier signal detection
methods given in [3] assume stationary signals and are expected to under-perform
for the detection of non-stationary signals. In this study, we extend these conven-
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Fig. 5 Performance comparison between t– f GLRT versus traditional GLRT [3,4]. Noise power uncer-
tainty parameter αnu = 2

Fig. 6 Performance comparison between t– f CAV detector versus traditional CAV detector [31]. Noise
power uncertainty parameter αnu = 2

tional multi-sensor signal detection approaches to non-stationary signals by using t– f
processing. The proposed multi-sensor schemes are similar to mono-sensor signal
detection schemes in a way that the key step of signal stationarization is common in
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both methods. However, in order to exploit spatial diversity for multi-sensor record-
ings, the following additional steps are performed.

– Spatial averaging of TFDs computed at each sensor is performed to overall SNR,
thus improving the accuracy of IF estimate.

– Spatiotemporal GLRT and spatiotemporal CAV detectors are employed instead of
temporal GLRT and temporal CAV to exploit both spatial diversity and temporal
diversity.

3.1 Multi-sensor Signal Model

Lets us assume thatM sensors are available to detect the non-stationary signal received
from the source. When the signal is present then at the mth sensor, the received signal
vector can be represented as: xm = sm +wm , whereas in the absence of source signal,
we have xm = wm . Hence, the signal model at the mth sensor of the receiver can be
written as:

H1 :xm = sm + wm

H0 :xm = wm,
(19)

where xm = [xm [1] , xm [1] , . . . , xm [N ] , ] contains N samples of the observed sig-
nals at the mth sensor, sm = [sm [1] , sm [1] , . . . , sm [N ] , ] contains noiseless signal,
and wm = [wm [1] , wm [1] , . . . , wm [N ] , ] contains N samples of Gaussian noise.

Now the goal is to exploit both spatial and temporal correlations in the detection
process. Therefore, we need to perform the t– f processing to extract the embedded
spatiotemporal correlation.

3.2 Time–Frequency Processing

The process of stationarization for multi-sensor detection scheme is illustrated in
Fig. 7. Just like in the mono-sensor case, quadratic TFD is computed for the signal
acquired at the mth sensor as:

ρm [n, k] =
∑

l

G [n, l] ∗
n
xm [n + l] x∗

m [n − l] e− 2π jlk
N , (20)

where m = 1, 2, . . . , M . These TFDs are then spatially averaged as

ρavg [n, k] = 1

M

M∑

m=1

ρm [n, k] . (21)

The ρavg [n, k] is now a single TFD . Using ρavg [n, k], the IF f (n) and phase ϕ̂ (n) of
the source signal can be estimated following the process given in Sect. 2.2. Once we
have the estimate of instantaneous phase, the next step is to de-chirp the given signal
using the estimated phase ϕ̂ (n). The de-chirping process at the mth sensor in the case
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Fig. 7 Illustration of the process of stationarization of the received signals at multi-sensor receiver

of hypothesis H1 can be represented as:

ym [n] = xm [n] exp
(− j ϕ̂ (n)

)

= s̃m [n] + w̃m [n] .
(22)

The N samples of the stationary version of signals received at M sensors are stacked
in M × N matrix Y as:

Y =

⎡

⎢⎢⎢⎣

y1
y2
...

yM

⎤

⎥⎥⎥⎦ , (23)

where ym = [ym [1] , ym [1] , . . . , ym [N ] , ] is the stationary version of xm . By using
vec operator we find z = vec(Y) as:

z = [[
y1 [1] y2 [1] · · · yM [1]

]
, . . . ,

[
y1 [N ] y2 [N ] . . . yM [N ]

]]T
. (24)

The NM × 1 vector z is used to design detection scheme using spatiotemporal corre-
lation in addition to the energy of the received signals.

3.3 Spatiotemporal GLRT

In this section we exploit the spatiotemporal correlation for the detection problem
introduced in Eq. (19) by adopting the GLRT approach given in (11). In this case the
GLRT scheme can be formulated as:
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ΛST (z) =
max
�z,1

fz
(
z;�z,1

)

max
�z,0

fz
(
z;�z,0

) ≷H1
H0

γ, (25)

where fz
(
z,�z,0

)
and fz

(
z;�z,1

)
are the likelihood functions under hypothesis H0

and H1, respectively. Solving (25), we can get the final expression of the GLRT as:

ΛST (z) =
∣∣∣∣∣
�̂z,1

�̂z,0

∣∣∣∣∣ ≷H0
H1

γ, (26)

where �̂z,1 = E
[
zzH

]
and �̂z,0 = diag

[
�̂z,1

]
. Note that the detection scheme in

(26) assumes no structure for the covariance matrix, except that the covariance matrix
is symmetric.

3.4 Spatiotemporal CAV Detector

In order to use the detection scheme (25), a critical requirement is that the sample
covariance matrices �̂z,1 must be non-singular and positive definite; otherwise, (26)
degenerates [16] [17]. Taking into account this fact the CAV detector is useful to avoid
such problems. As we have seen above that the CAV detector is a ratio between the
sum of elements of the sample covariance matrix and the sum of diagonal elements
of that matrix as:

ΛCAV (z) =
∑NM

i
∑NM

j abs
(
λi j

)

∑NM
i abs (λi i )

≶H1
H0

γ, (27)

here abs (.) is for absolute value, whereas λi j is the i, j th element of sample covariance
matrix �̂z,1. Test statistics (27) is not optimal like GLRT, but has robustness against
the high-dimensionality effects in small sample support.

3.5 Experimental Results

Let us compare the performance of the traditional time-domain detectors exploiting
both spatiotemporal correlations [3] with the proposed t– f -based detectors. In order
to numerically analyze these schemes, we assume that the following signal is received
by m = 3 sensors.

s = e2π j (an+bn3), (28)

where a = 0.5 and b = 1.2207e − 05. The given signal is corrupted with white
Gaussian noise with uncertain noise power, where noise power uncertainty is mod-
eled using Eq. (17). ROC curves illustrating the performance comparison between
traditional multi-sensor spatiotemporal detectors based on GLRT and CAV [3] and
their t– f counterparts are shown in Figs. 8 and 9. Table 2 shows the area under the
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Fig. 8 Performance comparisonwithROCbetween the proposed t– f spatiotemporalGLRTdetector versus
traditional spatiotemporal GLRT detector [3]. Noise power uncertainty parameter αnu = 2

Fig. 9 Performance comparison with ROC curve between the proposed t– f spatiotemporal CAV detector
versus traditional spatiotemporal CAV detector [3]. Noise power uncertainty parameter αnu = 2

ROC curves of the two detection schemes. Experimental results indicate that the t–
f detection scheme performs better than the corresponding traditional time-domain
detector.
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Table 2 Area under ROC curve of the proposed t– f detectors (t– f CAV detector; t– f GLRT detector
versus conventional CAV detector [3] and GLRT detector [3])

t– f CAV detector CAV detector [3] t– f GLRT detector GLRT detector [3]

0.9952 0.9653 0.9946 0.9593

Noise power uncertainty parameter αnu = 2

Fig. 10 Performance comparison between the proposed t– f -based spatiotemporal GLRT detector versus
traditional spatiotemporal GLRT detector [3] using probability of detection at a false alarm rate of 1%
plotted for different SNRs. Noise power uncertainty parameter αnu = 2

For further analysis of the above-mentioned schemes we plot probability of detec-
tion at a false alarm rate of 1% versus SNR. To compare the performance of the
proposed t– f schemes with the traditional schemes, we perform ROC analysis. The
ROC curves for GLRT- and CAV-based detectors are shown in Figs. 10 and 11, respec-
tively. These plots confirm the superiority of the proposed schemes over the traditional
schemes because of their ability to exploit both spatial and temporal correlations,
whereas the time-domain approach fails to exploit temporal correlation due to non-
stationary characteristics of frequency-modulated signals.

Furthermore, we can also observe that in multi-sensor and mono-sensor cases,
CAV detectors (t– f and time domain) perform similar to GLRT detectors (t– f and
time domain) as both exploit correlations in addition to energy of the received signals
though, asymptotically, GLRT is proven to outperform the CAV detector [3].
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Fig. 11 Performance comparison between the proposed t– f spatiotemporalCAVdetector versus traditional
spatiotemporalCAVdetector [3] using probability of detection at a false alarm rate of 1%plotted for different
SNRs. Noise power uncertainty parameter αnu = 2

4 Conclusion

A t– f approach to signal detection has been developed for both mono-sensor and
multi-sensor recordings. The proposed approach uses instantaneous frequency esti-
mation and de-chirping procedure to remove frequency modulation, thus resulting
in temporally correlated stationary signal. Experimental results demonstrate the
superiority of the proposed method over existing techniques such as time-domain
covariance-based signal detection method and energy detector. The proposed method
has been developed aiming at the scenarios when there is an uncertainty in the noise
power. The improvement in performance comes at the expense of increased compu-
tational cost of the proposed algorithm that requires the additional computations for
obtaining a QTFD. The computational cost of computing a QTFD is O(K N 2logN ),
where N is number of samples in a given signal and K is number of sensors employed.
The proposed method has been developed for mono-component signals. However, it
can be applied to multi-component signals as well. For multi-component signals, the
method would require the IF estimation of the strongest component followed by de-
chirping. The IF of the strongest component can be estimated by robust IF estimation
algorithm given in [24]. This topic will be further explored in a future study.
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