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Abstract In this paper, we introduce the quaternion Fourier number transform
(QFNT), which corresponds to a quaternionic version of the well-known number-
theoretic transform.We derive several theoretical results necessary to define theQFNT
and investigate its main properties. Differently from other quaternion transforms,
which are defined over Hamilton’s quaternions, the QFNT requires considering a
quaternion algebra over a finite field. Thus, its computation involves integer arithmetic
only, avoiding truncation and rounding-off errors. We give an illustrative example
regarding the application of the QFNT to digital color image processing.

Keywords Number-theoretic transform ·Quaternion Fourier transform ·Generalized
quaternions · Image processing

1 Introduction

Number-theoretic transforms (NTT) have been widely investigated and employed in
several application scenarios. In the 1970s, such transforms were presented as an
alternative way for efficiently computing error-free convolutions [35,36,39,41]. At
that time, this possibility was of fundamental importance, since the available hardware
could only work with finite precision arithmetic. In recent years, NTT have been used
mainly in scenarios related to information security, which include, for instance, image
encryption,watermarking and signal processing in the encrypted domain [6,25,31,40].
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Usually, an NTT is defined as a Fourier-like transform, where the complex N th root
of unity used as the discrete Fourier transform (DFT) kernel is replaced by an N th
root of unity in a finite algebraic structure [4]. However, other types of NTT have been
defined; we could mention, for example, cosine, sine, wavelet and Hilbert number
transforms, which are, in some sense, analogous to complex- and real-valued discrete
transforms with the corresponding nomenclature [11,17,24]. Generalizations of NTT
have also been proposed; they include, for example, fractional number-theoretic trans-
forms, which are analogous to complex-valued fractional Fourier transforms [42–44]
and consist in computing a rational power of the corresponding ordinary NTT matrix
operator [22,26,33].

In this paper, we introduce a quaternion NTT, which is referred to as quaternion
Fourier number transform (QFNT). The definition of the QFNT is motivated by the
increasing interest in mathematical tools and applications related to hypercomplex
signal processing; in recent works, one has been proposed other new quaternion
transforms [12,38], algorithms concerning quaternion adaptive filters in the fre-
quency domain [30], neural networks with quaternionic neurons [18,28] and several
quaternion-based techniques for color image processing [3,20,21,45], just to mention
a few.

The QFNT is a kind of number-theoretic counterpart of the (discrete) quaternion
Fourier transform (QFT) [9,10]. However, in order to obtain a consistent definition,
several peculiarities of the algebraic structures where one desires to establish the trans-
form have to be considered. In particular, instead of consideringHamilton quaternions,
one has to consider generalized quaternions [19,34]. We had to develop some new
results regarding generalized quaternions over finite fields, such as those related to the
multiplicative order of these numbers; these results have direct connection with the
existence and the invertibility of the QFNT. At any case, as we demonstrate throughout
the paper, some properties of the new transform are, in some sense, equivalent to those
of the QFT.

Differently from theQFT, the computationof theQFNTrequiresmodular arithmetic
only. This allows to apply this transform to a digital image, for example, without the
need of dealing with non-integer numbers and, consequently, avoiding rounding-off.
Depending on the field where the QFNT is established, it may still be possible to
perform the multiplications necessary to its calculation by means of additions and
bit-shift operations [4]; this makes the new transform attractive under the aspect of
computational complexity, when compared to the QFT, and suggests that the algebraic
structure where it is defined can be used as a surrogate field to perform error-free
hypercomplex signal processing. Although this paper is focused on the definition of
the QFNT and the investigation of its main properties, we compute, with an illustrative
purpose, the QFNT of color images. Preliminary experiments suggest that the QFNT
can be used to hide the statistical behavior of an image. This result is interesting from
the cryptographic point of view and could not be achieved by using a QFT based on
Hamilton quaternions.

This paper is organized as follows. In Sect. 2, we review some important concepts
related to quaternions and ordinary number-theoretic transforms; in particular, we give
a notion of what the Euler’s formula for quaternions over a finite field should be. The
quaternion Fourier number transform is defined in Sect. 3, and its properties are given
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in Sect. 4. In Sect. 5, we describe some potential applications for theQFNT;we explain
how to compute the QFNT of a color image and provide some simulation results. The
main concluding remarks of the paper are given in Sect. 6.

2 Generalized Quaternions

In general, given a field F, whose characteristic is different from 2, and α, β ∈ F, one

can define a quaternion algebra denoted byA =
(

α,β
F

)
, where the parameters i and j

are generators satisfying

i2 = α, j2 = β, i j = − j i. (1)

One also defines k := i j ∈ A, such that k2 = (i j)(i j) = −i2 j2 = −αβ ∈ F, and
ik = −ki = α j , k j = − jk = βi . Consequently, the elements i, j, k are anticom-

mutative. If F = R and α = β = −1, the algebra
(−1,−1

R

)
corresponds to (usual)

Hamilton’s quaternions, which are denoted byH. An algebra
(

α,β
F

)
over F is a direct

generalization of H [19,34].
It can be shown that the set {1, i, j, k} is a F-basis forA and, therefore, dimFA = 4.

Additionally, if F is a finite field, differently from H, which is a division ring,
(

α,β
F

)

is isomophic to M2(F), an algebra of 2 × 2 matrices whose entries lie in F [19,34].

This is related to the fact that, even if q ∈
(

α,β
F

)
and q �= 0, the norm N (q) of q

may equal zero. More precisely, if q = a + bi + cj + d and its conjugate is given by

q∗ = a − bi − cj − d, one may define its norm as the mapN :
(

α,β
F

)
→ F such that

N (q) = q∗q. Since

N (q) = q∗q = qq∗ = a2 − αb2 − βc2 + αβd2,

if F is a finite field, N (q) = 0 does not imply q = 0. From this point forward,
we consider the case in which F = Fp is a prime finite field and α = β = −1 ≡
p − 1 (mod p). The mentioned isomorphism can then be explicited by mapping, for
instance, i to

[
i 0
0 −i

]

and j to

[
0 1

−1 0

]
.

Consequently, k := i j = j i is mapped to

[
0 i
i 0

]
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and q = a + bi + cj + dk is mapped to

Q =
[

a + bi c + di
−c + di a − bi

]
. (2)

We identifyQ in (2) as the matrix form of the generalized quaternion q. Such a matrix
form is considered in several developments made in future sections of this paper. As
we will show, this makes easier to demonstrate some theoretical results.

It is interesting to note that, although
(

α,β
Fp

)
is isomorphic to M2(Fp), if one writes

Q as in (2) and p ≡ 3 (mod 4), the elements of such a matrix will lie in a structure
isomorphic to Fp2 , since i will be a quadratic nonresidue over Fp [5]. More precisely,
the elements of Q can be viewed as Gaussian integers over Fp for i2 = α ≡ p −
1 (mod p). The general definition of these numbers is given as follows [7,24].

Definition 1 The set of Gaussian integers over Fp is the set Ip := {c+di, c, d ∈ Fp},
where i2 is a quadratic nonresidue over Fp.

The elements ζ = c+di of the “complex” structure Ip have a “real” part c = R{ζ }
and an “imaginary” part d = I{ζ }. In fact, if p ≡ 3 (mod 4) and i2 = α ≡
p−1 (mod p), it is possible to establish some interesting analogies between elements
of Ip and usual complex numbers [7,24]. On the other hand, if p ≡ 1 (mod 4),
−1 ≡ p−1(mod p) is a quadratic residue overFp and another i has to be selected if one
desires elements c+di to remain “complex.”Extending this terminology, a generalized
quaternion q = a+bi +cj +dk over Fp can be viewed as a “hypercomplex” number,
whose “real” part is R{q} = a and “imaginary” part is I{q} = bi + cj + dk. Since
the latter has three components, it can also be referred to as the vector part of q, while
the former can be referred to as its scalar part [9].

Apparently, operations and properties specifically related to quaternions over finite
fields have not been clearly addressed in the literature. At any case, some of these
operations and properties are mere extensions of what one has for Hamilton’s quater-
nions. This includes, for example, addition and products among quaternions, which
can be carried out in a standard way, but considering the use of the appropriate modu-
lar arithmetic when adding, multiplying or taking the additive symmetric of elements
lying in Fp. Naturally, we also have to take into account the fact that α and β do not
necessarily equal −1.

If a = 0, so that q = bi + cj + d, q is a pure quaternion over Fp. The modulus of
a generalized quaternion is given by |q| = √N (q) = √

q∗q . A quaternion q over Fp

is unitary if |q| = 1. If |q| �= 0, its inverse exists, being given by

q−1 = q∗

|q|2

and satisfying qq−1 = q−1q = 1. In the last equation, the term 1
|q|2 = (|q|2)−1 is the

multiplicative inverse of |q|2 modulo p. The symbol “(mod p)” is omitted in order
to simplify the notation. The operations and properties related to quaternions over Fp

can also be carried out and verified by considering the matrix form of q.
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The extension of the Euler’s formula to the case of quaternions over Fp should
require more creativity, when compared to the analogies mentioned above. Basically,
what is expected is to be able to identify a quaternion over Fp employing its norm and
the arc associated with this element or, more specifically, the cosine and sine functions
related to this arc. We believe that such functions can be defined borrowing notions
of trigonometry over field fields [7,24]. Thus, fixing a generalized quaternion q and
a pure unitary quaternion μ over Fp, the cosine and the sine of the arc related to qx

would be computed modulo p, respectively, as

cosq(x) = qx + q−x

2

and

sinq(x) = qx − q−x

2μ
,

where x = 0, 1, . . . , ord(q) and ord(q) denotes the multiplicative order of q, i. e., the
least positive integer such that qord(q) = 1; several aspects related to the multiplicative
order of a quaternion over Fp are discussed in the next section. Thus, one would have

qx = cosq(x) + μ sinq(x).

At this moment, such definitions are only speculations, which may be clarified in a
future work. Such a clarification should elucidate, for instance, which criteria have
to be used to choose μ and which other properties may come from the restriction of
q being unitary. At any case, we suppose that the establishment of cosines and sines
associated with generalized quaternions over Fp gives support to the definition of a
whole trigonometry in this scenario, allowing the definition of transforms similar to
those introduced in [24].

2.1 The Fourier Number Transform

The ordinary Fourier number transform (FNT) is defined as follows [4].

Definition 2 Let ω ∈ Fp be an element of multiplicative order ord(ω) = N . The
Fourier number transform of the vector x = (x(n)) ∈ F

N
p is the vector X = (X (r)) ∈

F
N
p with components given by

X (r) = 1√
N

N−1∑
n=0

x(n)ωrn . (3)

The invertibility of the FNT is provided by the following lemma.
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Lemma 1 An element ω ∈ Fp of multiplicative order ord(ω) = N satisfies

N−1∑
m=0

ωrm =
{
N , if r ≡ 0 (mod N ),

0, otherwise.
(4)

Proof The expression given in Lemma 1 is trivially true when r ≡ 0 (mod N ) since
each term on the summation is unity. Otherwise, we use the relation

(
N−1∑
m=0

ωrm

)
(1 − ωr ) = 1 − ωNr = 0,

from which (4) follows since (1 − ωr ) �= 0. �	
Using Lemma 1, it can be shown that the components of a vector x can be recovered

from the components of its FNT as

x(n) = 1√
N

N−1∑
r=0

X (r)ω−rn .

3 The Quaternion Fourier Number Transform

3.1 Multiplicative Order of Generalized Quaternions

In this section, we derive some results regarding the multiplicative order of general-
ized quaternions over Fp. This plays an important role in the demonstration of the
invertibility of the quaternion Fourier number transform. We consider the matrix form

Q in (2) of q ∈
(−1,−1

Fp

)
. The multiplicative order of Q, which obviously coincides

with that of q, is the least positive integer ord(Q) such thatQord(Q) = I, where I is the
2 × 2 identity matrix. We start by computing the characteristic polynomial of Q as

rQ(λ) = det(Q − λI) (5)

= λ2 − 2aλ + a2 + b2 + c2 + d2. (6)

The roots of rQ(λ), which correspond to the eigenvalues of Q, are then given by

λ1 = a +
√

−b2 − c2 − d2 (7)

and
λ2 = a −

√
−b2 − c2 − d2. (8)

Excluding the cases where at least one eigenvalue is zero (Q would not be invertible
and, therefore, its multiplicative order would not be defined) and assuming that p ≡
3 (mod 4), the following cases have to be considered.
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– Case 1: b2 + c2 + d2 = 0. In this case, one has λ1 = λ2 = a ∈ Fp. The following
subcases have to be considered.
– Subcase 1.1: b = 0 or c = 0 or d = 0. The condition determining the current
subcase togetherwith the condition determining case 1 implies b = c = d = 0.
Thus, Q reduces to a matrix in the form

Q =
[
a 0
0 a

]
, (9)

and, therefore, one has ord(Q) = ord(a).
– Subcase 1.2: b �= 0 or c �= 0 or d �= 0. The condition determining the current
subcase together with the condition determining case 1 implies b �= 0, c �= 0
and d �= 0. Thus, denoting by v = [v(0) v(1)] an eigenvector of Q, one may
write QvT = avT , which produces the system of equations

{
biv(0) + (c + di)v(1) = 0
(−c + di)v(0) − biv(1) = 0.

(10)

From (10), one obtains the relationship

v(0) = bi

−c + di
v(1), (11)

which indicates that the geometric multiplicity of λ1 = λ2 = a is mg(a) = 1.
Therefore, Q is not diagonalizable and admits the Jordan normal form [37]

JQ =
[
a 1
0 a

]
. (12)

Computing JQm , for m = 2, 3, 4, . . ., one observes that, in general, one has

JQm =
[
am mam−1

0 am

]
. (13)

Therefore, JQm = I only if am ≡ 1 (mod p), that is, if m is a multiple
of ord(a), and if mam−1 ≡ 0 (mod p), that is, if m ≡ 0 (mod p). Thus,
ord(Q) = ord(JQ) = lcm(ord(a), p).

– Case 2: b2 + c2 + d2 �= 0. In this case,Q has two distinct eigenvalues and admits
the diagonal form

�Q =
[

λ1 0
0 λ2

]
. (14)

Thus, ord(Q) = ord(�Q) = lcm(λ1, λ2).

Cases 1 and 2 just analyzed support the following lemma.
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Lemma 2 A generalized quaternion q = a + bi + cj + dk over Fp, with associated
matrix Q in the form given in (2) and multiplicative order ord(q) = ord(Q) = N,
satisfies

N−1∑
m=0

qrm =
{
N , N �≡ 0 (mod p), if r ≡ 0 (mod N ),

0, otherwise,
(15)

if, and only if

(i) a �= 0 and b = c = d = 0, or
(ii) b2 + c2 + d2 �= 0 and ord(a ± √−b2 − c2 − d2) = N.

Proof Let SN (r) = ∑N−1
m=0 Q

rm . If condition (i) is met, Q is of the type analyzed in
subcase 1.1 (see the first part of this section), that is, ord(Q) = N = ord(a). Therefore,
N |(p − 1); if condition (ii) is met, Q is of the type analyzed in case 2, with distinct
eigenvalues having the same order. Therefore, N |(p2 − 1). Thus, if Q satisfies (i) or
(ii), one has ord(Q) = N �≡ 0 (mod p), and, therefore,

SN (0) =
N−1∑
m=0

(
Q0

)m =
N−1∑
m=0

Im =
N−1∑
m=0

I =
[
N 0
0 N

]

and
∑N−1

m=0 q
rm = N . For r �≡ 0 (mod N ), considering Lemma 1, if Q satisfies (i),

one has

SN (r) =
[∑N−1

m=0 a
rm 0

0
∑N−1

m=0 a
rm

]
=

[
0 0
0 0

]

and, if Q satisfies (ii), one has

SN (r) = V
[∑N−1

m=0 λrm1 0
0

∑N−1
m=0 λrm2

]
V−1

= V
[
0 0
0 0

]
V−1 =

[
0 0
0 0

]
,

whichmeans
∑N−1

m=0 q
rm = 0; the eigenvalues ofQ areλ1 = a+√−b2 − c2 − d2 and

λ2 = a − √−b2 − c2 − d2, and V is a matrix whose columns are the corresponding
eigenvectors.

On the other hand, if Q does not satisfy (i) or (ii), it falls in subcase 1.2 or in case
2, with eigenvalues having distinct multiplicative orders. IfQ is as in subcase 1.2, one
has N = ord(Q)|p and, therefore, SN (0) = 0 and

∑N−1
m=0 q

rm = 0; this violates what
is established in the first part of (15). If Q is as in case 2, with ord(λ1) �= ord(λ2),
one may assume, without loss of generality, that ord(λ1) < ord(λ2) ≤ ord(Q) = N .
Thus, one has
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SN (ord(λ1)) = V

[∑N−1
m=0 λ

ord(λ1)m
1 0
0

∑N−1
m=0 λ

ord(λ1)m
2

]
V−1

= V
[
N 0
0 0

]
V−1 �= 0

and
∑N−1

m=0 q
rm = 0, which violates what is established in the second part of (15).

If p ≡ 1 (mod 4), similar conclusions are obtained for cases 1 and 2 analyzed in
the first part of this section. Details regarding this possibility are shown in Appendix.
At any rate, Lemma 2 remains valid.

3.2 Definition of the QFNT

In what follows, we introduce a definition for the quaternion Fourier number transform
and determine the respective inverse transform. The transform corresponds to a finite
field counterpart of the discrete quaternion Fourier transform [9,10]. However, the
establishment of the QFNT depends on the development carried out in Sect. 3.1;
in particular, its invertibility depends on conditions given in Lemma 2, which are
completely dissociated from the requirements for inverting the Fourier transform over
Hamilton’s quaternions.

Definition 3 Letq be a generalized quaternion overFp , which hasmultiplicative order
ord(q) = N and satisfies conditions (15). The (right) quaternion Fourier number
transform of a vector x = (x(n)), n = 0, 1, . . . , N − 1, whose components are
generalized quaternions over Fp, is the vector XR = (X R(r)), r = 0, 1, . . . , N − 1,
with components lying in the same structure and given by

X R(r) =
N−1∑
n=0

x(n)qrn . (16)

Theorem 1 Let q be a generalized quaternion over Fp, which has multiplicative
order ord(q) = N and satisfies conditions (15). The inverse (right) quaternion Fourier
number transform of a vectorXR = (X R(r)), r = 0, 1, . . . , N−1, whose components
are generalized quaternions over Fp, is the vector x = (x(n)), n = 0, 1, . . . , N − 1,
with components lying in the same structure and given by

x(n) = 1

N

N−1∑
r=0

X R(r)q−rn . (17)

Proof In (17), we replace X R(r) by (16) with n changed to m and obtain
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x(n) = 1

N

N−1∑
r=0

(
N−1∑
m=0

x(m)qrm
)
q−rn

= 1

N

N−1∑
m=0

x(m)

(
N−1∑
r=0

qr(m−n)

)
.

According to Lemma 1, if m �= n in the first summation of the last equation, the
second summation in the same equation gives zero; on the other hand, if m = n, the
second summation gives N . Therefore, the last equation reduces to

x(n) = 1

N
x(n)N = x(n).

A right QFNT pair is denoted by

x
QFNTR←→ XR .

A left QFNT can also be defined, if the positions of the transform kernel and the vector
component are permuted in (16) and (17). In this case, the QFNT vector would be
denoted byXL = (XL(r)), r = 0, 1, . . . , N −1 and the QFNT pair would be denoted
by

x
QFNTL←→ XL .

4 Properties of the QFNT

In this section, we develop some properties of the quaternion Fourier number trans-
form. Similarly to what happens with the ordinary Fourier number transform with
respect to the discrete Fourier transform, such properties hold some analogy with
those of the quaternion discrete Fourier transform. In this sense, we highlight the
cyclic convolution property, which allows us to suppose that, also in the quaternionic
context, it is possible to perform filtering in the transform domain employing modular
arithmetic operations only, conveniently adapted to generalized quaternions over finite
fields.

4.1 Linearity

If

x1
QFNTR←→ X1

and

x2
QFNTR←→ X2,
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then

c1x1 + c2
QFNTR←→ c1X1 + c2X2,

c1, c2 ∈ Fp. The demonstration of this result is trivial, being omitted in this work.

4.2 Cyclic Convolution

With the purpose of developing the QFNT cyclic convolution property, one considers
the right definition of this transform. Additionally, in what follows, the indices of all
vector components are taken modulo N . The result of the N -point cyclic convolution
between x = (x(n)) and h = (h(n)) is denoted by y = x ◦N h, y = (y(n)), n =
0, 1, . . . , N − 1, and given by

y(n) = x ◦N h(n) =
N−1∑
m=0

x(n − m)h(m).

Weremark that, due to the noncommutativity of the product between the components of
x and h, the last equation corresponds to a kind of right convolution; a left convolution
could also be considered. The cyclic convolution property is given in the following
theorem.

Theorem 2 Let x = (x(n)) and h = (h(n)), n = 0, 1, . . . , N − 1, be vectors whose
components are generalized quaternions over Fp. The QFNT of the N-point cyclic
convolution y between x and h is given by

Y R(k) = HR(r)X R
a (r) + i H R(r)X R

b (r) + j H R(r)X R
c (r) + kH R(r)X R

d (r). (18)

Proof Using the QFNT definition, one may write

Y R(r) =
N−1∑
n=0

[x ◦N h(n)] qrn =
N−1∑
n=0

[
N−1∑
m=0

x(n − m)h(m)

]
qrn . (19)

In the last equation, using the substitution n′ = n − m, one obtains

Y R(r) =
N−1∑
n′=0

[
N−1∑
m=0

x(n′)h(m)

]
qr(n

′+m) (20)

=
N−1∑
n′=0

x(n′)
[
N−1∑
m=0

h(m)qrm
]
qrn

′
(21)

=
N−1∑
n′=0

x(n′)HR(r)qrn
′
. (22)
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Writing x(n′) = xa(n′) + xb(n′)i + xc(n′) j + xd(n′)k, the last equation becomes

Y R(r) =
N−1∑
n′=0

[
xa(n

′) + xb(n
′)i + xc(n

′) j + xd(n
′)k

]
HR(r)qrn

′
(23)

= HR(r)
N−1∑
n′=0

xa(n
′)qrn′ + i H R(r)

N−1∑
n′=0

xb(n
′)qrn′

(24)

+ j H R(r)
N−1∑
n′=0

xc(n
′)qrn′ + kH R(r)

N−1∑
n′=0

xd(n
′)qrn′

(25)

= HR(r)X R
a (r) + i H R(r)X R

b (r) + j H R(r)X R
c (r) + kH R(r)X R

d (r). (26)

If (26) has “imaginary” part equal to zero, it reduces to

Y R(r) = HR(r)X R(r),

which coincides with the result of the cyclic convolution theorem for the ordinary
FNT. Similar relations are obtained if the left QFNT is considered.

4.3 Cyclic Shift in the Original Domain

The QFNT of the cyclically shifted sequence x ′(n) = x(n + n0) is given by

X ′R(r) =
N−1∑
n=0

x ′(n)qrn =
N−1∑
n=0

x(n + n0)q
rn . (27)

Using the substitution n + n0 = n′ in the last equation, one obtains

X ′R(r) =
N−1∑
n′=0

x(n′)qr(n′−n0) =
N−1∑
n′=0

x(n′)qrn′
q−rn0 . (28)

Writing x(n′) = xa(n′) + xb(n′)i + xc(n′) j + xd(n′)k, the last equation becomes

X ′R(r) =
N−1∑
n′=0

[
xa(n

′) + xb(n
′)i + xc(n

′) j + xd(n
′)k

]
qrn

′
q−rn0 (29)

=q−rn0X R
a (r) + iq−rn0X R

b (r) + jq−rn0X R
c (r) + kq−rn0X R

d (r). (30)

Again, if X′R has “imaginary” part equal to zero, the obtained result coincides with
that obtained in the cyclic shift property of the ordinary FNT.
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4.4 Parseval Theorem

Theorem 3 Let x be a N-point vector of generalized quaternions over Fp, such that

x
QFNT R←→ XR and |q| = 1. Thus, the relationship

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
r=0

|X R(r)|2

holds.

Proof

N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

x(n)x∗(n) = 1

N

N−1∑
n=0

[
N−1∑
r=0

X R(r)q−rn

]
x∗(n) (31)

= 1

N

N−1∑
r=0

X R(r)
N−1∑
n=0

[
qrn

]∗
x∗(n) = 1

N

N−1∑
r=0

X R(r)
N−1∑
n=0

[
x(n)qrn

]∗

(32)

= 1

N

N−1∑
r=0

X R(r)
[
X R(r)

]∗ = 1

N

N−1∑
r=0

|X R(r)|2. (33)

�	

5 Color Image Processing Using the QFNT

In this section, we perform a preliminary discussion regarding potential applications
of the QFNT. We focus on the field of digital image processing, where the QFNT
allows the joint manipulation of up to four channels related to a color space. This
idea, which has been exploited in several recent investigations, runs counter to most
techniques devoted to digital image processing, which are applied to monochromatic
images (grayscale images, for example); when one desires to process color images,
normally, such techniques are independently applied to each color channel [13].

Employing quaternions, one maps in the coordinates of a quaternion the numerical
values related to each color channel of a pixel in a specific position of the image. If
an RGB (red, green, blue) image is considered, it is possible, for instance, to map
the numerical values of the red, the green and the blue layers of a pixel in the i , j
and k coefficients of the same quaternion, respectively. If a PNG (portable network
graphics) image is considered, besides the three RGB color channels, an additional
transparency layer can be applied; such a layer could be mapped in the “real” part of
the quaternions, which had be set to zero in the case of RGB images without an extra
transparency channel. More specifically, the pixel in the lth row and the cth column
of a PNG image can be represented as the quaternion
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T (l, c) + R(l, c)i + G(l, c) j + B(l, c)k,

where T (l, c), R(l, c),G(l, c) and B(l, c) denote, respectively, the values related to
transparency, red, blue and green layers of the referred pixel. Using such strategy, the
whole color image can be represented by a quaternion matrix, whose QFNT can be
computed.

Naturally, the application of aQFNT to an image requires a two-dimensional version
of such a transform. In fact, 2D-QFT has been extensively studied and applied in
scenarios related to image processing [1,2,9,14]. Most properties of such transforms
come from simple extensions of QFT properties to two dimensions. The expectation
is that a similar behavior be observed, considering the one- and the two-dimensional
versions of the QFNT. At this time, it is enough to observe that a 2D-QFNT of a
squared color image y with dimensions N × N pixels can be computed multiplying
the 1D-QFNT matrix and the corresponding row–column transposed matrix on the
left and on the right by yq , the quaternionic representation of y. In this manner, the
2D-QFNT is computed as

Yq = MQyqMQ
T , (34)

where MQ = (MQ(r, n)) = qrn , r, n = 0, 1, . . . , N − 1, is the 1D-QFNT matrix.
From the quaternionic matrix Yq , one obtains the transformed (color) image Y. The
inverse 2D-QFNT is computed replacing MQ by MQ

−1.
As a consequence of the possibility of computing the QFNT of color images, some

more specific applications can be glimpsed. The following examples can bementioned:

– Filtering of color images using filters whose coefficients are generalized quater-
nions over a finite field. It is reasonable to expect that such a kind of filtering be
processed in the 2D-QFNT domain using the cyclic convolution theorem adapted
to this transform (see Sect. 4.2) [15,29,30,32];

– Insertion / extraction of fragile watermarks. There are papers where watermarking
schemes based on number-theoretic transforms are proposed [6,40]. It may be
possible to use the QFNT to create similar schemes directly applicable to color
images;

– Encryption of color images. Recently, techniques for image encryption based on
NTT and, in particular, in fractional versions of such transforms have been pro-
posed [23,25,27]. This is made possible by the use of the fractional order as a
secret parameter that changes to each image block being processed. By introduc-
ing some kind of parametrization in the definition of the QFNT, a similar idea may
be proposed. Even if there is no parametrization, it is possible that the application
of the QFNT contributes to the robustness of image encryption schemes against
statistical attacks. This is illustrated in the following section.

5.1 An Illustrative Example

In this section, we present some illustrative results regarding the application of the
QFNT to color images. One defines a 2D-QFNT from an 1D-QFNT whose kernel
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Fig. 1 Original image: a red, b green and c blue layers

Fig. 2 Original image: a three color layers (without transparency layer), b transparency layer and c three
color layers (with transparency layer) (Color figure online)

is the quaternion q = 7 + 8i + 4 j + 8k over F257. The multiplicative order of q
is ord(q) = 128 and, therefore, a transform with N = 128 points is obtained. This
transform is then applied, according to our previous description, to the quaternionic
representation of a PNG image with dimensions 128 × 128, formed by three color
channels and one transparency layer.

In our computer experiments, we have considered the image whose color layers are
presented in Fig. 1. In Fig. 2a, we show the corresponding color image, without the
transparency layer, which is shown in Fig. 2b. In such a transparency layer, which acts
as a window “aligned” to the color layers, the closer to white a region is, more visible
the colors behind such a region will be; the closer to black a region is, less visible
the colors behind such a region will be. The final image, considering the action of the
transparency layer, is shown in Fig. 2c.

In Figs. 3 and 4, we present layers and images corresponding to those presented
in Figs. 1 and 2, but considering the transformed version of the original image. What
draws attention in the last figures is the noisy visual aspect, which suggests a degra-
dation in the content of the original layers and images. This aspect is reflected in
the histogram of each referred layer, as shown if Fig. 5. While the histograms of the
color and the transparency layers of the original image have arbitrary shapes, the same
histograms have predominantly uniform shapes in the transformed image. The appar-
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Fig. 3 Transformed image: a red, b green and c blue layers

Fig. 4 Transformed image: a three color layers (without transparency layer), b transparency layer and c
three color layers (with transparency layer) (Color figure online)

ent hiding of the original distribution of the pixel values of the image, caused by the
application of the QFNT, is a desirable phenomenon from the cryptographic point of
view.

Another interesting observation can be made by the computation of correlation
coefficients for layers of original and transformed images. This coefficient measures
the correlation among adjacent pixels of an image (the adjacency can be vertical,
horizontal or diagonal) and should be close to one for images that have not been
manipulated or artificially constructed; this is confirmed by the values exhibited in
the first part of Table 1. On the other hand, after transforming the image using the
QFNT, the obtained correlation coefficients have absolute values less then 0.05 always,
which indicates low dependency among the values assumed by adjacent pixels. Such
a behavior is also desirable from the cryptographic point of view. Other metrics such
as, for example, the normalized entropy could be computed in order to complement
the evaluation of the effects of the application of the QFNT on the statistical properties
of an image [25].

As we mentioned before, the simple application of the QFNT to an image does
not constitute a cryptographic scheme. It would be necessary the inclusion of some
key-dependent mechanism as well as steps to ensure the satisfaction of basic premises
in this scenario. At any case, considering the results presented in this section, the
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Fig. 5 Histograms: a red, b green, c blue and d transparency layers of original image; e red, f green, g
blue and h transparency layers of transformed image

QFNT can be viewed as a potential candidate to be part of image encryption schemes,
bringing the inherent possibility of processing in an aggregate way all layers of a
color image. If a non-quaternionic number transform is used (see, for example [25]
and [23]), this is not possible, that is, the layers of a color image must be separately
encrypted, as if they were independent monochromatic images. This may have impact
on the security of the scheme (a longer secret key may be required to ensure a certain
robustness against brute-force attacks, for example).

The possibilities discussed in this section may also be potentially exploited by
applying the QFNT to 3D objects, such as point clouds [16] and 3D medical data [8].
In this case, we should consider a three-dimensional QFNT, which can be defined by
extending the one-dimensional QFNT to three dimensions analogously to what was
previously done in this section for defining the 2D-QFNT; if one desires to transform
a 3D object with dimensions N1 × N2 × N3, for example, we have to choose three
quaternions with multiplicative orders N1, N2 and N3 in a given finite field and use
them as kernels of the QFNT applied in each direction. In another way, we can divide
the referred 3D object into N × N × N cubes in order to apply a 3D-QFNT defined by
employing a single quaternion of order N as kernel (this would be similar to perform
a block-based 2D image transformation). If the elements of the processed object are
characterized by up to four components or layers (an RGB color can be associatedwith
a point in a cloud, for instance), they can be represented by generalized quaternions
in a manner analogous to that employed to represent the pixels of a 2D color image.
In this way, in the 3D-QFNT domain, we can expect to obtain results similar to those
achieved in the 2D case. This suggests that the use of the QFNT to encrypt 3D objects
may also be feasible.
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Table 1 Correlation
coefficients of adjacent pixels in
the layers of the original image
(r ) and the transformed image
(r̃ ). The subscripts v, h and d are
related to vertical, horizontal and
diagonal adjacency, respectively

Red Green Blue Transp.

rv 0.9837 0.9937 0.9855 0.9700

rh 0.9576 0.9620 0.9394 0.9723

rd 0.9515 0.9589 0.9268 0.9487

r̃v 0.0061 − 0.0056 − 0.0238 − 0.0233

r̃h 0.0052 0.0325 0.0401 − 0.0048

r̃d 0.0086 0.0117 − 0.0244 0.0216

6 Concluding Remarks

In this paper, we conducted an investigation related to generalized quaternions over
finite fields, identifying existing properties and deriving some new results in this con-
text. Such results were used to define the quaternion Fourier number transform, which
corresponds to a finite field version of the discrete quaternion Fourier transform. We
developed some QFNT properties and performed a preliminary evaluation regarding
the application of a 2D-QFNT to digital image processing. In particular, the QFNT
seems to be suitable for applications in the scenario of image encryption; this is par-
tially due to the fact that the QFNT is highly sensitive to changes in the data one
desires to process, which is not true for the QFT defined over Hamilton quaternions.

We are currently investigating several ideas related to the content presented in this
paper. In particular, we believe that the QFNT can be useful to perform efficient and
error-free hypercomplex signal filtering, replacing the QFT in the same sense that
the NTT replaces the DFT in the fast computation of a convolution. At any case,
our current investigations can be summarized in (i) introduction of new properties of
generalized quaternions over finite fields, (ii) establishment of other properties of the
QFNT, (iii) investigation of details related to the extension of the transform to two- and
three-dimensional cases, (iv) definition of other types of quaternion number-theoretic
transforms, such as cosine-, sine- and Hartley-type transforms and (v) investigation
of specific QFNT applications.

Acknowledgements Juliano B. Lima is partially supported by Conselho Nacional de Desenvolvimento
Científico e Tecnológico—CNPq—under Grants 307686/2014-0 and 456744/2014-2.

Appendix

If p ≡ 1 (mod 4), one has i = √−1 ∈ Fp [5]. The multiplicative order of Q can be
determined according to the following cases.

– Case 1: b2 + c2 + d2 = 0. In this case, one has λ1 = λ2 = a ∈ Fp. The following
subcases have to be considered.
– Subcase 1.1: b = c = d = 0. The condition determining the current subcase
is identical to that considered in subcase 1.1 for p ≡ 3 (mod 4) and, therefore,
leads to the same result.
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– Subcase 1.2: b = 0 and c �= 0 and d �= 0. In this case, one has c2 = −d2 ⇒
c = ±di . Assuming that c = di , Q reduces to a matrix in the form

Q =
[
a 2di
0 a

]
. (35)

Denoting by v = [v(0) v(1)] an eigenvector ofQ, one may writeQvT = avT ,
which produces the system of equations

{
av(0) + 2div(1) = av(0)
av(1) = av(1).

(36)

The solution for (36) is simply v(1) = 0, which indicates that the geometric
multiplicity of λ1 = λ2 = a is mg(a) = 1. Therefore, Q is not diagonalizable
and admits the Jordan normal form

JQ =
[
a 1
0 a

]
. (37)

Analogously to subcase 1.2 for p ≡ 3 (mod 4), one concludes that ord(Q) =
ord(JQ) = lcm(ord(a), p). One obtains the same result if c = −di or c = 0
and b �= 0 and d �= 0 or d = 0 and b �= 0 and c �= 0.

– Subcase 1.3: b �= 0 and c �= 0 and d �= 0. In this case, one may write
b2 = −(c2 + d2) ⇒ b = ±i

√
c2 + d2. Assuming that b = i

√
c2 + d2, Q

reduces to a matrix in the form

Q =
[
a − √

c2 + d2 c + di
−c + di a + √

c2 + d2

]
. (38)

Denoting by v = [v(0) v(1)] an eigenvector ofQ, one may writeQvT = avT ,
which produces the system of equations

{−√
c2 + d2v(0) + (c + di)v(1) = 0

(−c + di)v(0) + √
c2 + d2v(1) = 0

. (39)

From (39), one obtains the relationship

v(0 = −
√
c2 + d2

−c + di
v(1),

which indicates that the geometric multiplicity of λ1 = λ2 = a is mg(a) = 1.
Therefore, Q is not diagonalizable and admits the Jordan normal form (37).
Analogously to subcase 1.2 for p ≡ 3 (mod 4), one concludes that ord(Q) =
ord(JQ) = lcm(ord(a), p). One obtains the same result if b = −i

√
c2 + d2.

A similar development can be carried out if we use c = ±i
√
b2 + d2 or

d = ±i
√
b2 + c2.
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– Case 2: b2 + c2 + d2 �= 0. In this case,Q has two distinct eigenvalues and admits
the diagonal form

�Q =
[

λ1 0
0 λ2

]
. (40)

Thus, ord(Q) = ord(�Q) = lcm(λ1, λ2).
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