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Abstract This paper presents a novel approach for the estimation of epochs from
the emotional speech signal. Epochs are the locations of significant excitation in the
vocal tract during the production of voiced sound by the vibration of vocal folds. The
estimation of epoch locations is essential for deriving instantaneous pitch contours
for accurate emotion analysis. Many well-known algorithms for epoch extraction are
found to show degraded performance due to the varying nature of excitation character-
istics in the emotional speech signal. The proposed approach exploits the effectiveness
of a new adaptive time series decomposition technique called variational mode decom-
position (VMD) for the estimation of epochs. The VMD algorithm is applied on the
emotional speech signal for decomposition of the signal into various sub-signals. Anal-
ysis of these signals shows that theVMDalgorithm captures the center frequency close
to the fundamental frequency defined for each glottal cycle of emotional speech utter-
ance through its modes. This center frequency characteristic of the corresponding
mode signal helps in the accurate estimation of epoch locations from the emotional
speech signal. The performance evaluation of the proposedmethod is carried out on six
different emotions taken from the German emotional speech database with simultane-
ous electroglottographic signals. Experimental results on clean emotive speech signals
show that the proposed method provides identification rate and accuracy comparable
to that of the best performing algorithm. Besides, the proposed method provides better
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reliability in epoch estimation from emotive speech signals degraded by the presence
of noise.

Keywords Epoch estimation ·Glottal closure instants · Excitation source · Emotional
speech signal · EGG signal · Variational mode decomposition

1 Introduction

Emotions in speech signals are reflected as the subtle variations in the excitation
source parameters and vocal tract parameters [42]. Both these parameters contribute
equally toward the characterization of various emotions.Nevertheless, there is a special
emphasis on the analysis and recognition of emotion using the source parameters in the
literature [7,19,23,28,29,31,38,42]. This is mainly due to the availability of reference
electroglottographic signal [4] and well-established tools for the estimation of source
parameters [35,53].

Instantaneous pitch [3,29,50], strength of excitation [23,28,38] and glottal flow
parameters [5,6] are reported as the major emotion-dependent source parameters.
Among these parameters, the instantaneous pitch is widely used for the analysis and
synthesis of the emotional speech signal. For instance, Bulut et al. reported that the
statistical measures derived only from instantaneous pitch show significant emotion
class discrimination characteristics [3]. Bulut et al. also report that the instantaneous
pitch is more important than the average pitch during emotional speech synthesis.
Besides, the instantaneous pitch contour plays a significant role in the analysis stage
of applications such as emotion recognition [7,23,29,38] and emotion conversion [5,
6,16,20].

The instantaneous pitch contour for a given speech signal is derived as the inverse of
the time interval between successive epoch locations (or glottal closure instants) [35].
This in turn demands the accurate estimation of epochs, which are the major source of
excitation during the vibration of vocal folds [11,12]. Furthermore, analysis of other
source features such as the strength of excitation and glottal flow parameters also
requires the accurate estimation of epochs from the emotional speech signal [5,19,
38,41]. Hence, the objective of the present work is the estimation of epoch locations
from the speech for the emotion analysis.

The estimation of epochs from the speech signal is a challenging task due to the
interaction of the vocal tract response [11]. There existmany efficient algorithmswhich
can provide an accurate estimation of epochs from the speech signal by removing the
vocal tract influence to a maximum extent. These methods are discussed briefly in the
next subsection.

1.1 Existing Methods for Epoch Estimation

The methods proposed for the estimation of epochs from the speech signal employ
different criteria for the identification or localization of epochs. The first type includes
methods that rely on the residual signal extracted from the speech signal using linear
prediction (LP) analysis for epoch estimation [11,39]. The LP residual signal shows
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large values of error as discontinuities around epoch locations. However, the bipolar
nature of peaks in the LP residual creates ambiguities in locating epochs [1]. Therefore,
the Hilbert envelope (HE) of the LP residual was proposed by Ananthapadmanabha et
al. [1] for unambiguous epoch estimation, exploiting its unipolar nature. However, the
use of prediction error for epoch estimation is found to be less effective since the LP
residual is often influenced by the vocal tract system [11]. This is because the inverse
filter does not remove the vocal tract response completely.

The other criterion includes zero crossings of the phase slope function derived from
the LP residual or the wavelet transform [36,46], properties of impulse-like excita-
tion [35], singularity exponents [27] and the structure of the glottal flowderivative [30].
The dynamic programming phase slope algorithm (DYPSA) [36] uses the phase slope
function of the LP residual for identification of the locations of epoch candidates,
as negative zero crossings. Besides, the algorithm employs a phase slope projection
technique to recover the undetected epoch locations. True epoch locations are then
obtained by N -best dynamic programming. Later, ‘yet another GCI/GOI algorithm’
(YAGA) [46] was proposed by modifying DYPSA. In contrast to DYPSA, YAGA
identifies the epoch location by applying the phase slope function on the wavelet
transform of the source signal. The epoch identification rate is improved in YAGA
by a GCI refinement process, which is not performed in DYPSA. The zero frequency
filtering (ZFF)-based method proposed by Murty et al. [35] exploits the nature of
impulse excitation during glottal closures. That is, the discontinuities due to impulse
excitation are reflected across all frequencies including the zero frequency. Hence, the
speech signal is passed through two cascaded zero frequency resonators. The resonator
output is then trend removed to obtain the zero frequency filtered signal (ZFFS). The
trend removal operation is performed by subtracting the mean over 1–2 times the aver-
age pitch period of the speech signal. The locations of positive zero crossings of the
ZFFS are identified as the epoch locations. In speech event detection using the residual
excitation and a mean-based signal (SEDREAMS) algorithm [12], the first step is to
obtain a mean-based signal from the speech signal. Again, the window length is fixed
based on the average pitch period for the computation of mean-based signal. Then, this
mean-based signal is used to determine the intervals where an epoch is present. Finally,
the peak in the LP residual is examined in that interval to identify the epoch. However,
this in turn requires prior estimation of the polarity of the speech signal [17,25], to
decide about the sign of peaks corresponding to epochs. The micro-canonical multi-
scale formalism (MMF) [27] relies on the estimation of a multi-scale parameter called
singularity exponents for detection of epoch locations. The MMF shows that epoch
location corresponds to samples with lower singularity exponents. The glottal clo-
sure/opening instant estimation forward-backward algorithm (GEFBA) [30] estimates
the epoch locations only in voiced regions of the speech signal. The GEFBA exploits
the structure of the glottal flow derivative using simple time-domain criteria.

1.2 Drawbacks of the Existing Methods in the Context of Emotive Utterances

Most of the aforementioned methods identify more than one epoch candidates in
one glottal cycle, which is followed by a candidate selection procedure. Therefore,
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the choice of thresholds or window size fixed for localization of true epochs may
directly affect the reliability of epoch estimation. For example, the fixation of window
length based on the average pitch period creates an issue of missing epoch or spuri-
ous epoch in the zero frequency filtering approach. In summary, the performance of
epoch estimation in the speech signal is mainly dependent on factors such as vocal
tract resonances, size of analysis window length, algorithmic thresholds, polarity and
uncontrollable variations in pitch. Nevertheless, the aforesaid factors are not reported
to show any significant degradation in the performance of the epoch estimation in
neutral speech [24]. However, all these factors contribute to the degradation in the
performance of the epoch estimation in emotional speech signal [18,24]. Researchers
have come up with studies concentrating on the robustness of epoch estimation tech-
niques to additive noise and reverberation [27,30]. However, attempts focusing on
epoch estimation from the emotional speech signals are limited.

1.3 Methods Proposed Exclusively for Emotive Speech Signals

In the literature, there exists only the modification of the ZFF method (m-ZFF) for
the estimation of epochs from the emotional speech signal. Besides emotive speech,
various other types of speech signals such as singing [26], laughter [13,32,45] and tele-
phonic voices [8,21] are also analyzed based on modified ZFF method. For instance,
Kumar et al. [32] used m-ZFF for the estimation of excitation source information
(instantaneous pitch and epoch strength) for the analysis and characterization of laugh-
ter signals. Later, Thati et al. in [45] modified the estimated excitation source features
for the synthesis of laughter signals. Also, Kadiri et al. in [26] has studied the effect
of wider pitch range in singing voice using the m-ZFF method for the extraction of
GCIs. Furthermore, Govind et al. proposed a m-ZFF approach [18] for epoch extrac-
tion from the emotional speech by re-filtering the ZFF signal using a low pass filter.
Even though the method provides fair results for epoch estimation from emotional
speech, it introduces many artifacts due to block processing [16]. Recently, Kadiri
et al. proposed a method [24] based on the multi-scale product (MSP) of the single
frequency filtered signal for deriving impulse-like events from the emotional speech
signal. Then, prominent epochs are identified from derived impulses using the m-ZFF
approach. Nevertheless, the performance evaluation results of these approaches show
still scope for improvement.

1.4 Motivation and Formulation of the Proposed Method

The state-of-the-art methods approximate the resonance effect from the vocal tract
system on the glottal excitation signal as a linear filter model. However, this kind
of approximation is not appropriate for dealing with the highly nonlinear source fil-
ter interaction during the production of emotional speech signals. Consequently, it
affects the performance of epoch estimation. Hence, it is more appropriate to ana-
lyze the speech signal using techniques meant for nonlinear signal processing. This
has motivated us to explore the possibilities of a new adaptive time series decom-
position technique called variational mode decomposition (VMD) for analyzing the
non-stationary speech signals.



Circuits Syst Signal Process (2018) 37:3245–3274 3249

The discontinuities due to impulse excitation at epochs occur with a fundamental
frequency defined for each glottal cycle [33]. These variations can be analyzed by
decomposing the given emotional speech signal around the fundamental frequency
defined for each glottal cycle. Among the three well-known adaptive signal decom-
position techniques such as empirical wavelet transform (EWT) [15], empirical mode
decomposition (EMD) [22] and variational mode decomposition (VMD) [10], VMD
has been extensively used in areas of biomedical signal processing, speech signal
processing and seismic signal processing [34,47,51]. The advantage of using VMD
is that it captures the relevant center frequencies, ensuring good frequency separa-
tion [10]. Moreover, VMD is efficient for identifying various discontinuities present
in a non-stationary signal [33,43]. In Lal et al. [33] and Deshpande et al. [9], the
authors propose the estimation of GCIs from the electroglottographic signal using
VMD. Furthermore, VMD algorithm has been applied on the neutral speech signal
in an iterative manner for voice/unvoiced detection and estimation of the instanta-
neous pitch frequency [47,48]. Experimental results from Upadhyay et al. show that
the iterative application of the VMD algorithm separates the fundamental frequency
(F0) component from the neutral speech signal. Upadhyay et al. do not use the epoch
information for the estimation of the instantaneous fundamental frequency. However,
there is no guarantee that the vocal tract system generates similar speech waveforms
for each impulse-like excitation [53]. Also, we cannot assure any periodicity in the
impulsive excitation at epochs. Hence, it is more advantageous to use an epoch-based
approach for the estimation of instantaneous fundamental frequency.

In contrast to Upadhyay et al. [47] and Lal et al. [33], the proposed method tries to
estimate epochs from emotive speech signals whose characteristics are completely dif-
ferent from neutral speech signals and EGG signals. Thus, the novelty of the proposed
work is the effective utilization of the VMD algorithm in capturing the glottal source
characteristics of emotive speech utterances for the estimation of epochs. Precisely,
the proposed method tries to decompose the emotional speech signal to a sub-signal
(mode) similar in structure to that of the excitation signal. The important characteristic
of the desired mode is that its center frequency of oscillation should be close to the
fundamental frequency (F0) defined for each glottal cycle. Finally, we use this center
frequency characteristic of the sub-signal for the estimation of epochs.

The rest of the paper is organized as follows. In Sect. 2, we describe the method-
ology for estimation of epochs from emotional speech signals. Section 3 discusses
the database used, empirical experiments conducted for fixing the tuning parameter of
VMD, performance evaluation of the proposed method and performance comparison
results with other popular methods. Finally, Sect. 4 draws the conclusion and future
directions.

2 Proposed Method for Epoch Estimation Using VMD

In the proposed method, we perform an iterative decomposition of the emotional
speech signal using VMD. The desired VMD mode signal is then analyzed for iden-
tification of epoch location. Firstly, a brief description of the VMD algorithm is given
below.
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2.1 VMD Algorithm

VMD is a non-recursive and adaptive decomposition technique for any kind of non-
stationary signal. It decomposes the non-stationary signal into a set of sub-signals or
modes, with the number of components specified in prior [10]. Each of these decom-
posed modes has a compact support around a corresponding center frequency. VMD
algorithm identifies these modes by minimizing the sum of the bandwidth of the
modes. However, it enforces a constraint that the original signal should be obtained
by summing up the decomposed modes. The procedure for identifying the mode is as
follows. For each mode,

1. The one-sided frequency spectrum of the signal is obtained by using Hilbert trans-
form.

2. The frequency spectrum is shifted to baseband region by multiplying an exponen-
tial tuned to the estimated center frequency.

3. The bandwidth is estimated through H1 Gaussian smoothness of the demodulated
signal, i.e., the squared L2-norm of the gradient.

The mathematical representation of the procedure is given below.

min
xk,ωk

{∑
k

∥∥∥∥ ∂

∂t

[(
δ (t) + j

π t

)
∗ xk (t)

]
e− jωk t
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2

2

}
s.t

K∑
k=1

xk (t) = x(t) (1)

where ∂
∂t
[.] denotes the partial derivative of a function. Further, xk (t) corresponds

to kth component of the signal x (t) having center frequency (ωk) and K represents
the total number of modes. The analytical signal corresponding to xk (t) is obtained

by convolution operation with
(
δ (t) + j

π t

)
[Hilbert transform]. Here, j = √−1 and

δ (t) is the unit impulse function whose value is zero everywhere except at the origin
(where it is infinity). The new signal formed has a unilateral spectrum which is shifted
to the baseband by mixing with e− jωk t tuned to mode’s center frequency ωk . Finally,
the bandwidth of the mode is estimated based on the squared L2-norm of the gradient.
Precisely, the formulation tries to find the K central frequencies and the corresponding
modes xk (t).

Now, this optimization procedure is converted into an unconstrained one as follows.

L(xk, ωk,λ) := α
∑
k
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[(
δ(t) + j

π t

)
∗ xk(t)

]
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2

2

+
∥∥∥∥∥x(t) −
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2

2

+
〈
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∑
k

xk(t)

〉
(2)

In Eq. 2, L represents the augmented Lagrangian , λ is the Lagrangian multiplier, and
α is the bandwidth control parameter.

The above unconstrained problem is solved using alternate direction method of
multipliers (ADMM) [10]. The ADMM solves one variable at a time assuming all
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other variables are known. Firstly, the update for xk (t) is obtained by absorbing the last

inner product term

〈
λ(t), x(t) − ∑

k
xk(t)

〉
into the second term
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2

2

.

Therefore,

xn+1
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xk (t)
α
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π t
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+
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2
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2

2

(3)

Equation 3 is solved in the spectral domain by noting the fact that norm in the time
domain is same as that in the frequency domain. The solution for updated mode is
obtained as follows.

X̂n+1
k (ω) =

x̂(ω) − ∑
i �=k

X̂i (ω) + λ̂(ω)
2

1 + 2α(ω − ωk)
2 (4)

where x̂(w), X̂i (w), λ̂(ω) and X̂n+1
k (ω) represent the Fourier transforms of x(t), xi (t),

λ(t) and xkn+1(t), respectively. Similarly, the update for center frequency is obtained
by solving the first term of Eq. 2 in the spectral domain. The updated central frequency
is as follows.

ω̂n+1
k =

∞∫
0

ω

∣∣∣X̂k(ω)

∣∣∣2dω
∞∫
0

∣∣∣X̂k(ω)

∣∣∣2dω (5)

The complete algorithm of VMD can be found in [10].
In order to illustrate the effectiveness of VMD in decomposing a multi-component

signal, we have simulated a synthetic signal resembling the characteristics of a voiced
segment of a speech signal. A voiced speech signal can be represented as an amplitude
and frequency modulated (AM–FM) signal in the low frequency region (50–500 Hz)
as follows [47].

FLFR(n) =
N∑

k=1

ak(n) cos (2πk f0[n]n + θk[n]) (6)

where f0[n], ai (n), θk[n] and N represents the time varying frequency, time varying
amplitude and phase of the kth harmonic of f0[n] and the number of harmonics,
respectively. Here, we simulate a signal containing frequency components of 200 and
400 Hz. The time varying amplitude parameters are fixed as 1 and 0.5, respectively,
and neglected the phase part. The sampling frequency used is 8 kHz. Further, we
added white Gaussian noise (SNR of 10 dB) to the signal. The noisy simulated signal
and its linear magnitude spectrum are shown in Fig. 1a, b. This input signal has
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Fig. 1 Variational mode decomposition of a multi-component synthetic signal. Waveform and linear mag-
nitude spectrum of a–b synthetic signal, corresponding c–d mode 1 component, e–f mode 2 component

been decomposed into two modes using the VMD algorithm. The modes and the
corresponding linear magnitude spectrum obtained after the decomposition are shown
in Fig. 1c, d and 1e, f. The center frequencies of the two modes obtained are 199.75
and 401.06 Hz, respectively. This confirms the effectiveness of VMD in separating
the frequency components from the signal.

In VMD, the decomposition of a particular mode to a compact center frequency is
largely dependent on two tuning parameters such as the number of modes K and band-
width control parameter α. The control parameter K is fixed based on the number of
sub-signals or components required, while α is fixed based on the center frequency of
interest [52]. In theory, α is inversely proportional to the bandwidth of the components
of the original signal. Further, the number of modes K controls the energy distribution
amongmodes. A combination of very smallα and a very fewmodes result in sharing of
components among themselves. The sharing of mode components is termed as mode
mixing [10,33]. Mode mixing occurs when the center frequency of the neighboring
modes is very near to each other. Also, a combination of α with superfluous modes
K would lead to redundant VMD information [52]. A smaller value of α makes the
bandwidth of the filter wider. This tends to add more background noise to the results
of VMD. Conversely, a narrow bandwidth makes distorted VMD results [52]. Further-
more, a combination of accurate α and K will include all the frequency components
of the input in the results of VMD. Hence, proper selection of these two parameters
is essential for assuring the accuracy of the results of VMD.

The emotion specific source features such as the location of glottal closures (epochs)
and strength of excitation of a speech signal have its roots embedded in the glottal
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waveform itself. Hence, the glottal waveform alone is sufficient for the estimation of
epoch locations. However, this glottal excitation signal is filtered by the vocal tract
system to produce the speech signal [11]. Moreover, there will be an increase in the
fundamental frequency and energy of higher harmonics due to the rapid vibration of
the vocal folds. Hence, it is required to separate the excitation characteristic from
the influence of higher harmonics for the reliable estimation of epoch locations. The
decomposition should be in such a way that one of the modes should preserve the exci-
tation characteristics. The other mode corresponds to higher-frequency oscillations,
which will be discarded. Therefore, we fix the number of modes K as two for the
decomposition. Precisely, the center frequency of one of the modes should be near to
the fundamental frequency (F0) defined for each glottal cycle. However, VMD being
a non-recursive algorithm, a single iteration might not be sufficient to bring the cen-
ter frequency of a mode close to the fundamental frequency defined for each glottal
cycle. Therefore, we apply VMD iteratively on the emotional speech signal until the
center frequency of a mode is near to the fundamental frequency. The average F0 of
the emotional speech signal is obtained using the fxrapt algorithm [2,44].

The determination of α is challenging in the sense that the excitation characteristics
of the various emotional speech signals are entirely different. In this work, we fix α for
the first iteration ofVMDbased on the center frequency of interest. That is, we selected
α such that the deviation of the center frequency from the average F0 is the least. The
results of the empirical evaluation are discussed in Sect. 3.1. Further, the value of α for
successive iterations is fixed such that the gross error and mean absolute deviation are
minimized in the estimation of the instantaneous pitch from emotional speech signals.
Again, the results of pitch evaluation experiments are discussed in Sect. 3.1. Precisely,
we used the empirically obtained optimal α combination (100,000, 10,000) [100,000
for the first iteration, 10,000 for successive iterations] for the estimation of epochs
from the emotional speech signal.

2.2 Procedure for Epoch Estimation

The flow diagram of the proposed method is given in Fig. 2. The procedure is as
follows.

1. Apply VMD on the emotional speech signal with K and α set to 2 and 100,000.
2. Select the mode with lesser center frequency and discard the other mode. Center

frequency less than 80 Hz is also discarded since the human pitch ranges from 80
to 400 Hz.

3. If CFsm is less than or equal to the average F0 of the emotive speech signal, the
VMD iteration is stopped. The selected mode signal is taken as the VMD output
signal and proceeds to step 5.

4. If CFsm is greater than the average F0, apply VMD iteratively on the mode having
the lesser center frequency (K=2 and α =10,000). The iteration is stopped if CFsm
is less than or equal to the average F0. Now, the selection of a particular mode
or combination of modes as the VMD output signal is fixed based on CFDmm
between the two modes. If CFDmm is greater than the threshold, choose the mode
with lower center frequency as the VMD output signal. If CFDmm is less than
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Fig. 2 a Flow diagram of the proposed method. CFsm indicates the center frequency of the selected mode
signal, CFDmm denotes the absolute value of the difference between the center frequency two modes.
Threshold is fixed as (1/4)th of the minimum pitch. b Waveform representation of the flow graph

or equal to the threshold, choose the combination of modes as the VMD output
signal.

5. The positive to negative zero crossings of the VMD output signal are hypothesized
as epoch locations.

The parameters CFsm, CFDmm and threshold are defined as follows.

• CFsm indicates the center frequency of the selected mode signal.
• CFDmm denotes the absolute value of the difference between the center frequency
of the two modes.

• The threshold is fixed by computing CFDmm between the two modes. We keep the
threshold at (1/4)th of the minimum pitch, which is 20 Hz.

Figure 2b demonstrates the flow graph using waveforms obtained during each step.
Here, we can observe that center frequency converges to the average F0 in the second
VMD iteration. The selected mode signal is identified as the VMD output signal, and
its positive to negative zero crossings are hypothesized as epoch locations.

3 Experimental Results and Discussion

In this study, we perform the following different experiments with regard to epoch
estimation from the emotional speech signal.
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1. Experiments for determining the optimal value for α of VMD.
2. Experiments for evaluating the performance of the epoch estimation in emotional

speech signals.
3. Experiments for the performance comparison with the state-of-the-art methods.

Firstly, we provide a brief description of the speech material and ground truth used
for conducting the aforesaid experiments.

Database and ground truth The proposed method has been evaluated on the German
emotional speech corpus (EMO-DB) having the simultaneous recording of electroglot-
togram (EGG) signals [4]. The database comprises of six basic emotions such as
boredom, sad, disgust, fear, anger and happiness along with corresponding neutral
versions [4]. It includes approximately 100 speech utterances (10 test sentences per
emotion) spoken by 10 professional German actors (5 males and 5 females) with
simultaneous EGG recordings. The recordings were initially sampled at 48 KHz and
later down sampled to 16 KHz [4].

The ground truth for evaluating the performance of epoch estimation in the emo-
tional speech signal is obtained manually from the corresponding DEGG signals. We
used the Wavesurfer tool [49] for creating manual reference epochs. The labeling is
done by observing the locations corresponding to significant negative peaks in the
DEGG signal. Besides manual reference epochs, we collected algorithmic reference
epochs based on the method proposed in Lal et al. [33]. In Lal et al., we show that
epochs can be estimated more accurately and reliably from the EGG signal using the
VMD algorithm. Thus, even if manual references are not available, one can use the
complementary algorithmic references obtained using the method proposed in Lal et
al. for evaluating the performance of epoch estimation.

Figure 3 shows an illustration of epoch estimation from the emotional EGG signal
using the method proposed in Lal et al. [33]. Here, Fig. 3a, b depicts a voiced region of
the EGG signal corresponding to anger speech and its first-order derivative (DEGG).
Figure 3c–e shows the three modes obtained from VMD. From the decomposition
results, it is observed that the positive to negative zero crossings [marked ‘x’ (blue)]
of the second mode coincide with the locations of prominent positive peaks in the
DEGG signal [marked as thick red lines in Fig. 3d]. This phenomenon occurs because
the center frequency of the second mode coincides with the fundamental frequency
of oscillation (F0) in the EGG signal. Therefore, the positive to negative zero cross-
ings of the second mode (Fig. 3d) correspond to epoch locations. This phenomenon
cannot be seen in other modes because their center frequencies are far apart from
F0).

3.1 Determination of the Optimal α Value by Empirical Evaluation

The optimal α value pair for VMD iterations is determined empirically based on the
experiments conducted on emotional speech signals taken from theEMO-DB. Initially,
we search for the best α value (for the first iterations of VMD) which can minimize
the deviation in center frequency from the average F0. For successive iterations, we
fix the α value such that the best performance is attained in the estimation of instanta-
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Fig. 3 Illustration of epoch estimation from the emotional EGG using VMD. a Voiced segment of anger
EGG signal, corresponding b DEGG signal, c mode 1 component, d mode 2 component, e Mode 3 com-
ponent. Epoch locations corresponding positive peaks in the DEGG signal are marked using thick red line
(Color figure online)

neous pitch values. The standard performance measures for pitch evaluation are given
below [40,53].

1. Mean absolute error (MAE)Mean of the absolute value of the difference between
the estimated and reference pitch values.

MAE, ē = 1

N

N∑
i=1

|e(mi )| where e(mi ) = Pi (r) − Pi (e) (7)

In Eq. 7, Pi (r) and Pi (e) represent the reference and estimated pitch value of the
i th voiced frame and N is the total number of voiced frames.

2. Standarddeviation (SD)Standarddeviationof the differencebetween the estimated
and reference pitch values.

SD, σ =
√√√√ 1

N

N∑
i=1

e2(mi ) − ē2 (8)

3. Gross error (GE) The percentage of voiced frame with an estimated pitch value
that deviates from the reference pitch value by more than 20%.
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GE = Dp

N
× 100 (9)

where Dp is the number of voiced frames with an epoch deviation greater than
20%.

In our experiments, we used the gross error and mean absolute error as measures for
fixing the best α value for successive VMD iterations.
Experiments conducted We find that a lower α value includes high-frequency oscil-
lations in the estimated modes from the emotional speech signal. This is true from a
theoretical point of view since α is inversely proportional to the bandwidth of modes.
Precisely, if we select a lower value of α (<5000), it will make the bandwidth of the
filter wider. Therefore, the estimated modes will contain high-frequency oscillation
than the fundamental frequency of oscillation of the emotive utterance. This in turn
affects the epoch estimation performance. Thus, a higher value of α is required to have
a frequency band in the decomposed modes close to the fundamental frequency range
(80–400 Hz) of an adult human being. Moreover, Yang et al. report that the value of
α is fixed based on the center frequency of interest [52].

Here, we compare the influence of a lower α value and higher α value in capturing
the center frequency close to the average fundamental frequency. The experiments are
performed on the ten sentences of EMO-DB, spoken in the anger emotion by a female
speaker.We varied theα value from a lowvalue (5000) to a high value (100,000) for the
first iteration of VMDon each utterance. Then, wemeasured the deviation in the center
frequency of the selected mode from the average F0 for each alpha value considered.
Further, we computed the average deviation in center frequency (denoted as CFerror)
of the ten utterances. The results of the empirical studies are given in Table 1. From
the results, it is evident that the deviation error is on the higher side for a lower α

value. The deviation error reduces after α = 50,000 and attains the least value when
α =100,000. Hence, one can choose an α value anywhere in the range between 50,000
and 100,000 for capturing the required center frequency from the emotive utterance.
In this work, we have used an α value of 100,000 for the first iteration of VMD on
the emotional speech signal. However, if we use a higher α value for every iteration
of VMD, the correct center frequencies of modes will not be captured. Therefore, we
conducted the pitch evaluation experiments for obtaining the optimal α combination
for the iterative procedure. The experiments are conducted on a test sentence (‘Daswill
sie am Mittwoch abgeben,’ meaning ‘She will hand it in on Wednesday’) spoken in
all emotions by 10 speakers. Reference pitch values are obtained by taking the inverse

Table 1 Deviation in center
frequency from the average F0
(CFerror) averaged over the ten
emotive utterances

α Value CFerror (Hz)

5000 550.10

10,000 363.95

20,000 225.55

50,000 60.27

75,000 54.09

100,000 45.21
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of the time interval between two successive ground truth epoch locations (manually
labeled epochs). Then, pitch evaluation is performed based on measures such as gross
error and mean absolute deviation.

During the first experiment, we kept the same α value of 100,000 for every iteration
of VMD on the selected mode signal. Then, using the proposed method discussed in
Sect. 2.2, epoch locations are identified. Further, pitch values are estimated by taking
the inverse of the difference between two successive epoch locations. Mathematically,
it is expressed as follows.

Fi (t) = 1

[el (t + 1) − el (t)]
(10)

where Fi (t) represents the instantaneous pitch or fundamental frequency and el(t)
represents the beginning of the pitch period.

Finally, we computed the gross error and mean absolute error between the esti-
mated and the reference pitch values. During the second experiment, we kept α value
as 100,000 only for the first iteration of VMD on the emotional speech signal. For suc-
cessive iterations of VMD on the selected mode signal, α value is changed to 75,000.
During the third experiment, the α value is changed to 50,000 for all successive VMD
iterations on the selected mode signal after the first iteration. For the fourth, fifth
and sixth experiment, α value pair used is (100,000, 25,000), (100,000, 10,000) and
(100,000, 1000), respectively.

Furthermore, we have conducted the same pitch evaluation experiments for a lower
value ofα equal to 2000,without iteration. It is observed that the performancemeasures
such as gross error and mean absolute error are very high when compared with the
optimal α combination (100,000, 10,000).

Thus, the application of VMD in a non-iterative manner with a lower value of α

is not found to be effective in improving epoch estimation performance. Further, we
checked the feasibility of α equal to 2000 in an iterative manner. Again, the error
measures are found to be on the higher side. Moreover, the number of VMD iteration
required for a lower α value is always more than that of the proposed α value pair.
For instance, the maximum number of iterations recorded for α =2000 in the pitch
evaluation experiment is eight. However, for α =[100,000, 10,000], the number of
iterations went up to a maximum of three only. Table 2 gives the gross error and mean
absolute deviation obtained for the various experiments. From the results, it is evident

Table 2 Empirical results of
various experiments conducted
on emotional speech signals for
fixing α

Alpha (α)value pair GE (%) MAE (Hz)

(100,000, 100,000) 12.74 21.74

(100,000, 75,000) 9.57 16.00

(100,000, 50,000) 8.38 15.12

(100,000, 25,000) 7.96 14.44

(100,000, 10,000) 7.35 14.38

(100,000, 1000) 8.23 18.03

(2000 for all iterations) 9.37 17.65

(2000 non-iterative) 37.58 100.15Bold values indicate the least
GE and MAE
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Fig. 4 Influence of α value on capturing correct frequency of oscillation. aVoiced segment of anger speech
signal, corresponding b EGG signal, c selected mode after the first iteration of VMD using α =100,000, d
VMD output signal using α =100,000 for successive iterations, e VMD output signal using α =10,000 for
successive iterations

that when the α value pair is (100,000, 10,000), the gross error and mean absolute
error are the least.

The influence of α value pair (100,000, 100,000) and (100,000, 10000) on capturing
the fundamental frequency of oscillation in the emotional speech signal is demon-
strated in Fig. 4. A voiced segment of the anger speech signal and the corresponding
EGG signal are given in Fig. 4a, b. Figure 4c depicts the selected mode component
(mode with lesser center frequency) after the first iteration of VMD with α value set
to 100,000. By visual inspection of Fig. 4c, it is observed that the selected mode is
not near to the fundamental frequency of oscillation in the glottal wave. Hence, the
iteration continues on the selected mode. During the first experiment, we obtained
the VMD output signal using an α value of 100,000 for successive VMD iterations.
During the second experiment, we used a lower α value of 10,000 for successive
VMD iterations. Figure 4d shows the VMD output signal obtained using an α value
of 100,000 (from second iteration onwards). From Fig. 4d, it is evident that the fun-
damental frequency of oscillation is not captured in the output signal. In contrast, the
VMD output signal obtained using an α value of 10,000 (Fig. 4e) clearly captures the
fundamental frequency of oscillation in the glottal wave.

3.2 Performance Evaluation of Epoch Estimation in Emotional Speech Signals
Using the Proposed Method

In order to illustrate the proposedmethod for epoch estimation in the emotional speech
signal, an anger speech signal is taken. Then, the signal has been decomposed into
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Fig. 5 Emotional speech signal decomposition using VMD. a Voiced segment of anger speech signal,
corresponding b–c mode 1 and mode 2 after the first VMD iteration, d–e mode 1 and mode 2 after the final
VMD iteration

two modes by keeping α as 100000. The results of the decomposition are given in
Fig. 5, where (a) represents a voiced segment of anger speech, and (b)–(c) represents
two modes obtained with center frequencies 230 and 570 Hz, respectively. The aver-
age fundamental frequency calculated using the fxrapt algorithm is approximately
193 Hz. Hence, the VMD iteration (α =10,000) continues on the mode with lesser
center frequency (Fig. 5b). The modes obtained after the fourth iteration (with center
frequencies 198 and 184 Hz) are shown in Fig. 5d, e, respectively.

Now, the VMD iteration has been halted since the center frequency of one of the
modes has fallen below the average fundamental frequency . Finally, based on step 4 of
the procedure for epoch estimation described in Sect. 2.2, the combination of modes
is taken as the VMD output signal. Figure 6 plots the linear magnitude spectrum
corresponding to modes selected after the first iteration and that of the VMD output
signal. By visual inspection of all subplots, the spectrum of the selected mode after
the first iteration (Fig. 6f) shows spectral peaks beyond the fundamental frequency.
In contrast, the spectrum of the VMD output signal shows only the spectral peaks
corresponding to the fundamental frequency.

Precisely, the spectral peak in Fig. 6h resembles with the spectral peaks corre-
sponding to the fundamental frequency in the glottal waveform (Fig. 6d). Analysis
of the VMD output signal shows rapid changes around the positive to negative zero
crossings. From Fig. 7, it is evident that the time instants corresponding to these rapid
changes represent the epoch locations. Here, Fig. 7a depicts the same segment of anger
speech signal used in Fig. 5a. Figure 7b,c plots the corresponding EGG and DEGG
waveforms, respectively. The reference epoch locations labeled using Wavesurfer are
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Fig. 6 Linear magnitude spectrum corresponding to modes selected after the first and final iteration of
VMDon anger speech segment. Thewaveform and corresponding linear magnitude spectrum of a–b voiced
segment of anger speech signal, c–d EGG segment corresponding to anger speech, e–f mode selected after
the first VMD iteration, g–h VMD output signal

indicated in the DEGG signal as ‘×’(magenta). Besides, the reference epoch locations
estimated from the EGG signal using VMD are marked as ‘+’(blue) in the correspond-
ing selected mode component (mode 2) [Fig. 7d]. It is observed that the positive to
negative zero crossings (marked ‘o’ (red)) of the VMD output signal (Fig. 7e) closely
coincide with reference epoch locations shown in Fig. 7c,d. Hence, the time instants
corresponding to positive to negative zero crossings are identified as epoch locations.

VMD is suitable for the extraction of noise robust component since it follows the
Wiener filter structure [47]. However, we found that the signal-to-noise ratio should
be a minimum of 5 dB for reliable estimation of epochs as positive to negative zero
crossings. This is validated by measuring the reliability of the proposed method for
emotive speech with additive noises at SNR levels from 0 to 30 dB. Firstly, we briefly
describe the measures for testing the reliability and accuracy of the proposed method.

Performance measures Performance evaluation is performed on the voiced regions of
the speech signal by defining the larynx cycle as in [36].

If the r th reference epoch occurs at er , then larynx cycle is defined as the range of
samples (1/2)(er−1 + er ) ≤ n ≤ (1/2)(er + er+1). Based on the larynx cycle, two
sets of measures are defined for evaluating the reliability and accuracy of the proposed
method. The first set includes the following.

1. Identification rate (IDR) The percentage of larynx cycle for which exactly one
epoch is detected.

2. Miss rate (MR) The percentage of larynx cycle for which no epoch is detected.
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Fig. 7 Illustration of epoch estimation in emotional speech signal using proposedmethod. aVoiced segment
of anger speech signal, corresponding b EGG segment, c DEGG signal with manually labeled reference
epochs indicated using ‘×’ (magenta), d VMD output signal from EGG with reference epochs indicated
using ‘+’ (blue), e VMD output signal. Estimated epochs are marked using ‘o’(red) (Color figure online)

3. False alarm rate (FAR) The percentage of larynx cycle for which more than one
epoch is detected.

The IDR, MR and FAR quantify the reliability of epoch estimation. The second set
includes the following.

1. Identification error ζ The timing error between the reference epoch and the esti-
mated epoch in larynx cycle for which one epoch was identified.

2. Identification accuracy (IDA in ‘ms’) The standard deviation of identification error
ζ .

3. Accuracy to ±0.25 ms (IDA to ±0.25 ms in ‘%’) The percentage of larynx cycles
for which exactly one epoch is identified and ζ is within ±0.25 ms.

IDA in ‘ms’ and ‘%’ quantifies the accuracy in the estimation of epochs. For IDA
in ‘ms’, lower value indicates higher accuracy. Further, IDA in ‘%’ is measured as
follows.

IDA in ‘%’ = Number of epochs having ‘ζ ’ within ± 0.25ms

Total number of correctly identified epochs
× 100 (11)

3.2.1 Assumption on Signal-to-Noise Ratio

We identified the positive to negative zero crossings of the VMD output signal as
epochs. However, VMD method is sensitive to noise. Hence, we conducted the fol-
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Table 3 Empirical results of the
test for robustness to additive
noise

SNR (dB) IDR (%) CFerror (Hz)

30 93.77 5.96

25 93.77 6.01

20 93.34 6.71

15 93.33 8.38

10 92.58 9.80

5 92.00 10.84

0 86.77 26.64

CFerror indicates the average
deviation in center frequency
from the average F0 of each
utterance

lowing experiments for checking the conditions under which such an assumption can
be made.

The experiments are conducted on a test sentence (‘Das will sie am Mittwoch
abgeben,’ meaning ‘She will hand it in on Wednesday’) spoken in all emotions by
a female speaker. In the first experiment, we calculated the average IDR value and
average deviation in center frequency (from average F0 of each utterance) for the
clean emotive signals. The results obtained are 93.91% and 5.90 Hz, respectively. In
the subsequent experiments, we added white Gaussian noise at different SNR level to
the emotive utterances. Again, we calculated the measures (average IDR and average
deviation in center frequency) for each SNR value considered. The results obtained
are given in Table 3. From the table, it is clear that the identification rate reduces by
more than 2% for SNR values below 5 dB. Also, the deviation in center frequency
from the average F0 (denoted as CFerror ) is found to be more for SNR levels below
5 dB. Therefore, we conclude that the identification of epoch locations as positive to
negative zero crossings is robust to white Gaussian noise for SNR level as low as 5
dB.

3.2.2 Performance Evaluation Using Manual Reference and VMD-Based Reference

Now, the performance evaluation of the estimation of epochs in the emotional speech
signal is evaluated across six basic emotions (boredom, disgust, fear, anger, sorrow
and happiness ) taken from German emotional speech corpus (EMO-DB). The results
of the performance evaluation are given in Table 4.We provide results of the evaluation
based on both the manual reference and VMD-based reference. From the results, we
can observe that the IDR values are lesser in highly aroused emotions such as anger
and happiness. This is due to the reduced strength of excitation in the speech signal
corresponding to these emotions. This in turnmight have reduced the energy associated
withmodes, leading to spurious epochs (as indicated by higher FAR values). However,
the IDR values of emotions with lesser loudness levels (boredom, sad and disgust) are
on the higher side. Furthermore, the IDR values obtained based on manual references
and VMD-based references are found to show small deviation for the same emotion.

For example, the IDR of boredom for VMD reference is lower than manually
labeled and the IDR of happy for VMD reference is higher than manually labeled.
This inconsistent variation is due to the following two reasons.
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• The epoch in the voicing offset regions of the EGG signal are clearly identified
using VMD [22]. The manual method fails to identify any epoch at the end of the
voiced segment where the DEGG signal is almost zero.

• Again, manual reference epoch creation is prone to human error.

Therefore, the number of reference epochs considered for performance evaluation in
both cases differs. This in turn results in a small difference (around 1–1.5%) in the
performance in terms of IDR.

Among the accuracy measures such as IDA in ‘ms’ and IDA in ‘%’, the latter
seems to the best measure for discussing the accuracy of the proposed method. This
is because it identifies the percentage of epochs estimated within ±0.25 ms of the
reference epochs. From the results, it appears that the accuracy of epoch estimation
decreases with the increase in arousal levels. The accuracy of boredom, sad and disgust
is on the higher side compared to anger, fear and happy.A similar trend can be observed
from the IDA measure in ‘ms.’ That is, IDA (ms) values are lower [indicating high
accuracy] for low aroused emotions and vice versa. Further, the difference in accuracy
of manual and VMD-based reference is due to the difference in IDR obtained for the
same emotion category. That is, for lower IDR, the chance of an increase in accuracy
is higher.

The general observation of the outcome is that the average reliability and the accu-
racy of the proposed method are almost equal for both types of reference used. The
results confirm the effectiveness of using VMD-based reference epochs from the EGG
signal for the performance evaluation of the proposed method.

3.3 Performance Comparison of the Proposed Method with Existing Methods

The performance of the proposed method for epoch estimation in emotional speech
signals is compared with popular methods such as ZFF, SEDREAMS, DYPSA,MMF,
GEFBA andmodified ZFF. All thesemethods are evaluated in the voiced regions of the
emotional signal based on manually labeled reference epochs and epochs estimated
from EGG signals using the VMD algorithm [33]. The comparative results obtained
for manual and algorithmic references are shown in Tables 5 and 6, respectively.

The IDR of all methods is found to be decreasing as the level of arousal increases in
emotions. That is, the reliability is less in anger and happy when compared to boredom
and sad. Methods such as SEDREAMS and GEFBA are found to be performing
well on boredom and sad emotions. However, these methods show a reduced IDR
performance in other emotions. This is due to the rapid changes in the glottal excitation
characteristics of high aroused emotions. Among the methods compared, DYPSA and
MMF are found to show the least IDR performance in all emotions. The standard ZFF
method gives a higher performance than SEDREAMS, GEFBA, DYPSA and MMF.
However, its performance is lower than that of the modified ZFF approach. This is
because of the fact that the ZFF method uses a single window length based on the
average pitch period for getting the trend removed signal. The chances of spurious or
missed epoch estimation are higher in the zero frequency filtered signal when using a
fixed window length. In contrast, the proposed method uses the average fundamental
frequency only to check whether the iteration has brought modes of decomposition
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Table 5 Performance comparison results of epoch estimation in emotional speech signals using manually
labeled reference

Emotion (# Files) Method IDR (%) MR (%) FAR (%) IDA (ms) IDA to ±0.25 ms (%)

Boredom (112) SEDREAMS 95.36 2.12 2.51 0.59 56.87

DYPSA 93.59 2.67 3.74 0.78 49.58

MMF 89.09 5.57 5.33 0.84 50.12

GEFBA 95.72 2.73 1.55 0.55 54.63

ZFF 98.62 0.75 0.63 0.34 67.40

m-ZFF 98.68 0.64 0.68 0.62 64.51

VMD 95.02 0.82 4.16 0.52 66.36

Disgust (105) SEDREAMS 91.14 4.02 4.84 0.82 50.63

DYPSA 89.58 5.21 5.21 0.92 54.16

MMF 84.53 12.06 3.42 1.03 46.70

GEFBA 90.39 6.28 3.33 1.09 49.64

ZFF 95.31 2.09 2.61 0.61 55.80

m-ZFF 97.25 1.40 1.36 0.51 66.28

VMD 95.13 1.20 3.67 0.53 64.96

Fear (124) SEDREAMS 86.44 5.14 8.42 1.01 44.75

DYPSA 83.38 8.93 7.69 1.13 40.25

MMF 68.34 28.00 3.66 1.20 35.93

GEFBA 87.41 7.33 5.26 1.20 39.98

ZFF 91.57 3.54 4.89 0.87 51.58

m-ZFF 94.62 2.72 2.66 0.40 58.93

VMD 95.07 1.25 3.68 0.59 57.12

Anger (136) SEDREAMS 84.26 5.19 10.55 1.22 44.51

DYPSA 82.44 10.94 6.62 1.23 45.11

MMF 58.96 37.51 3.53 1.33 37.89

GEFBA 87.52 8.34 4.14 1.37 47.20

ZFF 84.20 4.99 10.80 1.16 49.34

m-ZFF 90.82 6.08 3.10 0.45 57.43

VMD 90.10 3.45 6.45 0.70 54.17

Happy (115) SEDREAMS 86.67 4.76 8.57 1.21 47.66

DYPSA 83.90 9.66 6.44 1.21 45.83

MMF 59.98 36.54 3.47 1.28 39.44

GEFBA 86.98 9.11 3.91 1.32 48.25

ZFF 88.34 4.64 7.02 1.10 50.87

m-ZFF 90.80 6.13 3.07 0.48 57.76

VMD 90.12 2.13 7.75 0.71 57.65

Sad (120) SEDREAMS 93.51 4.31 2.17 0.72 59.39

DYPSA 90.34 3.70 5.96 1.01 53.15

MMF 86.63 5.60 7.77 1.07 43.40

GEFBA 90.04 9.17 0.79 0.36 68.64
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Table 5 continued

Emotion (# Files) Method IDR (%) MR (%) FAR (%) IDA (ms) IDA to ±0.25 ms (%)

ZFF 93.73 2.92 3.35 0.55 68.18

m-ZFF 95.57 1.92 2.51 0.56 66.10

VMD 95.34 1.65 3.01 0.46 68.24

Average SEDREAMS 89.57 4.26 6.18 0.93 50.64

DYPSA 87.21 6.85 5.94 1.05 48.01

MMF 74.59 20.88 4.53 1.12 42.25

GEFBA 89.68 7.16 3.16 0.98 51.39

ZFF 91.96 3.16 4.88 0.77 57.20

m-ZFF 94.62 3.15 2.23 0.50 61.84

VMD 93.46 1.75 4.79 0.59 61.42

Best results in IDR and IDA for each emotion category are given in bold

close to the fundamental frequency of oscillation defined for each glottal cycle. The
center frequency of decomposed mode is controlled only by the tuning parameters of
VMD. Proper selection of tuning parameters helps the VMD output signal to oscillate
at the fundamental frequency defined for each glottal cycle in the emotional speech
signal. This in turn improves the performance of the proposed method in terms of
reliability. Precisely, the IDR of the proposed method is found to be higher than that of
the five standard methods (SEDREAMS, GEFBA, DYPSA, MMF and ZFF) in highly
aroused emotions.

Further, it is found that the m-ZFF method gives better reliability in epoch iden-
tification across various emotions. This improved performance in m-ZFF is due to
the local pitch period oscillations in the ZFF signal. The proposed method is found
to give a close match in IDR performance to that of the m-ZFF method, especially
in emotions such as anger, happy, fear and sad. This is because of the fact that the
VMD output signal also oscillates close to the fundamental frequency. The average
reliability of the proposed method is found to be comparable with that of the m-ZFF
approach.

Now, the identification accuracy (in terms of IDA in ‘ms’ and IDA in ‘%’) also
shows a similar trend with respect to arousal level. That is, the accuracy of all methods
is on the higher side for boredom and sad when compared to anger and happy. Among
the seven methods, the standard ZFF method shows better identification accuracy in
boredom and sad.

The accuracy of the proposed method is found to be slightly less than the standard
ZFF method in boredom and sad emotion. However, the proposed method outper-
forms the standard ZFF method in other emotions. Further, SEDREAMS, DYPSA
and MMF show reduced epoch identification accuracy in all the emotion categories.
TheGEFBA has shown slightly better identification accuracy in sad emotion (for man-
ual reference). However, this increase in accuracy is due to the decrease in IDR value.
In contrast, the proposed method has shown almost equivalent IDA performance with
better identification rate in sad emotion.
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Table 6 Performance comparison results of epoch estimation in emotional speech signals using VMD-
based reference

Emotion (# Files) Method IDR (%) MR (%) FAR (%) IDA (ms) IDA to ±0.25 ms (%)

Boredom (112) SEDREAMS 93.16 2.72 4.11 0.83 54.17

DYPSA 91.03 3.13 5.84 0.97 49.16

MMF 81.47 12.47 6.06 1.05 52.20

GEFBA 93.55 2.71 3.75 0.84 52.04

ZFF 96.60 0.95 2.46 0.50 68.43

m-ZFF 97.13 1.36 1.51 0.61 65.83

VMD 93.81 0.77 5.42 0.57 68.24

Disgust (105) SEDREAMS 89.76 4.00 6.23 0.94 53.57

DYPSA 89.16 4.94 5.90 1.04 52.57

MMF 83.77 11.82 4.40 1.11 47.76

GEFBA 90.01 5.74 4.25 1.16 49.71

ZFF 94.92 1.88 3.20 0.66 55.38

m-ZFF 96.67 1.57 1.76 0.50 63.11

VMD 94.89 0.94 4.17 0.50 63.41

Fear (124) SEDREAMS 86.77 5.12 8.11 1.11 42.14

DYPSA 83.16 9.23 7.61 1.22 41.04

MMF 67.00 28.84 4.17 1.30 38.19

GEFBA 86.98 7.74 5.28 1.25 39.71

ZFF 90.19 4.24 5.57 0.98 50.66

m-ZFF 93.33 4.01 2.65 0.40 57.40

VMD 93.81 1.77 4.42 0.68 55.22

Anger (136) SEDREAMS 83.96 4.95 11.09 1.26 44.80

DYPSA 81.95 10.78 7.27 1.27 43.67

MMF 58.88 37.09 4.03 1.42 38.13

GEFBA 87.57 7.76 4.66 1.36 46.06

ZFF 84.17 4.72 11.11 1.20 48.51

m-ZFF 90.95 5.78 3.27 0.45 58.59

VMD 90.43 3.69 5.88 0.67 54.08

Happy (115) SEDREAMS 86.69 4.69 8.62 1.24 46.00

DYPSA 83.51 9.69 6.80 1.24 45.58

MMF 59.35 36.71 3.94 1.35 38.56

GEFBA 86.99 8.78 4.23 1.34 46.20

ZFF 88.78 4.43 6.78 1.15 50.17

m-ZFF 90.08 6.48 3.44 0.48 57.95

VMD 91.18 2.85 5.97 0.71 55.85

Sad (120) SEDREAMS 93.12 3.46 3.41 0.79 58.13

DYPSA 90.80 2.69 6.51 1.10 53.03

MMF 86.70 4.83 8.47 1.11 44.31
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Table 6 continued

Emotion (# Files) Method IDR (%) MR (%) FAR (%) IDA (ms) IDA to ±0.25 ms (%)

GEFBA 91.85 6.74 1.41 0.46 65.13

ZFF 95.91 1.42 2.67 0.42 69.87

m-ZFF 96.94 0.34 2.71 0.54 65.66

VMD 96.28 0.57 3.15 0.48 66.33

Average SEDREAMS 88.91 4.16 6.93 1.03 49.80

DYPSA 86.60 6.74 6.65 1.14 47.51

MMF 72.86 21.96 5.18 1.22 43.19

GEFBA 89.49 6.58 3.93 1.07 49.81

ZFF 91.76 2.94 5.30 0.82 57.17

m-ZFF 94.18 3.26 2.56 0.50 61.42

VMD 93.40 1.76 4.83 0.60 60.52

Best results in IDR and IDA for each emotion category are given in bold

The m-ZFF approach is found to give better identification accuracy across highly
aroused emotions (anger, fear, happy and disgust) when compared to other methods.
The better result in m-ZFF is attributed to its nature of extracting impulsive excitations
directly from the emotive utterance. Furthermore, the accuracy of the proposedmethod
is found to be higher than the m-ZFF method by 1–3% in low aroused emotions
(boredom and sad). However, the m-ZFF outperforms the proposed method in highly
aroused emotions. The deviation in accuracy is around 1–3%.

In summary, we can conclude that the proposed method is superior to five other
methods except the m-ZFF method (in terms of identification accuracy) in highly
aroused emotions . The average identification accuracy of the proposed method is
found to be comparable with that of the m-ZFF approach.

Figure 8 depicts the histogram of epoch timing error averaged over the emotional
database for the proposed method and the m-ZFF approach. The peaks in the distri-
bution are mostly concentrated near the origin. The proposed method has a similar
histogram as that of the m-ZFF approach.

Even though the m-ZFF approach provides a slightly better epoch estimation per-
formance than the proposed method, it suffers from the following disadvantages [16].

1. m-ZFF uses block processing, which introduces unwanted spectral leakage during
the post-processing of the ZFF signal.

2. The local pitch (F0) value obtained for each frame is crucial in the estimation of
epochs. A small change in the estimated F0 will degrade the performance.

The proposed method holds an advantage over m-ZFF in the sense that it does not use
any kind of block processing. The proposed approach processes the entire emotional
speech signal at once to estimate the epoch locations. Hence, any artifacts due to block
processing and windowing are avoided. Further, the miss rate in the proposed method
is found to be lesser than that of the m-ZFF approach.
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Fig. 8 Histogram of the epoch timing error averaged over six different emotions. a Proposed method (IDA
to ±0.25 ms is 61.42%), b m-ZFF method (IDA to ±0.25 ms is 61.84%)

3.3.1 Performance Comparison of the Proposed Method with m-ZFF Method for
Degraded Emotive Speech Signals

We evaluated the robustness of the proposed method and the m-ZFF approach for
different noise degradations. The evaluation is done by calculating the IDR measure
for the total database in the presence of three additive noises (white, babble and pink)
taken from NOISEX database [37] at SNR levels of 0 dB and 10 dB. The average
results obtained for different noise degradations are given in Table 7. From the results,
it is evident that the proposed method gives a significantly higher identification rate
than that of the m-ZFF for each of the noise degradations considered. The improved
performance of the proposed method is attributed to the selection of noise robust
VMD output signal for epoch estimation. VMD embeds Wiener filtering to update the
modes directly in the frequencydomain [10]. This enables the extraction of noise robust
modes [14]. In contrast, the m-ZFF method refines only the conventional ZFF signal
by block processing and re-filtering. Therefore, the major issues associated with ZFF
method (such as speech contaminated with interference from other speakers, spurious
impulse-like sequences and so on) [35] prevails in them-ZFFmethod also. This results
in a reduced epoch estimation performance of them-ZFFmethod for degraded emotive
speech signals.

4 Conclusion

This paper proposes a novel method for the estimation of epoch locations from the
emotive utterance. The proposed approach benefits from the effectiveness of the VMD
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Table 7 Performance
comparison in terms of IDR for
the m-ZFF and the proposed
method over the total database in
noise-degraded conditions at
SNR levels of 0 and 10 dB

Noise SNR (dB) Proposed m-ZFF
IDR (%) IDR (%)

White 0 88.27 77.39

10 90.61 84.92

Babble 0 82.12 71.42

10 88.03 78.19

Pink 0 86.71 68.98

10 87.86 76.81Best results in IDR are
highlighted in bold

algorithm in decomposing the emotional speech signal into modes with correct center
frequencies. Finally, the decomposedmodes are analyzed for the estimation of epochs.

The major contributions of the proposed work are:

• Effective utilization of the VMD algorithm in capturing the glottal source charac-
teristics of the emotive speech utterances.

• Reliable estimation of epoch locations from clean and noise-degraded emotional
speech signal using center frequency criterion of VMD.

We show that the application of the VMD algorithm iteratively on the emotional
speech signal helps to capture the required center frequency of the mode. The center
frequency of the selected mode is found to be near to the fundamental frequency
of the glottal excitation signal. This is significant in the sense that the epochs occur
with a fundamental frequency defined for each glottal cycle. The center frequency
characteristic of the correspondingmode is utilized for reliable and accurate estimation
of epoch locations. Epoch locations are hypothesized as positive to negative zero
crossings of the VMD output signal.

We evaluated the performance of the proposedmethod in terms of identification rate
and identification accuracy on emotional speech signals taken from the German emo-
tional database. Further, we compared the effectiveness of the proposed method with
the state-of-the-art epoch estimation methods. Performance comparison results show
that the proposed method is almost as reliable and accurate as the m-ZFF approach for
clean speech signals. Besides, we show that the proposed method outperforms m-ZFF
in the presence of additive noise degradations. Therefore, the proposed method can
be used as a better approach toward epoch estimation in emotive speech degraded
with additive noise. Moreover, the proposed method can be used as a tool for accurate
emotion analysis by deriving instantaneous pitch contours from epochs estimated.

Furthermore, like other methods, the reliability of the proposed method is found
to be lower in highly aroused emotions such as anger and happiness. Future work
will address this limitation, and we are formulating suitable modifications to proposed
work to resolve the issue. The reduced strength of excitation in these emotions might
have reduced the energy associated with decomposed modes. This in turn resulted in
spurious epoch estimation. We need to explore more to address this issue.
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