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Abstract The robust finite-time H∞ control for a kind of uncertain delay systems
with large delay period (LDP) is discussed in this paper. First, a switching technique
is exploited to transform the original system into a switched delay system. Second,
within the limitation of frequency and length rate of LDP, a state feedback controller is
designed to guarantee that the closed-loop system is robust finite-time bounded. Third,
the finite-time H∞ performance analysis for the closed-loop system is developed.
Finally, two examples are presented to clarify the validity of the proposed approach.

Keywords Finite-time H∞ control · Large delay period · Switching method ·
Lyapunov functional

1 Introduction

Switched systems, as a class of hybrid systems, include a family of subsystems and a
switching law. Switched systems have received growing attention due to their exten-
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sive applications. Many results related to the stability and stabilization have been
derived for the linear or nonlinear switched systems [14–16,19,27,28,35]. For exam-
ple, adaptive control problem for nonlinear switched systems has been investigated in
[14], and different adaptive neural tracking controllers have been designed for uncer-
tain nonlinear switched systems in [15] and [16].

In general, asymptotic stability is enough for practical applications [5,9,36,37].
However, for networked control systems, the bound of the system state trajectories
over a fixed finite time interval needs to be considered. To deal with this problem,
Dorato introduced the concept of finite-time stability (FTS) in [3] and the definition
of finite-time boundedness was proposed in [1] when the exogenous disturbance is
involved. From then on, a large number of results on FTS of switched delay systems
have been derived, please see the papers [7,10,11] and the references therein. In
addition, the finite-time control problem has also obtained a series of results. For
instance, the problem of finite-time stabilization has been studied in [12,13,18]. Work
[29] has investigated the finite-time H∞ control of a class of linear switched systems
under mode-dependent average dwell time. In [32], the robust finite-time control for
switched neutral systems has been dealt with. It should be noted that the FTS can not
be got from the Lyapunov asymptotic stability, and vice versa.

On the other hand, a systemmaybe unstable or out of control in the presence of delay
[24,25], which brings difficulties to the research of the stability and the stabilization
issues of dynamic systems. Thus, the stability and control synthesis problems for delay
systems have been highlighted in [7,8,11,18,20,26,31,33,34] by using the traditional
Lyapunov functional method, which requires that the time delay is small. That is to
say, delay d(t) must satisfy 0 ≤ d(t) ≤ h1, for ∀ t ∈ [t0,∞), then the stability of the
delay systems can be guaranteed. However, in networked control systems, due to the
package dropout and the networked induced-delay phenomena, the actual time delay
may be greater than the derived bound h1. Thatmeans large delay arises occasionally in
some local interval of [t0,∞). At this point, it is very important to address the stability
of the systems under the influence of large delay period (LDP) and the aforementioned
traditional Lyapunov method fails to deal with the problem. Recently, some results on
the delay systems with LDP have been reported, such as the stability analysis for a
variety of systems with LDP [6,21–23,30], the stabilization for linear delay systems
with LDP [2,4], and so on. However, to the best of the authors’ knowledge, no attention
has been paid to the robust finite-time H∞ control of uncertain delay systems with
LDP, which motivates the present study.

In this paper, the problem of robust finite-time H∞ control for uncertain delay
systems with LDP is investigated. First, when the maximum allowed delay bound
increases, the original dynamic system is transformed into a switched delay system
with two subsystems. One subsystem is finite-time bounded, while the other may not
be finite-time bounded. Then, by restricting the frequency and length rate of LDP,
a delay-dependent robust finite-time H∞ controller is designed to guarantee that the
closed-loop system is finite-time bounded with H∞ performance.

The reminder of this paper is organized as follows. Some definitions and prelimi-
naries are introduced in Sect. 2. In Sect. 3, the main results are presented. Section 4
gives two examples. The conclusions are given in Sect. 5.
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Notation We use P > 0 to denote positive definite and symmetric matrix P .
λmax(P) is used for the maximum eigenvalue of matrix P . Let N represent the set
of all natural numbers. diag{· · · } stands a block-diagonal matrix. The notation ∗
denotes the symmetric term in a matrix. I is an identical matrix with appropriate
dimensions.

2 Problem Formulation and Preliminaries

Consider the following uncertain delay system

ẋ(t) = Âx(t) + Âd x(t − d(t)) + Bu(t) + Dw(t),

z(t) = F̂ x(t) + Hu(t) + Gw(t),

x(θ) = ϕ(θ), θ ∈ [−h2, 0],
(1)

where x(t) ∈ R
n and u(t) ∈ R

m stand the state vector and the control input, respec-
tively. w(t) ∈ R

p is the disturbance input satisfying

∫ T f

0
wT (t)w(t)dt ≤ d2w, dw > 0, (2)

T f is a time constant. d(t) is the delay and satisfies

0 ≤ d(t) ≤ h2, ḋ(t) ≤ d < 1. (3)

z(t) ∈ R
q is the controlled output. ϕ(θ) stands a continuously differentiable vector-

valued initial function. Â, Âd , F̂ are uncertain real-valued matrices and have the
form

[ Â Âd F̂] = [A Ad F] + LΞ(t)[M11 M22 M33], (4)

where A, Ad , B, D, F , G, H , L , M11, M22, M33 are known real-valued constant
matrices with appropriate dimensions, Ξ(t) is unknown and satisfies Ξ T (t)Ξ(t) ≤
I.

Definition 1 [32] For a given time constant T f , system (1) with u(t) ≡ 0 is said to
be finite-time bounded (FTB) with respect to (e1, e2, T f , d2w, R) if

sup
−h2≤t0≤0

{xT (t0)Rx(t0), ẋ
T (t0)Rẋ(t0)} ≤ e1

⇒ xT (t)Rx(t) < e2, t ∈ [0, T f ],
(5)

where e2 > e1 > 0, R > 0, and w(t) satisfies (2).

The following assumption is adopted:

Assumption 1 System (1) is FTB when delay d(t) satisfies 0 ≤ d(t) ≤ h1, for ∀ t ∈
[0, T f ]. But the finite-time boundedness of the system (1) is not assured based on the
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existing methods or system itself is not FTB if delay d(t) satisfies h1 < d(t) ≤ h2,
for ∀ t ∈ [0, T f ], where h2 > h1 > 0 and h1, h2 can be obtained based on existing
measures.

Definition 2 [22] Time interval [T1, T2) is called large delay period (LDP) if for ∀ t ∈
[T1, T2), it holds that h1 < d(t) ≤ h2. And time interval [T3, T4) is known as small
delay period (SDP) if for ∀ t ∈ [T3, T4), it holds that 0 ≤ d(t) ≤ h1.

Assume the LDP appears occasionally, then system (1) can be represented by the
following switched delay system

ẋ(t) = Âx(t) + Âd x(t − dσ(t)(t)) + Bu(t) + Dw(t),

z(t) = F̂ x(t) + Hu(t) + Gw(t),

x(θ) = ϕ(θ), θ ∈ [−h2, 0],
(6)

where σ(t) : [0, T f ] → {1, 2} is a piecewise constant function and called switching
signal, 0 ≤ d1(t) ≤ h1 and h1 < d2(t) ≤ h2. When σ(t) = 1, system (6) is running
in SDP, and σ(t) = 2 illustrates that system (6) is running in LDP.

Remark 1 Although system (1) may not be FTB if LDP arises in the total time interval
[0, T f ], system (1) may be FTB while LDP only occurs regionally in [0, T f ]. The
switching signal σ(t) relies on the size of the delay.

We use time sequence 0 = t0 < t1 < t2 < · · · < tl = T f to denote switching
sequence of the switching signal σ(t). Suppose for switching signal σ(t), there exists
time sequence

t0 = p0 < p1 < p2 < · · · < pl ′ = T f , (7)

which is one subsequence of t0 < t1 < t2 < · · · < tl , and satisfies

pm+1 − pm ≤ ηm ≤ η < T f ,∀ m ∈ N = {0, 1, 2, . . . , l ′ − 1},

for positive constants ηm and η.

Remark 2 Since p0 < p1 < p2 < · · · < pl ′ is one subsequence of t0 < t1 < t2 < · · ·
< tl , we have l

′ ≤ l.

Definition 3 [22] For any T2 > T1 ≥ 0, let Nl(T1, T2) denote the number of LDP in

time interval [T1, T2). Fl(T1, T2) = Nl(T1, T2)

T2 − T1
is called frequency of LDP in time

interval [T1, T2).
It is assumed that [t2k, t2k+1) and [t2k+1, t2k+2) denote SDP and LDP, respectively,

where k ∈ N.
If Nσ (T1, T2) stands the number of switchings of σ(t) in time interval [T1, T2), we

have
Nσ (t0, t) ≤ 2Nl(t0, t). (8)
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Definition 4 [22] For time interval [T1, T2), denote the total time length of LDP dur-
ing [T1, T2) by T+(T1, T2), and denote the total time length of SDP during [T1, T2)
by T−(T1, T2). We call

T+(pm, pm+1)

T−(pm, pm+1)
the length rate of LDP in time interval

[pm, pm+1).

In this paper, the control signal going into the plant is of the form

u(t) = Kσ(t)x(t), t ∈ [0, T f ]. (9)

Hence, the corresponding closed-loop system is given by

ẋ(t) = Âσ(t)x(t) + Âd x(t − dσ(t)(t)) + Dw(t),

z(t) = F̂σ(t)x(t) + Gw(t),

x(θ) = ϕ(θ), θ ∈ [−h2, 0],
(10)

where Âσ(t) = Â + BKσ(t), F̂σ(t) = F̂ + HKσ(t).

Definition 5 [32] For a given time constant T f , system (6)with u(t) ≡ 0 andw(t) ≡ 0
is said to be finite-time stable ( FTS) with respect to (e1, e2, T f , R, σ (t)) if (5) holds,
where e2 > e1 > 0, R > 0, σ(t) is a switching signal.

Definition 6 [32] For a given time constant T f , system (6) is said to be robust finite-
time stabilizable with H∞ performance γ , if there exists a controller u(t) = Kσ(t)x(t),
where t ∈ [0, T f ], such that

(i) the closed-loop system (10) is FTB with respect to (e1, e2, T f , d2w, R, σ (t));
(ii) under zero initial condition, the following inequality holds

∫ T f

0
zT (s)z(s)ds ≤ γ 2

∫ T f

0
wT (s)w(s)ds, (11)

where e2 > e1 > 0, γ > 0, R > 0, σ(t) is a switching signal and w(t) satisfies (2).

Lemma 1 [17] Suppose L , M and Ξ(t) are real matrices of appropriate dimensions
and Ξ(t) satisfies Ξ T (t)Ξ(t) ≤ I . Then for any scalar ε > 0,

LΞ(t)M + MTΞ T (t)LT ≤ εLLT + ε−1MT M.

3 Main Results

The main target of this section is to construct a state feedback controller (9) such that
the system (10) is FTB with H∞ performance.
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3.1 Finite-Time Boundedness Analysis

In this subsection, the FTB for the following delay system is considered

ẋ(t) = Âσ(t)x(t) + Âd x(t − dσ(t)(t)) + Dw(t),

x(θ) = ϕ(θ), θ ∈ [−h2, 0].
(12)

Before we refer to the prime development of this paper, two lemmas will be given
first.

Consider the following delay system

ẋ(t) = Â1x(t) + Âd x(t − d1(t)) + Dw(t),

x(θ) = ϕ(θ), θ ∈ [−h1, 0].
(13)

Choose the Lyapunov functional

V1(t) = V11(t) + V12(t) + V13(t) + V14(t), (14)

where

V11(t) = xT (t)P1x(t),

V12(t) =
∫ 0

−h1

∫ t

t+θ

ẋ T (s)eα(s−t)Q1 ẋ(s)dsdθ,

V13(t) =
∫ −h1

−h2

∫ t

t+θ

ẋ T (s)eα(s−t)Q2 ẋ(s)dsdθ,

V14(t) =
∫ t

t−d1(t)
xT (s)eα(s−t)Z1x(s)ds,

h2 > h1 > 0, P1 > 0, Q1 > 0, Q2 > 0, and Z1 > 0.

Lemma 2 Consider the system (13), for given constants ε > 0, α > 0, h2 > h1 > 0,
if there exist positive definite symmetric matrices X1, Qi (i = 1, 2), Z1, T1, and any
matrices M11, M22, Y1, M j ( j = 1, 2, 3) with appropriate dimensions such that

⎡
⎢⎢⎢⎢⎣

Δ1 Δ2 Δ3 Δ4 Δ5

∗ −T1 c0M3 Δ6 0
∗ ∗ c0(Q1 − 2X1) 0 0
∗ ∗ ∗ Δ7 0
∗ ∗ ∗ ∗ Δ8

⎤
⎥⎥⎥⎥⎦ ≤ 0, (15)

then under the state feedback controller u(t) = K1x(t) with K1 = Y1X
−1
1 , we have

V1(t) ≤ e−α(t−t0)V1(t0) +
∫ t

t0
e−α(t−s)wT (s)T1w(s)ds, (16)
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where

Δ1 =
[

Δ111 Δ112
∗ Δ122

]
,

Δ111 = X1A
T + AX1 + BY1 + Y T

1 BT + αX1 + Z1 + M1 + M
T
1 + 2εLLT ,

Δ112 = Ad X1 + M
T
2 − M1,

Δ122 = −(1 − d)e−αh1 Z1 − M2 − M
T
2 ,

Δ2 = [
DT + M3 −M3

]T
,

Δ3 =
[
c0M

T
1 c0M

T
2

]T
,

Δ4 =
[
h1

(
X1AT + Y T

1 BT
)

h21
(
X1AT + Y T

1 BT
)

h1X1AT
d h21X1AT

d

]
,

Δ5 = diag{2X1M
T
11, 2X1M

T
22},

Δ6 = [
h1DT h21DT

]
,

Δ7 =
[
2εh21LL

T − h1Q1 2εh1h21LLT

∗ 2εh221LL
T − h21Q2

]
,

Δ8 = diag{−2ε I,−2ε I }, c0 = eαh1 − 1

α
, h21 = h2 − h1.

Proof Under the conditions of Lemma 2, we set

P1 = X−1
1 , Q1 = Q

−1
1 , Q2 = Q

−1
2 , Z1 = P1Z1P1,

M1 = P1M1P1, M2 = P1M2P1, M3 = M3P1.

From Q1 > 0 and X1 > 0, we can get

(Q1 − X1)
T Q

−1
1 (Q1 − X1) ≥ 0.

Then by simplifying, we have

Q1 − 2X1 ≥ −X1Q
−1
1 X1. (17)

Substituting (17) into (15), then implementing a congruent transformation by
diag{P1, P1, I, P1, I, I, I, I }, the following inequality is got

⎡
⎢⎢⎢⎢⎣

Δ1 Δ2 Δ3 Δ4 Δ5
∗ −T1 c0M3 Δ6 0
∗ ∗ −c0Q1 0 0
∗ ∗ ∗ Δ7 0
∗ ∗ ∗ ∗ Δ8

⎤
⎥⎥⎥⎥⎦ ≤ 0, (18)



4760 Circuits Syst Signal Process (2018) 37:4753–4772

where

Δ1 =
[

Δ111 Δ112

∗ Δ122

]
,

Δ111 = AT P1 + P1A + P1BK1 + KT
1 BT P1 + αP1 + Z1 + M1 + MT

1 + 2εP1LL
T P1,

Δ112 = P1Ad + MT
2 − M1,

Δ122 = −(1 − d)e−αh1 Z1 − M2 − MT
2 ,

Δ2 = [
DT P1 + M3 −M3

]T
,

Δ3 = [
c0MT

1 c0MT
2

]T
,

Δ4 =
[
h1

(
AT + KT

1 BT
)

h21
(
AT + KT

1 BT
)

h1AT
d h21AT

d

]
,

Δ5 = diag{2MT
11, 2M

T
22}.

Using Schur complement lemma, it can be concluded

⎡
⎢⎢⎣

Δ̃1 Δ2 Δ3 Δ4

∗ −T1 c0M3 Δ6

∗ ∗ −c0Q1 0
∗ ∗ ∗ Δ̃7

⎤
⎥⎥⎦ + ε−1Π1Π

T
1 + ε−1Π2Π

T
2 + 2εΠ3Π

T
3 ≤ 0, (19)

where

Δ̃1 =
[

Δ̃111 Δ112

∗ Δ̃122

]
,

Δ̃111 = (A + BK1)
T P1 + P1(A + BK1) + αP1

+ Z1 + M1 + MT
1 + 2εP1LL

T P1 + ε−1MT
11M11,

Δ̃122 = −(1 − d)e−αh1 Z1 − M2 − MT
2 + ε−1MT

22M22,

Δ̃7 = diag
{
−h1Q

−1
1 ,−h21Q

−1
2

}
,

Π1 = [
M11 0 0 0 0 0

]T
,

Π2 = [
0 M22 0 0 0 0

]T
,

Π3 = [
0 0 0 0 h1LT h21LT

]T
.

According to Lemma 1, the following inequalities hold

Π1Ξ(t)TΠT
3 + Π3Ξ(t)ΠT

1 ≤ ε−1Π1Π
T
1 + εΠ3Π

T
3 ,

Π2Ξ(t)TΠT
3 + Π3Ξ(t)ΠT

2 ≤ ε−1Π2Π
T
2 + εΠ3Π

T
3 ,

Π4Ξ(t)ΠT
2 + Π2Ξ(t)TΠT

4 ≤ ε−1Π2Π
T
2 + εΠ4Π

T
4 ,

P1LΞ(t)M11 + MT
11Ξ

T (t)LT P1 ≤ ε−1MT
11M11 + εP1LL

T P1,
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where

Π4 = [
LT P1 0 0 0 0 0

]T
.

These together with (19) give

⎡
⎢⎢⎣

−→
Δ 1 Δ2 Δ3

−→
Δ 4

∗ −T1 c0M3 Δ6
∗ ∗ −c0Q1 0
∗ ∗ ∗ Δ̃7

⎤
⎥⎥⎦ ≤ 0, (20)

where

−→
Δ 1 =

[−→
Δ 111

−→
Δ 112

∗ −→
Δ 122

]
,

−→
Δ 111 = ÂT

1 P1 + P1 Â1 + αP1 + Z1 + M1 + MT
1 ,

−→
Δ 112 = P1 Âd − M1 + MT

2 ,
−→
Δ 122 = −(1 − d)e−αh1 Z1 − M2 − MT

2 ,

−→
Δ 4 =

[
h1 ÂT

1 h21 ÂT
1

h1 ÂT
d h21 ÂT

d

]
,

Â1 = Â + BK1.

Using Schur complement lemma to (20), it follows

Δ′ + c0MQ−1
1 MT ≤ 0, (21)

where

Δ′ =
⎡
⎣Δ′

11 Δ′
12 Δ′

13∗ Δ′
22 Δ′

23∗ ∗ Δ′
33

⎤
⎦ ,

Δ′
11 = ÂT

1 P1 + P1 Â1 + αP1 + Z1 + M1 + MT
1 + h1 Â

T
1 Q1 Â1 + h21 Â

T
1 Q2 Â1,

Δ′
12 = P1 Âd − M1 + MT

2 + h1 Â
T
1 Q1 Âd + h21 Â

T
1 Q2 Âd ,

Δ′
13 = P1D + MT

3 + h1 Â
T
1 Q1D + h21 Â

T
1 Q2D,

Δ′
22 = −(1 − d)e−αh1 Z1 − M2 − MT

2 + h1 Â
T
d Q1 Âd + h21 Â

T
d Q2 Âd ,

Δ′
23 = −MT

3 + h1 Â
T
d Q1D + h21 Â

T
d Q2D,

Δ′
33 = h1D

T Q1D + h21D
T Q2D − T1,

M = [
MT

1 MT
2 MT

3

]T
,

and c0 is defined in Lemma 2. �
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On the other hand, for matrix M, we get

2ξ T1 (t)M × [x(t) − x(t − d1(t)) −
∫ t

t−d1(t)
ẋ(s)ds] = 0,

where ξ1(t) = [
xT (t) xT (t − d1(t)) wT (t)

]T
.

Calculating the derivative of Lyapunov functional (14) along the trajectory of the
system (13), we have

V̇1(t) + αV1(t) − wT (t)T1w(t)

≤ 2ẋ T (t)P1x(t) + h1 ẋ
T (t)Q1 ẋ(t) + αxT (t)P1x(t)

−
∫ t

t−h1
ẋ T (s)eα(s−t)Q1 ẋ(s)ds + h21 ẋ

T (t)Q2 ẋ(t)

−
∫ t−h1

t−h2
ẋ T (s)eα(s−t)Q2 ẋ(s)ds + xT (t)Z1x(t)

− (1 − d)xT (t − d1(t))e
−αh1 Z1x(t − d1(t)) − wT (t)T1w(t)

≤ ξ T1 (t)[Δ′ + c0MQ−1
1 MT ]ξ1(t).

(22)

Thus, it follows from (21) and (22) that

V̇1(t) + αV1(t) − wT (t)T1w(t) ≤ 0. (23)

Using differential inequality theory, we easily obtain (16).
Now, consider the following delay system

ẋ(t) = Â2x(t) + Âd x(t − d2(t)) + Dw(t),

x(θ) = ϕ(θ), θ ∈ [−h2, 0].
(24)

Choose the Lyapunov functional

V2(t) = V21(t) + V22(t) + V23(t) + V24(t), (25)

where

V21(t) = xT (t)P2x(t),

V22(t) =
∫ 0

−h1

∫ t

t+θ

ẋ T (s)eβ(t−s)Q3 ẋ(s)dsdθ,

V23(t) =
∫ −h1

−h2

∫ t

t+θ

ẋ T (s)eβ(t−s)Q4 ẋ(s)dsdθ,

V24(t) =
∫ t

t−d2(t)
xT (s)eβ(t−s)Z2x(s)ds,

h2 > h1 > 0, P2 > 0, Q3 > 0, Q4 > 0, and Z2 > 0.
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Lemma 3 Consider the system (24), for given constants ε > 0, β > 0, h2 > h1 > 0,
if there exist positive definite symmetric matrices X2, Qi (i = 3, 4), Z2, T2, and any
matrices M11, M22, Y2, N j , R j , S j ( j = 1, 2, 3, 4, 5) with appropriate dimensions
such that

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6
∗ Ω7 Ω8 Ω9 0 0
∗ ∗ −T2 Ω10 Ω11 0
∗ ∗ ∗ Ω12 0 0
∗ ∗ ∗ ∗ Ω13 0
∗ ∗ ∗ ∗ ∗ Ω14

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 0, (26)

then under the state feedback controller u(t) = K2x(t) with K2 = Y2X
−1
2 , we have

V2(t) ≤ eβ(t−t0)V2(t0) +
∫ t

t0
eβ(t−s)wT (s)T2w(s)ds, (27)

where

Ω1 =
[

Ω111 Ω112
∗ Ω122

]
,

Ω111 = AX2 + X2A
T + BY2 + Y T

2 BT − βX2 + Z2 + N 1 + N
T
1 + 2εLLT ,

Ω112 = Ad X2 + N
T
2 − R1 + S1,

Ω122 = −(1 − d)eβh1 Z2 − R2 − R
T
2 + S2 + S

T
2 ,

Ω2 =
[

N
T
3 − N 1 + R1 N

T
4 − S1

S
T
3 − R

T
3 − N 2 + R2 S

T
4 − R

T
4 − S2

]
,

Ω3 = [
DT + N 5 S5 − R5

]T
,

Ω4 =
[
c1N 1 c2R1 c2S1
c1N 2 c2R2 c2S2

]
,

Ω5 =
[
h1(X2AT + Y T

2 BT ) h21(X2AT + Y T
2 BT )

h1X2AT
d h21X2AT

d

]
,

Ω6 = diag{2X2M
T
11, 2X2M

T
22},

Ω7 =
[
R
T
3 + R3 − N

T
3 − N 3 −N

T
4 − S3 + R

T
4

∗ −S
T
4 − S4

]
,

Ω8 = [
R5 − N 5 −S5

]T
,

Ω9 =
[
c1N 3 c2R3 c2S3
c1N 4 c2R4 c2S4

]
,

Ω10 = [
c1N 5 c2R5 c2S5

]
,

Ω11 = [
h1DT h21DT

]
,

Ω12 = diag{c1(Q3 − 2X2), c2(Q4 − 2X2), c2(Q4 − 2X2)},
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Ω13 =
[
2εh21LL

T − h1Q3 2εh1h21LLT

∗ 2εh221LL
T − h21Q4

]
,

Ω14 = diag{−2ε I,−2ε I },
c1 = eβh1 − 1

β
, c2 = eβh2 − eβh1

β
.

Proof Following the similar proof of Lemmas 2, 3 can be derived, it is omitted. �

Theorem 1 Consider the system (12), for given constants ε > 0, α > 0, β > 0,
h2 > h1 > 0, if there exist positive definite symmetric matrices Xi , Zi , Ti (i = 1, 2),
Q j ( j = 1, 2, 3, 4), and any matrices M11, M22, Yi , Mi (i = 1, 2, 3), N j , R j , S j

( j = 1, 2, 3, 4, 5) with appropriate dimensions such that matrix inequalities (15) and
(26) hold, then under the state feedback controller u(t) = Ki x(t) with Ki = Yi X

−1
i

(i = 1, 2), the system (12) is FTB with respect to (e1, e2, T f , d2w, R, σ (t)), where

e2 = λe1 + λ5d2w
λ6

eα1T f +2c+α1η,

c = (β + α∗)(α − α∗)
α + β

η,

λ1 = λmax

(
R− 1

2 X−1
1 R− 1

2

)
,

λ2 = λmax

(
R− 1

2 Q
−1
1 R− 1

2

)
,

λ3 = λmax

(
R− 1

2 Q
−1
2 R− 1

2

)
,

λ4 = λmax

(
R− 1

2 X−1
1 Z1X

−1
1 R− 1

2

)
,

λ5 = maxi=1,2{λmax(Ti )},
λ6 = mini=1,2

{
λmin

(
R− 1

2 X−1
i R− 1

2

)}
,

λ = λ1 + h21
2

λ2 + h22 − h21
2

λ3 + h1λ4.

And switching signal σ(t) satisfies the following two conditions:

(C1) the length rate of LDP satisfies
T+(pm, pm+1)

T−(pm, pm+1)
≤ α − α∗

β + α∗ , α∗ ∈ (0, α),

(C2) the frequency of LDP satisfies Fl(pm, pm+1) ≤ α1

ln(μ2μ1)
, α1 ∈ (0, α∗), ∀

m ∈ N, where μ ≥ 1 satisfies

Xi ≤ μX j , Zi ≤ μZ j , ∀i, j ∈ {1, 2},
Qm ≤ μQn, ∀{m, n} ∈ {{1, 3}, {2, 4}}, (28)

and
μ1 = e(α+β)h2 . (29)
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Proof Construct the following piecewise Lyapunov functional

V (t) = Vσ(t)(t) =
{
V1(t), t ∈ [t2k, t2k+1),

V2(t), t ∈ [t2k+1, t2k+2), k ∈ N,
(30)

where V1(t) and V2(t) are defined in (14) and (25), respectively.
From (28) and (29), we have

V1(t) ≤ μV2(t), V2(t) ≤ μμ1V1(t). (31)

For the Lyapunov functional (30), based on Lemma 2 and Lemma 3, it is easy to see
that

V (t) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−α(t−t2k )V1(t2k)

+
∫ t

t2k
e−α(t−s)wT (s)T1w(s)ds, t ∈ [t2k, t2k+1),

eβ(t−t2k+1)V2(t2k+1)

+
∫ t

t2k+1

eβ(t−s)wT (s)T2w(s)ds, t ∈ [t2k+1, t2k+2), k ∈ N.

(32)

Without loss of generality, we assume that t ∈ [t2k+1, t2k+2) ⊆ [pm, pm+1) ⊆
[t0, T f ], where k ∈ N,m ∈ N. From (31) and (32), along the trajectory of system
(12), the Lyapunov functional (30) satisfies

V (t) ≤ eβ(t−t2k+1)V2(t2k+1) +
∫ t

t2k+1

eβ(t−s)wT (s)T2w(s)ds

≤ μμ1e
β(t−t2k+1)V1(t

−
2k+1) +

∫ t

t2k+1

eβ(t−s)wT (s)T2w(s)ds

≤ μμ1e
βT+(t2k ,t)−αT−(t2k ,t)V1(t2k)

+μμ1

∫ t2k+1

t2k
eβT+(s,t)−αT−(s,t)wT (s)T1w(s)ds

+
∫ t

t2k+1

eβT+(s,t)wT (s)T2w(s)ds

≤ · · · ≤ μNσ (t0,t)μ
Nl (t0,t)
1 eβT+(t0,t)−αT−(t0,t)V1(t0)

+
k∑
j=0

∫ t2 j+1

t2 j
μNσ (s,t)μ

Nl (s,t)
1 eβT+(s,t)−αT−(s,t)wT (s)T1w(s)ds

+
k−1∑
j=0

∫ t2 j+2

t2 j+1

μNσ (s,t)μ
Nl (s,t)
1 eβT+(s,t)−αT−(s,t)wT (s)T2w(s)ds

+
∫ t

t2k+1

μNσ (s,t)μ
Nl (s,t)
1 eβT+(s,t)−αT−(s,t)wT (s)T2w(s)ds
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≤ μNσ (t0,t)μ
Nl (t0,t)
1 eβT+(t0,t)−αT−(t0,t)V1(t0) + maxi=1,2{λmax(Ti )} ·∫ t

t0
μNσ (t0,t)μ

Nl (t0,t)
1 eβT+(s,t)−αT−(s,t)wT (s)w(s)ds. (33)

We get from (C1) and (C2) that

βT+(t0, t) − αT−(t0, t) ≤ −α∗(t − t0) + c, (34)

μNσ (t0,t)μ
Nl (t0,t)
1 ≤ eα1(t−t0)+α1η, (35)

and
βT+(s, t) − αT−(s, t) ≤ −α∗(t − s) + 2c ≤ 2c. (36)

Suppose t0 = 0. Substituting (34), (35) and (36) to (33) leads to

V (t) ≤ e(α1−α∗)t eceα1ηV1(0) + maxi=1,2{λmax(Ti )}eα1t e2ceα1ηd2w, (37)

and

V1(0) ≤ λ1x
T (0)Rx(0) + λ2

∫ 0

−h1

∫ 0

θ

ẋ T (s)Rẋ(s)dsdθ

+ λ3

∫ −h1

−h2

∫ 0

θ

ẋ T (s)Rẋ(s)dsdθ + λ4

∫ 0

−d1(0)
xT (s)Rx(s)ds

≤ [λ1 + h21
2

λ2 + h22 − h21
2

λ3 + h1λ4] sup
−h2≤t≤0

{
xT (t)Rx(t), ẋ T (t)Rẋ(t)

}

≤ λe1.
(38)

It implies that
V (t) ≤ e(α1−α∗)t eceα1ηλe1 + λ5e

α1t e2ceα1ηd2w. (39)

Hence, ∀ t ∈ [0, T f ],

xT (t)Rx(t) ≤ V (t)

mini=1,2

{
λmin

(
R− 1

2 X−1
i R− 1

2

)}

≤ e(α1−α∗)t eceα1ηλe1 + λ5eα1t e2ceα1ηd2w

mini=1,2

{
λmin

(
R− 1

2 X−1
i R− 1

2

)}

<

(
λe1 + λ5d2w

)
λ6

eα1T f +2c+α1η

= e2.

(40)

Thus, the system (12) is FTB. �

Corollary 1 Consider the system (12) with w(t) = 0, for given constants ε > 0,
α > 0, β > 0, h2 > h1 > 0, if there exist positive definite symmetric matrices Xi ,
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Zi (i = 1, 2), Q j ( j = 1, 2, 3, 4), and any matrices M11, M22, Yi , Mi (i = 1, 2),
N j , R j , S j ( j = 1, 2, 3, 4) with appropriate dimensions such that

⎡
⎢⎢⎣

Δ1 Δ3 Δ4 Δ5

∗ c0(Q1 − 2X1) 0 0
∗ ∗ Δ7 0
∗ ∗ ∗ Δ8

⎤
⎥⎥⎦ ≤ 0,

⎡
⎢⎢⎢⎢⎣

Ω1 Ω2 Ω4 Ω5 Ω6
∗ Ω7 Ω9 0 0
∗ ∗ Ω12 0 0
∗ ∗ ∗ Ω13 0
∗ ∗ ∗ ∗ Ω14

⎤
⎥⎥⎥⎥⎦ ≤ 0,

then under the state feedback controller u(t) = Ki x(t) with Ki = Yi X
−1
i (i = 1, 2),

the system (12) is FTS with respect to (e1, e2, T f , R, σ (t)), where switching signal
σ(t) satisfies (C1) and (C2), μ ≥ 1 satisfies (28), μ1 satisfies (29), and Δi , Ω j are
defined in Theorem 1, i = 1, 3, 4, 5, 7, 8, j = 1, 2, 4, 5, 6, 7, 9, 12, 13, 14.

Remark 3 If there is no a LDP, the system (1) is identical with a general delay system.
Thus, the obtained results in Corollary 1 are more universal than the existing ones in
[18].

Remark 4 If the LDPs appear, we know that h1 < d(t) ≤ h2. In other words, we have
d(t) = h1 + d2(t) in LDPs, where 0 < d2(t) ≤ h2 − h1. Thus, Corollary 1 has wider
applicability than the conclusions in [12]. In addition, the switching method is used
in this paper, which is different from the studies in [12]. Furthermore, the time length
of the LDPs can be calculated so that more accurate results can be obtained in some
degree.

3.2 Robust Finite-Time H∞ Control

Theorem 2 Consider the system (10), for given constants ε > 0, α > 0, β > 0,
h2 > h1 > 0, if there exist positive definite symmetric matrices Xi , Zi (i = 1, 2),
Q j ( j = 1, 2, 3, 4), and any matrices M11, M22, M33, Yi , Mi (i = 1, 2, 3), N j , R j ,

S j ( j = 1, 2, 3, 4, 5) with appropriate dimensions such that

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ1 Δ2 Δ3 Δ̌1 Δ4 Δ̌2

∗ −γ 2 I c0M3 GT Δ6 0
∗ ∗ c0(Q1 − 2X1) 0 0 0
∗ ∗ ∗ Δ̌3 0 0
∗ ∗ ∗ ∗ Δ7 0
∗ ∗ ∗ ∗ ∗ Δ̌4

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 0, (41)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1 Ω2 Ω3 Ω4 Ω̌1 Ω5 Ω̌2
∗ Ω7 Ω8 Ω9 0 0 0
∗ ∗ −γ 2 I Ω10 GT Ω11 0
∗ ∗ ∗ Ω12 0 0 0
∗ ∗ ∗ ∗ Δ̌3 0 0
∗ ∗ ∗ ∗ ∗ Ω13 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̌3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (42)

then under the state feedback controller u(t) = Ki x(t) with Ki = Yi X
−1
i

(i = 1, 2), the system (10) is FTB with H∞ performance with respect to

(0, e2, T f , d2w, γ, R, σ (t)), H∞ performance index is γ̄ = γ e
αT f +α1η

2 +c, where
switching signal σ(t) satisfies (C1) and (C2), μ ≥ 1 satisfies (28), μ1 satisfies (29),
and

Δ̌1 = [
FX1 + HY1 0

]T
,

Δ̌2 =
[
2X1MT

11 X1MT
33 0

0 0 2X1MT
22

]
,

Δ̌3 = εLLT − I,

Δ̌4 = diag{−2ε I,−ε I,−2ε I },
Ω̌1 = [

FX2 + HY2 0
]T

,

Ω̌2 =
[
2X2MT

11 X2MT
33 0

0 0 2X2MT
22

]
,

Ω̌3 = diag{−2ε I,−ε I,−2ε I },

c0, c1, c2, h21, c,Δi , Ω j are defined in Theorem 1, i = 1, 2, . . . , 7, j = 1, 2, . . . , 13.

Proof Choose the same Lyapunov functional as in Theorem 1, after some mathemat-
ical manipulation, we can get

{
V̇1(t) + αV1(t) ≤ −(zT (t)z(t) − γ 2wT (t)w(t)), σ (t) = 1,
V̇2(t) − βV2(t) ≤ −(zT (t)z(t) − γ 2wT (t)w(t)), σ (t) = 2.

(43)

Denoting Γ (t) = zT (t)z(t) − γ 2wT (t)w(t), and integrating both sides of the two
inequalities in (43) from t0 to t , it follows that

⎧⎪⎪⎨
⎪⎪⎩
V1(t) ≤ e−α(t−t0)V1(t0) −

∫ t

t0
e−α(t−s)Γ (s)ds,

V2(t) ≤ eβ(t−t0)V2(t0) −
∫ t

t0
eβ(t−s)Γ (s)ds.

(44)
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Without loss of generality, we suppose that t ∈ [t2k+1, t2k+2) ⊆ [pm, pm+1) ⊆
[t0, T f ], where k ∈ N, m ∈ N. Combining (28), (29), (43) and (44), we obtain

V (t) ≤ eβ(t−t2k+1)V2(t2k+1) −
∫ t

t2k+1

eβ(t−s)Γ (s)ds

≤ μμ1e
β(t−t2k+1)V1(t

−
2k+1) −

∫ t

t2k+1

eβ(t−s)Γ (s)ds

≤ μμ1e
β(t−t2k+1)e−α(t2k+1−t2k )V1(t2k)

− μμ1e
β(t−t2k+1)

∫ t2k+1

t2k
e−α(t2k+1−s)Γ (s)ds −

∫ t

t2k+1

eβ(t−s)Γ (s)ds

= μμ1e
βT+(t2k ,t)−αT−(t2k ,t)V1(t2k)

− μμ1

∫ t2k+1

t2k
eβT+(s,t)−αT−(s,t)Γ (s)ds −

∫ t

t2k+1

eβT+(s,t)Γ (s)ds

≤ · · · ≤ μNσ (t0,t)μ
Nl (t0,t)
1 eβT+(t0,t)−αT−(t0,t)V (t0)

−
∫ t

t0
μNσ (s,t)μ

Nl (s,t)
1 eβT+(s,t)−αT−(s,t)Γ (s)ds.

(45)

Furthermore, under the zero initial condition, (45) becomes

∫ t

t0
μNσ (s,t)μ

Nl (s,t)
1 eβT+(s,t)−αT−(s,t)Γ (s)ds ≤ 0. (46)

Assume t0 = 0, then multiplying both sides of (46) by e−Nl (0,t) ln(μ2μ1) yields

∫ t

0
e−Nl (0,s) ln(μ2μ1)+βT+(s,t)−αT−(s,t)zT (s)z(s)ds

≤
∫ t

0
e−Nl (0,s) ln(μ2μ1)+βT+(s,t)−αT−(s,t)γ 2wT (s)w(s)ds.

It follows from (C1) and (C2) that Nl(0, s) ln(μ2μ1) ≤ α1s + α1η and βT+(s, t) −
αT−(s, t) ≤ −α∗(t − s) + 2c hold. Thus,

∫ t

0
e−αs−α1η−α(t−s)zT (s)z(s)ds ≤

∫ t

0
e−α∗(t−s)+2cγ 2wT (s)w(s)ds.

Let t = T f , it can be obtained

∫ T f

0
zT (s)z(s)ds ≤ γ̄ 2

∫ T f

0
wT (s)w(s)ds,

where γ̄ is defined in Theorem 2.
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Combining Theorem 1, we know that the system (6) is finite-time stabilizable with
H∞ performance. �


4 Numerical Examples

Example 1 Consider the system (12) with the parameters as follows:

A =
[

1.4 −1
−0.2 1

]
, Ad =

[
1.1 0.1
0.1 0.1

]
, D =

[
1 0
0 0

]
, B =

[
0.3 0.8

−0.1 1.9

]
,

L =
[

1 0.1
0.1 0.1

]
, R =

[
2 1
1 2

]
, M11 =

[
1 0
0 0.1

]
, M22 =

[
1 0
0 1

]
.

Choosing T f = 16, h1 = 0.01, h2 = 0.12, α = 0.34, β = 0.9, μ = 2.6, d =
0.58, ε = 0.19, e1 = 0.06, d2w = 0.01, Ξ(t) = I. By solving linear matrix
inequalities (15), (26) and (28), the state feedback gain matrices are given

K1 =
[−87.9478 10.1476

−5.9780 −6.4146

]
, K2 =

[−50.3907 6.7613
−8.2238 −1.1791

]
.

Let α∗ = 0.31, α1 = 0.3, it holds that
T+(pm, pm+1)

T−(pm, pm+1)
≤ 0.0248 according

to (C1), and it holds that Fl(pm, pm+1) ≤ 0.1456 according to (C2). Thus, if
T+(pm, pm+1)

T−(pm, pm+1)
≤ 0.0248 and Fl(pm, pm+1) ≤ 0.1456 hold for switching signal

σ(t), the system (12) is FTB. Suppose that pm+1− pm = η,∀m ∈ N, and let η = 8s. It
can be seen that T+(pm, pm+1) ≤ 0.1935, and Nl(pm, pm+1) = Fl(pm, pm+1)×η ≤
1.1648. It means that the LDP can arise once in each 8s, and the permitted length of
LDP can reach to 0.1935.

Example 2 Consider the system (6) with the parameters as follows:

A =
[

1.4 −1
−0.2 1

]
, Ad =

[
1.1 0.1
0.1 0.1

]
, B =

[
0.3 0.8

−0.1 1.9

]
, D = F =

[
1 0
0 0

]
,

M11 =
[
1 0
0 0.1

]
, M22 = M33 =

[
1 0
0 1

]
, L =

[
1 0.1
0.1 0.1

]
,

G = H =
[
0 0
0 0

]
, R =

[
2 1
1 2

]
.

Choosing T f = 16, h1 = 0.01, h2 = 0.12, α = 0.34, β = 1.9, μ = 3.5, d =
0.58, ε = 0.19, e1 = 0.06, d2w = 0.01, Ξ(t) = I. By solving linear matrix
inequalities (41), (42) and (28), the controller gain is

K1 =
[−111.4323 16.3923

−10.0020 −9.3632

]
, K2 =

[−62.5018 11.3196
−17.8095 −0.6246

]
.
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Let α∗ = 0.31, α1 = 0.3, it holds that
T+(pm, pm+1)

T−(pm, pm+1)
≤ 0.0200 according

to (C1), and it holds that Fl(pm, pm+1) ≤ 0.1116 according to (C2). Thus, if
T+(pm, pm+1)

T−(pm, pm+1)
≤ 0.0200 and Fl(pm, pm+1) ≤ 0.1116 hold for switching signal

σ(t), the system (10) is FTB. Moreover, we choose γ = 0.1, then it can be obtained
that H∞ performance index is γ̄ = 9.5978.

5 Conclusions

The robust finite-time H∞ control for the uncertain delay systems with LDP has been
investigated by using a switchingmethod. Under the limitation of frequency and length
rate of LDP, a controller has been designed to ensure the FTB with H∞ performance.
We have also illustrated the effectiveness of the proposed results by two numerical
examples. Our future work will focus on extending the results in this paper to the
uncertain neutral systems with LDP.
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