
Circuits Syst Signal Process (2018) 37:4548–4567
https://doi.org/10.1007/s00034-018-0778-8

A High-Speed VLSI Architecture for Motion
Estimation Using Modified Adaptive Rood Pattern
Search Algorithm

Baishik Biswas1 · Rohan Mukherjee1 · Indrajit Chakrabarti1 ·
Pranab Kumar Dutta2 · Ajoy Kumar Ray1

Received: 27 April 2017 / Revised: 31 January 2018 / Accepted: 1 February 2018 /
Published online: 15 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The paper presents an efficientVLSI architecture for fastMotionEstimation
in video codec usingmodifiedAdaptive Rood Pattern SearchAlgorithm. The proposed
architecture uses an interleaved memory arrangement and an early check technique
to compute the Sum of Absolute Differences. The proposed design can process High
Definition (1080p) video frames in real time while optimizing the hardware area. The
architecture has been implemented in verilog HDL and mapped to 45 nm FPGA. It
uses only 6.8K gates for the implementation of the datapath and the controller. It
achieves a maximum frequency of 120MHz. However, working at 100MHz, it is able
to process 60 HD (1920×1080) frames per second while consuming 39mWof power.
The proposed architecture achieves premium speed with an optimum power and area
requirements and can be suitably incorporated in light-weight video-intensive devices
like smart-phones, tablet computers.

B Baishik Biswas
boishik@gmail.com

Rohan Mukherjee
mukherjee.rohan666@gmail.com

Indrajit Chakrabarti
indrajit@ece.iitkgp.ernet.in

Pranab Kumar Dutta
pkd@ee.iitkgp.ernet.in

Ajoy Kumar Ray
akray@ece.iitkgp.ernet.in

1 Department of Electronics and Electrical Communication Engineering, Indian Institute of
Technology Kharagpur, Kharagpur, West Bengal 721302, India

2 Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,
West Bengal 721302, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-018-0778-8&domain=pdf

Circuits Syst Signal Process (2018) 37:4548–4567 4549

Keywords VLSI architecture · FPGA · Motion Estimation · Modified Adaptive
Rood Pattern Search · Interleaved memory

1 Introduction

Recently, there has been a huge demand for high-quality video on mobile devices that
operate within stringent power budget and area constraints. Video codecs are now
required to perform highly computational tasks satisfying real-time demands. In a
video coding system, Motion Estimation (ME) is usually identified as the most com-
putationally intensive operation. ME is a widely used compression technique wherein
temporal redundancies are exploited to achieve high efficiency in video coding. How-
ever, the computationally demanding Motion Estimation requires the use of dedicated
VLSI architectures to achieve optimum speed, area and power requirement [16].

Block matching is a simple and an efficient method of motion estimation. The Sum
ofAbsolute Differences (SAD) is usually adopted as thematching criteria.With a view
to reduce the computational complexity, a number of fast search algorithms have been
proposed such as Three Step Search (TSS) [9], Diamond Search (DS) [22], Hexagonal-
Based Search (HEXBS) [21], Adaptive Rood Pattern Search (ARPS) [14] and the
modified Adaptive Rood Pattern Search (ARPS2) [11]. It has been shown in [14] and
[11] that the ARPS and ARPS2 are considerably faster than DS and HEXBS without
compromising the visual quality. The speed and PSNR performance of ARPS and
ARPS2 algorithms have made them valuable for the implementation in video codecs.
However, unlike full search (FS), TSS, DS or HEXBS, the irregular search pattern in
ARPS and ARPS2 does not make them attractive for hardware implementation.

Use of systolic array has been a popular choice for mapping of fast BlockMatching
Algorithms (BMA) to hardware. Processing Elements (PE), having basic hardware
modules are arranged in array or mesh formation. As discussed in [10], systolic array
architectures can be categorized by the dimension, the number of PEs and the data-
flow involved. Any systolic array architecture requires the regular flow of data in and
out of the PEs. Data are sent to all the PEs with an aim to parallelize the operation. The
video frame is usually stored in Random Access Memory (RAM) which permits the
desired data flow. The primary challenge encountered in conventional architectures is
to maintain a regular data flow and ensure maximum PE utilization. Some architecture
proposes reconfigurable PE array to support blocks of various sizes. Use of bigger PE
generally leads to improved frame rate but at the cost of increased hardware area,
high memory bandwidth requirement and more power consumption. Moreover, array
architectures are usually suitable for the implementation of regular ME algorithms
like FS, TSS, HEX, and DS that have a fixed initial stage of search with a predefined
set of points. In contrast, the initial pattern in ARPS2 is highly adaptive with variable
number of points. Not only does the adaptive pattern make mapping to PE array
complex, also the hardware remains significantly unutilized. This paper proposes a
VLSI architecture that avoids the use of traditional PE arrays for the implementation
of fast search algorithm ARPS2. The proposed architecture avoids the use of multiple
PEs to optimize the hardware area while leveraging the speed of ARPS2 algorithm.

4550 Circuits Syst Signal Process (2018) 37:4548–4567

Array architectures can also be classified according to the dataflow involved. The
array architectures proposed in the literature can be broadly categorized into inter- and
intra-classes of architectures which primarily differ in the data-flow. Each processing
element (PE) in the inter-level architecture is responsible for the computation of the
Sum of Absolute Difference (SAD) for one candidate block. On the other hand, the
PEs in the intra-level architecture compute the distortion for each pixel in the can-
didate blocks. The architectures proposed in [1,3–6,8,10,13,15,17–20] are based on
inter/intra-level schemes with PEs organized in either 1D or 2D arrays. The architec-
ture proposed by Jehng et al. [7] for 3 step hierarchical search (3SHS) is a seminal
work on 2D systolicmesh architectures. It is an example of intra -level schemewherein
the PEs are arranged in the form of 4 × 4 2D array. Each PE is loaded with a pixel
value of a 4 × 4 current frame macroblock. A tree-like SAD adder arrangement has
been used to accumulate the difference values computed by the PEs. Although suit-
able for 3SHS, such a dataflow would not be able to capture the variability of ARPS2.
The architecture proposed by Ndili et al. [13] for DS uses on-chip buffer memories
that are loaded with the search passes. Although such a memory arrangement could
be adapted for ARPS2, the buffer memory could remain largely unutilized owing to
the variable number of search points. Recent work by Akin et al. [1] modified the
traditional intra-level architecture to adapt to bilateral Motion Estimation. The archi-
tecture by Tsai et al. [17] takes in consideration an effective algorithmwhich is capable
of reducing the number of search points and has offered a 2-D systolic array-based
design that works at 200MHz with 191K gate count. Rehan et al. [15] have proposed
FPGA-based implementation of Flexible Triangular Search (FTS) which lowers the
area by adaptive selection of certain defined locations within the search window. A
parallel architecture for TSS has been presented by Tseng et al. [18] with enhanced
throughput and low area.

1.1 Motivation and Contribution of the Present Work

Certain hindrances exist while adopting the array-based designs and fine grained data
reuse scheme for adaptive algorithms like ARPS and ARPS2. The irregular and unpre-
dictable data flow in ARPS2 algorithm leads to a complex memory access pattern
which further increases the intricacies of realizing intra and inter architectures. More-
over, the PE arrays and buffer memory can remain largely unutilized.

Previous VLSI designs for iterative and adaptive algorithms like hexagonal search
and ARPS [2,12] have certain limitations. The designs use single PE and follow
sequential execution. As a result, they can process frames of CIF format.

The architecture presented in this paper for ARPS2 explores a flexible computa-
tion methodology which does not involve PE arrays. Since ARPS2 is a considerably
fast search algorithm, the proposed design aims to reduce the hardware area signifi-
cantly without sacrificing real-time speed. The proposed architecture also introduces
an efficient pattern generation scheme with an early SAD check technique to save
the clock cycles. Another contributory feature of the architecture is the interleaved
memory arrangement which improves the throughput. The design also introduces an
organized sharing strategy of the search window pixels which enables the process-

Circuits Syst Signal Process (2018) 37:4548–4567 4551

ing of large video frames. The proposed architecture is able to process 60 Full HD
frames (1920×1080) per second while taking up only 49.50K gates. It overcomes the
limitation of previous design of ARPS in [2] that can process frames of CIF format.
The design methodology adopted in this work can also be used for implementation of
other adaptiveME algorithms. The area and clock cycles performance of the proposed
architecture has been compared with other existing fast search architectures and the
present work is demonstrated to be ahead of others.

The remainder of the paper is organized as follows. Section 2 describes themodified
ARPS algorithm;whereas Sect. 3 discusses the proposed architecture. Section 4 shows
the results and finally, Sect. 5 draws the conclusion.

2 The Modified ARPS Algorithm

Speed of fast ME algorithms is usually indicated by how few points are needed to be
searched to get the best match. The modified ARPS algorithm which is proposed by
Ma et al. [11] is one such fast algorithm that has shown remarkable speed. Although
based on the popularARPS search technique proposed byNie andMa [14], ARPS2 has
even fewer search points with very small degradation in the PSNR achieved. Table 1
compares the PSNR achieved by the existing search algorithms with that of ARPS2.
Table 2 demonstrates the speed of ARPS2 algorithm tested on standard CIF sequences.

As seen from Table 2, ARPS2 search has the smallest number of search points as
compared to the standard existing algorithms. The following paragraph discusses the
ARPS2 algorithm in detail.

The ARPS2 algorithm consists of two distinct stages of search: an initial adaptive
stage and compact unity rood pattern search stage. As shown in Fig. 1, the modified
ARPS algorithm [11] is very similar to the ARP search algorithm [14] with the excep-
tion of the initial search pattern. Like ARPS, the search points of ARPS2 are located
on the vertices of a symmetrical rood (cross) shaped pattern.

However, the center of the rood pattern is displaced from the origin as shown in
Fig. 1b by a distance equal to the predicted Motion Vector (MV). Figure 1c shows the
Unity Rood Pattern (URP) search points which are equivalent to the small diamond
search described in [22]. In order to define the rood pattern parameters, the ARPS
algorithm defines a set of co-located macroblocks called the Region of Support (ROS)
shown in Fig. 2. The X and Y arm lengths, denoted by Tx and Ty , respectively, are
computed from the Motion Vectors (MVs) of the ROS blocks by using equations (1-
2). Unlike ARPS, ARPS2 does not have any predicted point as the center of the rood
pattern is itself placed on the predicted point. The predicted point is also derived from
the Motion Vectors of the ROS. For simplicity, the Motion Vector of the left-most
neighboring block (i.e., block A) has been chosen as the predicted Motion Vector and
its motion vector is adopted as predicted motion vector (MVP).

Tx = 1

2
(max(MVx) − min(MVx)) (1)

Ty = 1

2
(max(MVy) − min(MVy)) (2)

4552 Circuits Syst Signal Process (2018) 37:4548–4567

Ta
bl

e
1

PS
N
R
of

fe
w
ex
is
tin

g
se
ar
ch

al
go
ri
th
m
s
(u
ni
to

f
PS

N
R
is
dB

)

Se
qu
en
ce

FS
T
SS

[9
]

D
S
[2
2]

H
E
X
[2
1]

A
R
PS

[1
4]

A
R
PS

2
[1
1]

Fo
re
m
an

36
.4
7

35
.8
4

36
.1
7

35
.5
9

36
.0
4

35
.9
9

C
oa
st
gu

ar
d

33
.9
5

33
.7
1

34
.1
5

33
.6
0

33
.9
0

33
.8
9

Te
nn

is
29

.8
1

29
.1
5

28
.1
0

29
.1
8

29
.2
8

29
.2
0

N
ew

s
40

.1
1

39
.9
5

39
.4
7

39
.8
4

39
.9
7

39
.9
7

M
ot
he
r
an
d
da
ug

ht
er

42
.9
0

42
.7
7

42
.0
6

42
.6
5

42
.8
0

42
.7
9

M
ob

ile
29

.7
7

29
.7
3

29
.6
6

29
.6
7

29
.7
5

29
.7
3

H
ig
hw

ay
38

.5
7

37
.8
2

37
.2
4

37
.4
2

37
.4
9

37
.6
1

So
cc
er

22
.6
9

22
.2
2

22
.1
3

22
.1
3

22
.6
2

22
.5
3

Circuits Syst Signal Process (2018) 37:4548–4567 4553

Table 2 Average number of search points of standard ME algorithms

Sequence FS TSS [9] DS [22] HEX [21] ARPS [14] ARPS2 [11]

Foreman 256 27 17.13 13.28 9.74 8.11

Coastguard 256 27 17.74 13.78 9.17 7.14

Tennis 256 27 17.90 13.71 9.89 8.95

News 256 27 13.45 11.26 6.04 6.00

Mother and daughter 256 27 14.67 11.84 7.43 7.33

Mobile 256 27 13.89 11.33 7.38 6.23

Highway 256 27 16.11 12.77 8.77 8.04

Soccer 256 27 24.88 17.41 14.01 13.37

(a) (b)

(c)

0
-1

1

-2
-3

2
3

0 1 2-2 -1

2
1

3

0
-1

4
5
6

-2
-3

0 1 2 3 4 5-13- 2-
Predicted MV

X arm
size

Y arm
size

6 7

2
1

3

0
-1

4

-2
-3

0 1 2 3 4 53- 2- 1-

Predicted MV
-4-5

-4
-5

Fig. 1 The search patterns in ARPS and ARPS2. The dots indicate the location of a 16 × 16 macroblock.
a The initial adaptive pattern of ARPS. b The Modified Adaptive Rood Pattern. c The unity rood pattern

MVx and MVy refer to the x and y components of all the Motion Vectors in the
ROS. The logical operators ‘max’ and ‘min’ compute the maximum and the minimum
values, respectively, of all the arguments.

The initial rood pattern is followed by a compact Unity Rood Pattern (URP) for
refined local search. The URP is applied iteratively as long as the new search center
does not coincide with the previous search center. It consists of a rood-shaped pattern
with an arm length of 1 as shown in Fig. 1c. The Sum of Absolute Differences (SAD)
has been adopted as the distortion criterion. SAD for a block-size of N × M pixels is
defined as

SAD =
∑

1≤i≤N

∑

i≤ j≤M

|ref(xp + i, yp + j) − curr(x0 + i, y0 + j)| (3)

where (xp, yp) and (x0, y0) refer to the candidate block and the current block, respec-
tively.

4554 Circuits Syst Signal Process (2018) 37:4548–4567

Fig. 2 Region of support (ROS)
for the prediction of roof pattern
in ARPS2 algorithm. Blocks A,
B, C, D are the four neighboring
blocks of the current block E

D(i-1,j-1) B(i-1,j) C(i-1,j+1)

A(i,j-1) E(i,j)

3 Proposed Architecture

This section covers the details of the proposed design. The Sum of Absolute Differ-
ences (SAD) is computed for every point in a sequence and the minimum SAD point
is obtained thereafter. Figure 3 shows the top-level diagram of the system required
to implement the algorithm. The logical block marked as P is the pipeline registers.
The Search Pattern Generator and the SAD computation blocks form a computational
pipeline. The diagram also presents the architecture in the form of a point-to-point net-
work of logical block, where the New Position Generator is the ’master’ unit initialing
all transactions. Unlike conventional bus-based architecture, the master unit has point
to point links to all of the hardware units namely Motion Vector Storage, Register
Block, SAD computation unit. The latter comprises of the reference and current frame
buffers along with the SAD computation logic. The registers are not memory mapped.
There are point to connection (register connection entails load enable, data lines) to
each individual registers.

The architecture makes use of small buffer memory to store the search window.
The buffer memory is periodically loaded with image data from an external memory.
The following subsections discuss the implementation of the various modules of the
architecture shown in Fig. 3.

3.1 New Position and Offset Generator

This module generates the offsets of the search points in the ARPS2 algorithm. The
offsets are generated in the sequence they are numbered in Fig. 4a, b. The Sum of
Absolute Difference is computed between a reference block and the current frame
macroblock. In the proposed design, SAD computation is performed as long as the
SAD is less than existing minimum SAD. Such a termination procedure helps save
clock cycles. Ideally, searching the points sorted in the increasing order of SADwould
lead to the maximum savings in clock cycle. However, a significant saving in clock
cycle could be achieved by starting the search with the predicted point, i.e., point ‘0’
of Fig. 4a. Although the predicted point may not be the global minimum, it lies close
to the global minimum and it is expected to have comparatively low SAD value. Such
early termination leads to a speedup of close 30%. The results section further discusses
the extent of overall reduction in number of clock cycles.

Circuits Syst Signal Process (2018) 37:4548–4567 4555

Fig. 3 The top-level system diagram for the implementation of Modified Adaptive Rood Pattern Search
Algorithm. The dotted lines represent control signals

(a) ARP (b) URP

(1)

(0)(4) (2)

(3)

2
1

3

0
-1

4
5
6

-2
-3

0 1 2 3 4 53- 2- 1- 6 7

(1)

)2()4()0(

(3)

(5)

0 1

-2

-3
2- 1- 2

0

-1

1

Fig. 4 The search sequence for ARPS2 algorithm. Points are searched in the sequence they are marked

The high speed achieved by ARPS2 search is a consequence of the adaptive search
pattern. Although the initial Adaptive Rood Pattern (ARP) consists of 6 points (see
Fig. 4a), there could be a varying degree of overlap among the points. For example,
if predicted arm lengths Tx and Ty are 0 and the predicted Motion vector (MVPx ,
MVPy) is not a null vector, search points 1–4 would merge with point 0, leading to
only 2 points in ARP. Similarly, when magnitude of MVPx equals Tx , either point 2
or point 4 merges with the point 5. Therefore, it is evident that the ARP could contain
all 6 possibilities, viz from having 1 point to having all the 6 points in the pattern.
Table 3 further illustrates this statement. ‘URP, ARP-min = pos 5’ in Table 3 implies

4556 Circuits Syst Signal Process (2018) 37:4548–4567

Table 3 Search sequences for various conditions

Stage of search Condition Search sequence

ARP Tx = 0, Ty = 0, MVpredicted = null 0

ARP Tx = 0, Ty = 0, MVpredicted �= null 0, 5

ARP Tx = 0, Ty �= 0,MVpredicted = null 0, 1, 3

ARP Ty = |MVPy |, MVPx = 0 0, 1, 3, 4

URP, ARP-min = pos 5 |MVPx | = Ty = 1, |MVPy | �= Tx 1, 3, 4 or 1, 2, 3

URP, ARP-min = pos 0 Tx = 1, Ty �= 1 1, 3

URP, ARP-min = pos 0 Tx =1, Ty = 1 No points

that the current search stage is the URP following the initial ARP search where the
min SAD point is obtained at position 5 of Fig. 4a.

In order to generate the offsets of the search pattern, the 5 state of the search, i.e.,
parameters such as Tx , Ty , MVPx and MVPy are saved and the positions required
to be skipped are found. A 6 bit loadable register is maintained to associate a ‘skip’
status to every position. If skip is high, the current position is skipped and the next
position is considered. A 3-bit register and an incrementer are maintained to generate
the positions of the search pattern. The incrementer has provisions for incrementing
by 2, 3, 5 or 6 places apart from the default increment by 1. Thus, using the skip
logic, the increments of the counter are determined and the new position is generated
at every positive edge of the clock. The 3 bit position register is loaded with an initial
value of 0 to start the search from position 0. Figure 5 shows the hardware for position
generation.

Equations (4)–(7) describe the Boolean equations for the generation of increment
signals for the position counter.

inc 2 = skip 1 (4)

inc 3 = skip 1& skip 2 (5)

inc 5 = skip 1& skip 2& skip 3& skip 4 (6)

inc 6 = skip 1& skip 2& skip 3& skip 4& skip 5 (7)

The skip values are obtained from the knowledge of the search state. Although
Table 3 is not exhaustive, it serves as the template to generate the skip logic for
individual positions. The first location of the skip register (skip 0) of Fig. 5 belongs to
the position being considered currently. For example, skip 1 high implies that the next
position has to be skipped, whereas skip 2 high along with skip 1 implies that next
2 positions are to be skipped. The skip register of Fig. 5 is initially loaded with the
skip values at the beginning of a new search pattern (ARP or URP) using the external
data input of the multiplexer. Therefore, in order to keep track of the current position,
the skip register is itself left shifted by the ‘increment value’ as shown in Fig. 5. The
shifter is implemented as a barrel shifter with 3 bit (0 to 7 places) shift capability.

Circuits Syst Signal Process (2018) 37:4548–4567 4557

position register
3 bit

3

inc 2 inc 3 inc 5 inc 6

ld_datald

skip 1 skip 2 skip 3 skip 4 skip 5

Shifter

6

shift

skip 0

6

new
position
(p2p1p0)

+

3 Increment
value Incrementor

MUX

External data

external load10

MSB LSB

Fig. 5 Hardware for the generation of new search position

Table 4 Generation of offset from position

Position 5-bit signed offset (row, column) ARP 5-bit signed offset (row, column) URP

0 (0, 0) (0, 0)

1 (−Ty , 0) (−1, 0)

2 (0, Tx) (1, 0)

3 (Ty , 0) (0, 1)

4 (0, −Tx) (0, −1)

5 (−MVx , −MVy) Don’t care

Offsets are generated with respect to position 0, i.e., the predicted motion vector.
Since motion vector is searched in the range − 8 to 7, the offsets are assumed to be
4-bit signed values. Offsets are derived from the position value as shown in Table 4.

3.2 Memory Organization

Two buffers each of size 32× 32 bytes have been used to store the search window. As
the search range is [− 8 to 7], 32 × 32 block of reference frame pixels is sufficient to
store the possible search space for a 16 × 16 current frame macroblock. The buffers
implemented as FPGA block RAM, work in ping pong style, i.e., while one is written
to, the other is read from. The current frame buffer, on the other hand, contains 16×16
block of pixels. Both the current and the reference frame buffers are implemented as

4558 Circuits Syst Signal Process (2018) 37:4548–4567

Search
Window
Buffer 1
Bank 0

Search
Window
Buffer 2
Bank 0

Current
macro-
block

Buffer 1
Bank 0

Reference Frame Buffer

Current Frame Buffer

address
mapping

Current
macro-
block

Buffer 2
Bank 0

reference
frame

addresses

10
10

10
10

6
6

6
6

current
frame

addresses ++

+

|A-B| |A-B| |A-B||A-B|

++

+

|A-B| |A-B| |A-B|

+

|A-B|

Data
Reordering

Fig. 6 The current and the reference frame buffer arrangement

dual-portmemories interleaved 4wayswith a view to increase thememory throughput.
Since the proposed block matching architecture requires only contiguous memory
accesses, it is possible to store the columns of the video frames in interleaved memory.
The buffer sizes have been chosen as 32 × 32, a power of 2 so that memory address
is 10 bits long and the upper 5 bits correspond to row index whereas the lower 5 bits
correspond to the column index. Therefore, given any two-dimensional (row, column)
pixel address, its location can be translated to the linear memory address without
incurring any costs at all. The buffer is written from an external memory as shown in
top-level diagram in Fig. 3. Eight bytes, i.e., 64 bits of data are read from the external
memory every clock cycle during the writing phase of operation.

Figure 6 shows the arrangement of the interleaved memory blocks along with the
tree-like adder arrangement. Since reference frame addresses are generated indepen-
dent of the interleaved memory arrangement, there is a need to assign the correct
address to the memory bank. The address mapping and the data reordering blocks
shown in Fig. 6 have been used for this purpose. The address mapping logic assigns
the correct addresses to the individual memory banks following simple shifting logic.
The data re-ordering block is similar logic entity which ensures that the data values
are synchronized with the input address. The current frame block, however, does not
involve address mapping logic since the current frame addresses are always synchro-
nized with the arrangement of the memory banks. As shown in Fig. 6, each buffer is
composed of four dual-portmemory banks in order to enhance thememory throughput.
There is a 2:1 multiplexer to choose between the banks.

Circuits Syst Signal Process (2018) 37:4548–4567 4559

(a) (b) (c)

Mem 1
(buffer 1)

Mem 2
(buffer 2)

Mem 4
(buffer 2) ..Mem 3

(buffer 1)

Mem C+1
(buffer 1)

0 31 63 95

31

15

47 ...

Reference frame
buffer 2 buffer 1 buffer 2

0 15 31 63

A1 A3 B1 B2 C1A2

Buffer 1
Buffer 2

Buffer 2
Buffer 1
Buffer 2

Buffer read-write status

Time

Buffer 1

Buffer 2
Buffer 1

Buffer
write

Buffer
read

Fig. 7 Mapping search window to search buffers. a The arrangement of reference frame pixels into chunks
of 32 × 32 blocks. b Search order of macroblocks of size 16 × 16. c The buffer read-write sequence

Everymacroblock has a unique 32×32 searchwindow.However, there is significant
overlap between two consecutive search windows. For 16 × 16 search blocks having
search window size of 32 × 32, there would be an overlap of 32 × 16 pixels between
two consecutive search windows in the x (column) direction. In the proposed memory
organization, the reference frame buffer is loaded with the consecutive columns of
reference frame values thereby avoiding the need to re-load the common pixels.

However, overlapping pixels among neighboring search windows in the y (row)
direction could not be reused, since the macroblocks are searched in a raster scan
order. The search window is loaded from the external memory at the beginning of a
new row. The address generation module views the reference frame buffers together as
32×64 memory space. Therefore, a 5 bit row and 6 bit column address is generated to
address the buffer memory space. The most significant bit (MSB) of the row address
chooses the search buffer. The generated 11 bit search window address belongs to
search buffer 1 if the row MSB is logical low otherwise it belongs to search buffer 2.

In order to process large video frames, the reference frame is divided into sequences
of 32 × 32 memory blocks marked as Mem 1, Mem 2 etc shown in Fig. 7a. These
memory blocks are alternatively loaded into the search window buffers, for, e.g., Mem
1 is written to buffer 1, while Mem 2 is mapped to buffer 2, Mem 3 is written to buffer
1 again and so on. Each such memory block is associated with the search window of a
16× 16 macroblock. Points marked as A1, A2, B1, B2 etc shown in Fig. 7b represent
a (16× 16) macroblock centered on the dots. It can be observed that only the 32× 32
search window corresponding to macroblocks lying in the middle such as A2, B2 lie
entirely in a single buffer memory, i.e, buffer 1 or buffer 2.

Interestingly, for macroblocks on the boundary such as A1, B1 and C1, data from
both the buffers are required as the search window is shared between the two buffer
memories. Therefore, buffer 2 is written while the macroblock A2 is being processed
such that both the buffers are available when B1 is being searched. Figure 7c further
elucidates the buffer read-write sequences.

A higher search window translates to a larger buffer. Doubling the search range in
both x and y directions typically quadruples the size of the buffer memories required

4560 Circuits Syst Signal Process (2018) 37:4548–4567

MV storage Block RAM
128 * 10 bits

ROS 1

ROS 2

ROS 3

ROS 4

Update
ROS

read/ write
address MV

write

read

Default
(2,2)

Fig. 8 Motion Vector Storage

to hold the search window. Since the proposed architecture uses a ping-pong buffer
arrangement, a larger buffer implies more time to load buffer from external memory.
The ARPS2 search algorithm, on the other hand, typically converges quickly within 2
to 3 iterations, where each iteration refers the searching of a full rood pattern points.
As it is always efficient to keep the ME engine busy all the time, this imposes higher
bandwidth requirements on the external DRAM to on-chip buffer interfaces. Ideally, it
is desired that the ME engine becomes the bottleneck in achieving higher throughput.
Use of the larger buffers not only demands larger bandwidth from external memory,
but it also contributes to increased hardware area and dynamic power consumption. A
search window of [− 8, 7] was chosen to demonstrate the effectiveness of the proposed
hardware without imposing high bandwidth constraints on external memory.

3.3 Motion Vector Storage

The computation of the rood arm lengths requires the motion vector values of the four
Region of Support (ROS) blocks. Themotion vectors are stored in on-chip block RAM
having 128 locations each 10 bits wide. The ROS for two consecutive macroblocks
have three MVs in common. Block E becomes the new A whereas block B becomes
the new block D and C becomes the new B for the ROS of next macroblock whose best
match is to be found. Therefore, only one memory access is required to fetch the MV
values of the new C block. There are 128 locations in the Block RAM to accommodate
for 128MV locations required for processing of frames of size 1980×1020 or higher.
Figure 8 shows the hardware arrangement for storing the MVs. The ‘update ROS’
logic block performs a shifting operation to assign the appropriate values of the MVs
to the ROS registers.

3.4 Pixel Address Generation

The architecture addresses 8 pixels in chunks of 2×4 blocks per clock cycle. Therefore,
to address a 16× 16 block, two bit counter for the column index and three bit counter
for the row index are used.

Circuits Syst Signal Process (2018) 37:4548–4567 4561

Table 5 Equivalent gate count Components Equivalent gates

NOR2, NAND2 1.0

2:1 MUX (1 bit) 3.0

Full adder (1 bit) 11.0

DFF (1 bit) 2.0

Dual port RAM (1 bit) 2.0

Table 6 FPGA resource usage

FPGA resource Used Available Utilization %

No of slice registers 93 93,120 0.10

No of slice LUTs 299 46,560 0.64

No of fully used LUT-FF pair used 72 320 22.50

No of bonded input output buffers (IOBs) 97 240 40.42

No of block RAM 9 156 5.78

4 Results

The architecture has been implemented in verilog HDL and mapped to 45 nm FPGA
technology. Simulation results have been presented in this section to compute the
throughput of the system and the gate count of the architecture.

4.1 Hardware Evaluation

This subsection discusses the area requirement of the proposed design. In order to
compute the number of gates required by the proposed architecture, the methodology
followed by [2,12] is adopted wherein a two input NAND gate is considered one
equivalent gate. Considering the accepted methodology of [2,12], an equivalent gate
count is computed for some of the basic hardware modules. Table 5 presents the gate
equivalent of some of the basic architectural units in CMOS technology.

The synthesis results from the HDL compiler yields the FPGA resource usage
and the macroblock statistics. Table 6 shows the uses of the target FPGA resources
whereas Table 7 shows the gate requirements for the various modules of the proposed
architecture.

4.2 Frame Throughput

The critical path of the architecture obtained after post-placement and routing simu-
lation is found to be 7.990 ns. The minimum input arrival time before clock is found
to be 1.709 ns whereas the maximum output time after positive edge of clock is found
to be 7.923 ns. Therefore, the architecture can be operated at a maximum frequency

4562 Circuits Syst Signal Process (2018) 37:4548–4567

Table 7 Hardware requirements of the architecture

Components Equivalent gates

Datapath and controller

Adders/subtractors 3870

Decoder 15

Comparators 790

Multiplexer 1152

Registers 1034

Equivalent gate count of datapath and controller 6861

Memory units

Frame storage buffer RAM (32 × 32 bytes) × 2 32.8 K

Current frame storage RAM (16 × 16 bytes) × 2 8.2 K

MV storage RAM (128 bytes) 1.64 K

Equivalent gate count of the memory units 42.64 K

Total gate count 49.50 K

Table 8 Clock cycles
requirements

Sequences Cycles per MB

Foreman 177

Coastguard 147

Tennis 217

News 88

Mother and daughter 159

Mobile 130

Highway 204

Soccer 358

Stefan 191

of 120 MHz. The average number of search points comes out to be 8.1. However, the
more significant parameter is the number of clock cycles required to process a frame.
Table 8 shows the average number of clock cycles required to process a macroblock.
It takes an average of 186 clock cycles to find the best match.

Without the SAD check, it would have taken 8.1 × (16 × 16)/8 = 236.8 cycles
theoretically. Therefore, the proposed architecture is able to save around 29% of clock
cycles on an average. The architecture operating at 120 MHz frequency is able to
process the 645K number of 16×16macroblocks per second on an average. Therefore,
a throughput of 79 full HD (1920 × 1080) frames per second can be achieved. The
FPGA post-layout power consumption is calculated using a gate-level netlist and
switching activity file generated from the verilog test bench. The dynamic power
consumption is reported to be 39 mW at a frequency of 100 MHz which is sufficient
to process 60 full HD frames per second.

Circuits Syst Signal Process (2018) 37:4548–4567 4563

The proposed design is not fundamentally limited by architectural units to process
full HD resolutions of 1920×1080. From an architectural standpoint, it has the ability
to support full HD resolution of 1920×1080 as shown in Fig. 7. The architecture uses
two on-chip buffers which work in a ping-pong style, i.e, one is read from while the
other is written to. This allows the mapping of the entire reference frame into buffers.
However, from an algorithmic standpoint, the proposed design uses a search window
[− 8, 7]which achieves PSNRclose to that obtained fromFull Search usage. The paper
aims to leverage the speed of ARPS2 algorithm to arrive at a compact, lightweight
hardware while achieving significantly high throughput at the same time. However,
the architecture is quite flexible and the search window can be scaled to higher values,
for example [− 32, 31]. As discussed earlier, using a larger buffer might mean that
the frame loading from external memory will become the critical path as opposed to
the Motion Estimation engine pipeline.

4.3 Comparison

Table 9 compares the hardware performance metrics of the proposed architecture with
the existing architectures of some of the standard ME algorithms. Comparisons are
done with VLSI architectures executing a varied range of ME algorithms including
the well-known FS, TSS and DS and their variants. A parameter called the AT metric
[2,12] which is the product of Hardware Area (A) and Clock cycles (T) required for
a macroblock has been used for comparison. To demonstrate the hardware efficiency,
another metric S/A has been defined which denotes the number of macroblocks pro-
cessed per second per gate. Table 10 on the other hand compares the performance of
the proposed design with existing FPGA-based architectures. Similarly, an efficiency
metric S/L has been defined which quantifies the number of macroblocks that can be
processed per second by a single LUT.

It is evident from Tables 9 and 10 that the architecture presented in this paper deliv-
ers a better performance. By avoiding the use of intra/inter-level architectures, the
hardware area has been reduced significantly. The proposed architecture stands ahead
of others in terms of the AT metric. Also, it exhibits higher S/A value as compared
to the existing architectures. A higher S/A metric is an indication of efficient hard-
ware utilization. Apart from speed and area, our architecture also demonstrates power
efficiency as the act of interleaving the memory allows the operating frequency to be
scaled down for a given target speed. The FPGA post-route power analyzer indicated
that the architecture consumes 15 mW dynamic power while operating at 40 MHz
which is sufficient to process 30 720p HD (1280 × 720) frames per second. Hence,
the proposed architecture can also be used in low power portable applications as well.

The architecture proposed by Ndili et al. [13], however, exhibits better throughput
but it takes up large hardware area (268K) and dissipates higher power as compared
to the proposed design. Although the architecture implemented by Tsai [17] covers a
large search range (48×32), it demonstrates a lesser hardware efficiency as compared
to the proposed architecture on account of using 256 PE-based architecture. Chat2
[4] demonstrates an inter-level architecture using 4 PEs, but the hardware require-
ment is significantly higher as compared to the proposed design, primarily due to

4564 Circuits Syst Signal Process (2018) 37:4548–4567

Ta
bl

e
9

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
w
ith

ex
is
tin

g
M
E
ar
ch
ite
ct
ur
es

A
rc
hi
te
ct
ur
e

A
lg
or
ith

m
C
yc
le
s
pe
r
M
B
(T
)

A
re
a
(A

)
T
hr
ou
gh
pu
t(
S)

A
T
m
et
ri
c

S/
A
m
et
ri
c

Pr
op

os
ed

A
R
PS

2
18

6
49

.5
0
K

64
5
K

9.
21

K
13

.0
3

N
di
li
[1
3]

H
ar
dw

ar
e
m
od

ifi
ed

D
S

27
0

26
8
K

91
3
K

72
.3
6
K

3.
39

T
se
ng

[1
8]

V
ar
ia
bl
e
bl
oc
k
T
SS

77
4

50
.8
K

48
6
K

39
.3
2
K

9.
57

K
im

[8
]

V
ar
ia
bl
e
bl
oc
k
fu
ll
se
ar
ch

41
11

39
K

10
1
K

12
7.
44

K
2.
59

W
ei
[1
9]

V
ar
ia
bl
e
bl
oc
k
si
ze

M
E

11
29

16
0
K

17
7
K

18
0.
64

K
1.
10

6

D
in
g
[5
]

D
ia
m
on

d
se
ar
ch

23
5

48
K

<
56

7
K

11
.2
8
K

11
.8
1

Y
in

[2
0]

M
ul
ti-
re
so
lu
tio

n
se
ar
ch

38
4

38
2
K

24
8
K

14
6.
69

K
0.
65

T
sa
i[
17

]
D
ed
ic
at
ed

al
go

ri
th
m

16
14

19
1
K

12
4
K

30
8.
27

K
0.
65

C
ha
t2

[4
]

Fa
st
2
st
ag
e
se
ar
ch

35
0

45
7.
5
K

36
8
K

16
0.
13

K
0.
80

Circuits Syst Signal Process (2018) 37:4548–4567 4565

Ta
bl

e
10

C
om

pa
ri
so
n
w
ith

FP
G
A
ar
ch
ite
ct
ur
es

A
rc
hi
te
ct
ur
e

A
lg
or
ith

m
N
um

be
r
of

sl
ic
es

N
um

be
r
of

L
U
T
(L
)

N
um

be
r
of

B
R
A
M
s

T
hr
ou
gh
pu
t(
S)

M
ac
ro
bl
oc
ks
/s

M
ac
ro
bl
oc
ks
/s
pe
r
L
U
T
(S
/L
)

Pr
op

os
ed

A
R
PS

2
–

29
9

9
64

5
K

2.
15

K

N
di
li
[1
3]

M
od

ifi
ed

D
S

11
,4
00

18
,7
00

12
9

90
8
K

0.
05

K

A
ki
n
[1
]

D
ed
ic
at
ed

43
20

14
,0
67

16
2.
25

M
0.
16

K

M
uk

he
rj
ee

[1
2]

H
E
X
B
S

–
19

29
12

8
13

5
K

0.
7
K

C
ha
t1

[3
]

D
S

73
1

11
03

–
96

4
K

0.
87

K

R
eh
an

[1
5]

FT
S

19
95

15
58

4
54

0
K

0.
35

K

E
l-
A
sh
ry

[6
]

FT
S

24
12

17
77

4
1.
5
M

0.
84

K

4566 Circuits Syst Signal Process (2018) 37:4548–4567

large on-chip memory requirements. Table 10 compares the performance of the pro-
posed architecture with some of the existing architectures implemented on FPGA.
The proposed architecture achieves the highest throughput per LUT as compared to
the existing FPGA architectures. Akin [1] demonstrates a better throughput but the
FPGA resource usage (14067 LUTs) is more than that of the proposed design on
account of using 256 PE-based intra-array architecture. Moreover, as a result of using
highly parallel architecture, the dynamic power consumption is considerable higher
(165 mW) in [1] as compared to the proposed design which dissipates 39 mW for the
processing of full HD frames (1980× 1080). The proposed design is able to process a
significantly higher number of macroblocks per second as compared to Mukherjee et
al. [12] because of the use of interleaved memory architecture. Chat1 [3] demonstrates
high throughput in FPGA by employing fast 1 bit transformed ME. It consumes 59
mW of power whereas the proposed architecture executing ARPS2 consumes only 15
mw of power for processing of SDTV frames (1280 × 720). Therefore, the proposed
design demonstrates a good trade-off between speed, area and power.

5 Conclusions

The proposed architecture in this paper implements a highly adaptive Motion Estima-
tion algorithm to achieve high speed and optimized area. The design presented here
addresses all the challenges of implementing an adaptive algorithm like ARPS2 in
hardware. The design methodology can also be adopted for implementing other adap-
tive ME algorithms. The proposed design is able to compute the ME in the just 186
clock cycles in the average case. Owing to the high speed of the adaptive search, frame
throughput of 60 SHD (1920 × 1080) frames is achieved at the cost of using small
hardware area. The paper also presents a novel interleaved memory arrangement to
speed up the computation and an efficient offset generation mechanism for the adap-
tive search patterns. The proposed design can be suitably incorporated in high-quality
video coding applications like HDTV, video conferencing, smart-phones and tablet
computers.

References

1. A. Akin, M. Cetin, Z. Ozcan, B. Erbagci, I. Hamzaoglu, An adaptive bilateral Motion Estimation
algorithm and its hardware architecture. IEEE Trans. Consum. Electron. 58(2), 712–720 (2012)

2. B.Biswas,R.Mukherjee, I. Chakrabarti, Efficient architecture of adaptive rood pattern search technique
for fast motion estimation. Microprocess. Microsyst. 39(3), 200–209 (2015)

3. S.K.Chatterjee, I. Chakrabarti, LowpowerVLSI architecture for 1-bit transformation based fastmotion
estimation. IEEE Trans. Consum. Electron. 56(4), 2652–2660 (2010)

4. S.K. Chatterjee, I. Chakrabarti, Power efficient Motion Estimation algorithm and architecture based
on pixel truncation. IEEE Trans. Consum. Electron. 57(4), 1782–1790 (2011)

5. Y. Ding, X.L. Yan, Parallel architecture of motion estimation for video format conversion with cen-
ter biased diamond search, in International Conference on Information Engineering and Computer
Science, 2009. ICIECS 2009, pp. 1–4 (2009)

6. R. El-Ashry, M. Rehan, H. El-Kamchouchi, F. Gebali, Performance-optimized FPGA implementa-
tion for the flexible triangle search block-based motion estimation algorithm, in Proceeding of IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE’11), pp. 640–643 (2011)

Circuits Syst Signal Process (2018) 37:4548–4567 4567

7. Y.S. Jehng, L.G. Chen, T.D. Chiueh, An efficient and simple VLSI tree architecture for motion esti-
mation algorithms. IEEE Trans. Signal Process. 41(2), 889–900 (1993)

8. J. Kim, T. Park, A novel VLSI architecture for full-search variable block-size motion estimation. IEEE
Trans. Consum. Electron. 55(2), 728–733 (2009)

9. T. Koga, K. Linuma, A. Hirano, T. Ishiguro, Motion-compensated inter frame coding for video con-
ferencing, in Proceedings of National Telecommunications Conference (NTC’81), pp. 3–5 (1981)

10. T. Komarek, P. Pirsch, Array architectures for block motion algorithms. IEEE Trans. Circuits Syst.
6(10), 1301–1308 (1989)

11. K.K. Ma, G. Qiu, An improved adaptive rood pattern search for fast block-matching motion estimation
in JVT/H.26L, in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS’03),
pp. 708–711 (2003)

12. R. Mukherjee, B. Biswas, I. Chakrabarti, P.K. Dutta, S. Sengupta, A.K. Ray, Speed-area optimized
VLSI architecture of hexagonal search algorithm for Motion Estimation of 512× 512 frames. Circuits
Syst. Signal Process. 36(2), 640–657 (2017)

13. O.Ndili, T. Ogunfunmi, Algorithm and architecture co-design of hardware-oriented,modified diamond
search for fast Motion Estimation in H. 264/AVC. IEEE Trans. Circuits Syst. Video Technol. 21(9),
1214–1227 (2011)

14. Y. Nie, K.K. Ma, Adaptive rood pattern search for fast block-matching motion estimation. IEEE Trans.
Image Process. 11(12), 1442–1449 (2002)

15. M. Rehan, M. El-Kharashi, P. Agathoklis, F. Gebali, An fpga implementation of the flexible triangle
search algorithm for block based motion estimation, in Proceeding of IEEE International Symposium
on Circuits and Systems (ISCAS’06), pp. 521–524 (2006)

16. I.E.G. Richardson, Video codec design: developing image and video compression systems (JohnWiley
& Sons, 2002)

17. A.C. Tsai, K. Bharanitharan, J.F. Wang, K.I. Lee, Effective search point reduction algorithm and its
vlsi design for HDTV H.264/AVC variable block size Motion Estimation. IEEE Trans. Circuits Syst.
Video Technol. 22(7), 1214–1227 (2012)

18. C. Tseng, Y.T. Lai, M.J. Lee, A VLSI architecture for three-step search with variable block size motion
vector, in Proceedings of IEEE 1st Global Conference on Consumer Electronics (GCCE’12), pp.
628–631 (2012)

19. C. Wei, H. Hui, T. Jiarong, L. Jinmei, M. Hao, A high-performance reconfigurable vlsi architecture
for vbsme in H.264. IEEE Trans. Consum. Electron. 54(3), 1338–1345 (2008)

20. H. Yin, D.S. Park, X.Y. Zhang, Buffer structure optimized VLSI architecture for efficient hierarchical
integer pixel Motion Estimation. J. Real Time Image Process. 11(3), 507–525 (2016)

21. C. Zhu, X. Lin, L. Chau, Hexagon-based search pattern for fast block Motion Estimation. IEEE Trans.
Circuits Syst. Video Technol. 12(5), 349–355 (2002)

22. S. Zhu, K.K. Ma, A new diamond search algorithm for fast block-matching Motion Estimation. IEEE
Trans. Image Process. 9(2), 287–290 (2000)

	A High-Speed VLSI Architecture for Motion Estimation Using Modified Adaptive Rood Pattern Search Algorithm
	Abstract
	1 Introduction
	1.1 Motivation and Contribution of the Present Work

	2 The Modified ARPS Algorithm
	3 Proposed Architecture
	3.1 New Position and Offset Generator
	3.2 Memory Organization
	3.3 Motion Vector Storage
	3.4 Pixel Address Generation

	4 Results
	4.1 Hardware Evaluation
	4.2 Frame Throughput
	4.3 Comparison

	5 Conclusions
	References

