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Abstract In this paper, the problem of optimal robust fault detection (FD) for uncer-
tain Lipschitz nonlinear systems is considered.A robust active fault detection approach
for a class of the Lipschitz nonlinear systems in the presence of disturbances and para-
metric uncertainties is proposed, wherein the Lipschitz constant is assumed as one of
the optimization parameters in the observer design. In addition to disturbance atten-
uation level, the fault sensitivity criterion based on H− index is also defined in the
FD system design. Different criteria are defined as a weighted multi-objective linear
matrix inequality optimization problem, and the optimal variables of the FD system
are derived based on a newly defined cost function. A numerical example is provided to
demonstrate the effectiveness of the proposed FD system. The results show the robust-
ness of the proposed method against parametric uncertainty and nonlinear uncertainty
as well.

Keywords Disturbance attenuation · Fault sensitivity · Lipschitz constant · Robust
fault detection · Uncertain Lipschitz nonlinear system · Weighted multi-objective
optimization

1 Introduction

Over the past three decades, fault detection and isolation (FDI) has been the subject of
numerous studies for different classes of dynamic systems and industrial applications
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as well [4,16,21,38]. FDI methods can be categorized as model-based and data-driven
methods [38]. Model-based FDI is further divided into qualitative and quantitative
approaches [31]. In this paper, the model-based quantitative FDI approach is investi-
gated, which has the advantages of representing a complete view of the system and
efficiently showing different anomalies in the system.

FDI design for linear systems has been comprehensively investigated [12]. Indus-
trial processes have nonlinear behavior, whichmakes it difficult to monitor and control
the system. This challenge may be highlighted in the presence of disturbances in the
system and uncertainties of the model. Recently, much attention has been given to
study of nonlinear systems [11]. FDI system design for nonlinear systems may be
categorized as three approaches: 1) linearization of the nonlinear system and using
developed theories for the linear systems [3,22]; 2) specialized approaches for nonlin-
ear systems such as nonlinear observers and analytical redundancy relations (ARRs)
[9,13,23,35]; and 3) intelligent methods such as neural networks and fuzzy logics
[19,20,28].

In this paper, the problem of fault detection (FD) system design for a class of Lip-
schitz nonlinear systems is tackled via robust observer approach. Due to the presence
of uncertainties (parametric or nonparametric), disturbances and noises in the system,
robustness may be considered as a critical feature of an FD system, which may be
highlighted for nonlinear systems. Therefore, the robust FD system design for nonlin-
ear systems has received much attention in the recent decades, resulting in an active
area of research.

A complete survey on robust fault diagnosis with emphasis on linear systems is pre-
sented in [17], wherein different methods for robust residual generation and decision
making are summarized. In [14], an effective fault estimation technique is developed to
simultaneously estimate the system states and the concerned faults, while minimizing
the influences from process/sensor disturbances. The proposed robust fault estimation
techniques are addressed for the Lipschitz nonlinear systems subjected to both pro-
cess and sensor disturbances. A robust fault diagnosis scheme for nonlinear systems
is designed, and a new algorithm for a robust fault diagnosis observer is proposed in
[24].

Robust fault detection is classified as active and passive approaches [5]. In the active
approach, the robustness of an FD system is considered in the residual generation stage,
while the robustness of the FD system is applied in the decision-making stage in the
passive approach. According to [5], some conservatism is considered for achieving
the robustness of the FD system in the passive methods and thus it cannot be regarded
as a realistic robust method.

In the active robust approach, two different methods may be introduced. In the first
method, different criteria for the robustness and other purposes of the FD system are
defined based on a Lyapunov function [6,7,35,37]. In the second approach, the effects
of unwanted terms are considered as unknown terms and are removed in the error
dynamics in the design procedure [29,33,36].

It is worth noting that dealing with the disturbance attenuation level without con-
sideration of the fault sensitivity may lead to reduction in the fault sensitivity of the
FDI system, which further causes several missed alarms. Therefore, several researches
concentrated on the simultaneous disturbance attenuation level and fault sensitivity
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maximization in the FD system design. For example, simultaneous enhanced fault
sensitivity and disturbance attenuation level are noticed in the FD system design for
linear switching systems in [8], and mixed H − /H∞ fault detection observer design
for the Lipschitz nonlinear systems is given in [39].

One issue that must be highlighted in the previous studies on the FD schemes of
the Lipschitz nonlinear systems is that the considered criteria such as fault sensitivity
and disturbance attenuation level are not obtained in an optimal manner. In fact, one
of the values is calculated based on the known value of another one. Another issue in
the FD design of the Lipschitz nonlinear systems is the Lipschitz constant, which is
considered as a fixed value in the FD system design, while this constant is dependent
on the parameters of the system and obtaining its exact value is difficult in practical
applications [27]. Asmentioned, the Lipschitz constant is dependent on the parameters
of the system. Hence, considering the parametric uncertainties in the mathematical
model of the system leads to uncertain Lipschitz constant as well, whichmay highlight
the robustness issue in this regard.

In this paper, a robust active FD approach for the Lipschitz nonlinear systems in
the presence of disturbances and parametric uncertainties is proposed. The Lipschitz
constant, disturbance attenuation level and the fault sensitivity are assumed as the
optimization parameters in the observer design. The proposed FD system is robust
against both parametric and nonlinear uncertainties. The FD system is considered as a
weighted multi-objective optimization problem based on the aforementioned criteria
in linear matrix inequalities (LMIs) form.

In brief, the main contributions of the paper may be stated as follows:

– Optimal robust fault detection for a class of the Lipschitz nonlinear systems in
the presence of disturbance, faults, parametric uncertainties and uncertainty in the
Lipschitz constant.

– Maximization of the Lipschitz constant in the FDI system design.
– Defining the FD system as a weighted multi-objective optimization LMI problem,
in which a new sufficient condition is derived.

The maximization of the Lipschitz constant leads to robustness of the observer and
subsequently results in the robustness of the FD system. In other words, the proposed
FD system is relying on a robust observer in which the robustness against nonlinear
uncertainties is also considered in the design process. To solve the robust observer
design problem considering disturbances, uncertainties in the parameter, uncertainties
in theLipschitz constant and faults for theLipschitz nonlinear system,LMI technique is
used in this paper. The fault sensitivity and disturbance attenuation are defined in LMI
form as an H−/H∞ index by considering the Lipschitz constant as one of the unknown
variables of the problem. The effect of parametric uncertainties is considered in LMI
derivation based on the lemma that is given in the next section. To use this lemma, a new
constraint is imposed on the problem, whichmay be satisfied by defining and selecting
proper value for a weighting matrix on the residuals. Finally, the obtained results are
defined as a multi-objective weighted LMI optimization problem. The optimization
LMI problemmay be solved using available software packages. Several solutions may
be obtained based on the weighting factor, and the optimal one is selected considering
a new defined cost function.
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The organization of the paper is as follows: In Sect. 2, problem definition and
some preliminaries are given. Robust active FD system design based on the observer
approach and the defined optimization problem in the LMI form as a new theorem,
as well as a new condition that must be satisfied are presented in Sect. 3. Simulation
results for a numerical example are given in Sect. 4, followed by conclusion and some
remarks.

2 Problem Definition and Some Preliminaries

Consider the following Lipschitz nonlinear system.

ẋ(t) = (A + �A)x(t) + ψ(x, u) + D1d(t) + Q1 f (t), (1)

y(t) = (C + �C)x(t) + D2d(t) + Q2 f (t), (2)

where x ∈ Rn is state, u ∈ Rm is input, y ∈ Rl is output, and d ∈ Rk1 and f ∈ Rk2

are unknown exogenous disturbances and different faults in the system, respectively.
A,C, D1, Q1, D2 and Q2 are matrices of appropriate dimensions. The nonlinear term
in (1) is locally Lipschitz, i.e.,

||ψ(x, u) − ψ(x̂, u)|| ≤ γ ||x − x̂ ||,

where γ is the Lipschitz constant.
�A and�C are unknown matrices representing the parametric uncertainties of the

system, which have the following forms [1].

�A = M1FN1, (3)

�C = M2FN2, (4)

in which M1, N1, M2 , N2 and F are matrices with appropriate dimensions. M1,
N1, M2 and N2 are known matrices. F is an unknown time-varying matrix satisfying
||F(t)||2 ≤ I ∀t ∈ [0,∞).

Any nonlinear system of the form ẋ(t) = f (x, u) may be expressed as (1)–(2), as
long as f (x, u) is differentiable with respect to x [26]. In other words, the nonlinear
system as in (1) can be regarded as a general class of nonlinear systems, at least locally
[26], and thus noticed here.

The Luenberger observer for the nonlinear Lipschitz systems is studied in some
papers such as [25,26,30]. The Luenberger observer for the considered class of the
Lipschitz nonlinear systems is expressed as (5):

˙̂x(t) = Ax̂(t) + ψ(x̂(t), u(t)) + L(y(t) − ŷ(t)), (5)

where x̂(t) is the state estimation and ŷ(t) is the output estimation error of the observer
that is defined as (6).

ŷ(t) = Cx̂(t), (6)
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where L is the gain of the observer and will be designed regarding the desired criteria.
The error dynamic of the observer can be easily obtained as (8) with the error definition
in (7).

e(t) = x(t) − x̂(t), (7)

ė(t) = (A − LC)e(t) + ψ(x, u) − ψ(x̂, u) + (D1 − LD2)d(t)

+(Q1 − LQ2) f (t) + (�A − L�C)x(t). (8)

The residuals of the FD system are assumed as (9).

r(t) = Hey(t) = HCe(t) + HM2FN2x(t) + HD2d(t) + HQ2 f (t), (9)

in which H is the weighting matrix on the output estimation error for the residual
generation. H is chosen as an arbitrary matrix to satisfy a constraint, which will be
mentioned in the final theorem of the paper. It is also worth noting that the number of
rows of H determines the number of the residuals for the FD system.

In the next section, the robust FD system is presented.

3 Robust Fault Detection Based on Nonlinear Observer

In this paper, the robustness issue in the FD system design is concerned with the dis-
turbance attenuation level and maximization of the Lipschitz constant in the presence
of parametric uncertainties. The observer gain is obtained via optimal selection of the
different criteria.

In fault-free case, the disturbance attenuation level, which is represented as μ, is
expressed as:

||r(t)||2 ≤ μ||d(t)||2. (10)

The fault sensitivity criteria using H− index are defined in (11).

||r(t)||2 ≥ β|| f (t)||2, (11)

where β is defined as the minimum effect of faults on the residual.
To summarize, the following criteria are noticed in the FD system design.

– Asymptotic stability of the observer with a fixed decay rate.
– Disturbance attenuation level as given in (10).
– Satisfying H− index for fault sensitivity as (11).
– Maximization of the Lipschitz constant in order to enhance the robustness of the
FD system against nonlinear uncertainty.

Regarding the parametric uncertainties in the state space representation of the sys-
tem, the following Lyapunov function is considered.

V (t) = V1(t) + V2(t), (12)
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where
V1(t) = e(t)T P1e(t) V2(t) = x(t)T P2x(t). (13)

Therefore, the derivative of the Lyapunov function will be:

V̇1(t) = ė(t)T P1e(t) + e(t)T P1ė(t), (14)

V̇2(t) = ẋ(t)T P2x(t) + x(t)T P2 ẋ(t). (15)

By substituting (8) into (14), we obtain the following equation:

V̇1(t) = e(t)T (A − LC)T P1e(t) + e(t)T P1(A − LC)e(t) + 2e(t)T P1(ψ − ψ̂)

+2e(t)T P1(D1 − LD2)d(t) + 2e(t)T P1(Q1 − LQ2) f (t)

+2e(t)T P1M1FN1x(t) − 2e(t)T P1LM2FN2x(t). (16)

For the simplicity, it is assumed that ψ̂ = ψ(x̂, u).
For the asymptotic stability of the observer, the following equation is considered.

(A − LC)T P1 + P1(A − LC) = −Q. (17)

Equation (17) is modified as (18) in order to consider the decay rate of the observer,
which is defined as υ.

AT P1 + P1A − P1LC − CT LT P1 + 2υP1 = −Q. (18)

It is noted that both L and P1 are unknown matrix variables that are multiplied
by each other in the above equation, which leads to nonlinear matrix inequality. For
solving this problem, a new matrix variable is defined as G = P1L , leading to the
following equation.

AT P1 + P1A − GC − CTG + 2υP1 = −Q. (19)

In order to continue we use the following result:

Lemma [32] Consider D, S and F as real matrices with proper dimensions. Matrix
F satisfies the following condition.

FT F ≤ I.

Then, for any scalar ε > 0 and vectors x, y ∈ Rn, the following inequality can be
concluded:

2xT DFSy ≤ 1

ε
xT DDT x + εyT ST Sy. (20)

According to the lemma and the results of [2], we have:

2eT P1(ψ − ψ̂) ≤ e(t)T P1P1e(t) + γ 2e(t)T e(t), (21)

2e(t)T P1M1FN1x(t) ≤ e(t)T P1M1M
T
1 P1e(t) + x(t)T NT

1 N1x(t), (22)

2e(t)T P1LM2FN2x(t) ≤ e(t)T GM2M
T
2 G

T e(t) + x(t)T NT
2 N2x(t). (23)
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Thus, the upper bound of V̇1 can be obtained as (24).

V̇1 ≤ −e(t)T Qe(t) + e(t)T P1P1e(t) + x(t)T N2N
T
2 x(t) + e(t)T P1M1M

T
1 P1e(t)

+e(t)T GM2M
T
2 G

T e(t) + x(t)T NT
1 N1x(t) + 2e(t)T P1(D1 − LD2)d(t)

+γ 2e(t)T e(t) + 2e(t)T P1(Q1 − LQ2) f (t). (24)

By substituting the required terms in V̇2, it can be achieved in the form of (25).

V̇2 = x(t)T AT P2x(t) + x(t)T P2Ax(t) + 2x(t)T P2ψ + 2x(t)T P2D1d(t)

+2x(t)T P2Q1 f (t) + 2x(t)T P2M1FN1x(t). (25)

Similar to V̇1 and using the aforementioned lemma, the following equations can be
concluded.

2x(t)T P2M1FN1x(t) ≤ x(t)T P2M1M
T
1 P2x(t) + x(t)T N1N

T
1 x(t), (26)

2x(t)T P2ψ ≤ x(t)T P2P2x(t) + γ 2x(t)T x(t). (27)

Therefore, the upper bound of V̇2 is given as (28).

V̇2 ≤ x(t)T (AT P2 + P2A + P2M1M
T
1 P2 + N1N

T
1 + P2P2 + γ 2 I )x(t)

+2x(t)T P2D1d(t) + 2x(t)T P2Q1 f (t). (28)

By adding (24) and (28), the upper bound of the Lyapunov function derivative can
be obtained as:

V̇ ≤ e(t)T (−Q + P1P1 + γ 2 I + P1M1M
T
1 P1 + GM2M

T
2 G

T )e(t) + x(t)T (AT P2
+P2A + P2M1M

T
1 P2 + 2N1N

T
1 + P2P2 + γ 2 I + N2N

T
2 )x(t)

+2e(t)T P1(D1 − LD2)d(t) + 2e(t)T P1(Q1 − LQ2) f (t) + 2x(t)T P2D1d(t)

+2x(t)T P2Q1 f (t). (29)

Considering (30) as stated in [1], (29) can be written as (31).

I + M1M
T
1 = J1 J

T
1 , M2M

T
2 = J2 J

T
2 . (30)

V̇ ≤ e(t)T (−Q + γ 2 I + P1 J1 J
T
1 P1 + GJ2 J

T
2 GT )e(t) + 2e(t)T P1(D1

−LD2)d(t) + x(t)T (AT P2 + P2A + P2 J1 J
T
1 P2 + 2N1N

T
1 + γ 2 I

+N2N
T
2 )x(t) + 2e(t)T P1(Q1 − LQ2) f (t) + 2x(t)T P2D1d(t)

+2x(t)T P2Q1 f (t). (31)

In the coming subsections, three concerned criteria are considered for the FD system
design and the final theorem is presented based on the obtained results.
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3.1 Disturbance Attenuation Level in Fault-Free Case

In fault-free case, i.e., f = 0, the disturbance attenuation level in (10)must be satisfied.
Thus, it can be written as:

r(t)T r(t) − μ2d(t)T d(t) ≤ 0. (32)

Based on [2], we have:

(HCe(t) + HM2FN2x(t) + HD2d(t))T (HCe(t) + HM2FN2x(t)

+HD2d(t)) − μ2d(t)T d(t) + V̇ ≤ 0. (33)

By simplifying the first term of (32), i.e., r(t)T r(t), we have:

r(t)T r(t) = e(t)TCT HT HCe(t) + e(t)TCT HT HM2FN2x(t)

+e(t)TCT HT HD2d(t) + x(t)T NT
2 FT MT

2 HT HCe(t)

+x(t)T NT
2 FT MT

2 HT HM2FN2x(t) + x(t)T NT
2 FT MT

2 HT HD2d(t)

+d(t)T DT
2 HT HCe(t) + d(t)T DT

2 HT HM2FN2x(t)

+d(t)T DT
2 HT HD2d(t). (34)

By applying the previous lemma, the upper bound of (34) is given as:

r(t)T r(t) ≤ e(t)TCT HT HCe(t) + e(t)TCT HT HM2FN2x(t)

+e(t)TCT HT HD2d(t) + x(t)T NT
2 FT MT

2 HT HCe(t)

+d(t)T DT
2 HT HD2d(t) + x(t)T NT

2 FT MT
2 HT HM2FN2x(t)

+x(t)T NT
2 FT MT

2 HT HD2d(t) + d(t)T DT
2 HT HCe(t)

+d(t)T DT
2 HT HM2FN2x(t). (35)

It should be stated that for using the aforementioned lemma, the following condi-
tion must be satisfied, which is a reachable condition and can be achieved by proper
selection of the weighting matrix H .

||FT MT
2 HT HM2F || ≤ I.

This condition is imposed by the following equation.

x(t)T NT
2 FT MT

2 HT HM2FN2x(t) = x(t)T NT
2 F́ N2x(t)

≤ x(t)T NT
2 N2x(t) + x(t)T NT

2 N2x(t) = 2x(t)T NT
2 N2x(t), (36)

where F́ is also an unknown time-varyingmatrix satisfying ||F́(t)||2 ≤ I ∀t ∈ [0,∞).
Therefore, we have:

r(t)T r(t) − μ2d(t)T d(t) + V̇ ≤ 0. (37)
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By substituting the upper bound of r(t)T r(t) as (35) and V̇ as (31) in (32), we have:

e(t)T (−Q + γ 2 I + P1 J1 J
T
1 P1 + GJ2 J

T
2 GT + CT HT HC

+2CT HT HM2M
T
2 HT HC)e(t) + x(t)T (AT P2 + P2A + P2 J1 J

T
1 P2

+2N1N
T
1 + γ 2 I + 7NT

2 N2)x(t) + 2e(t)T (P1D1 − P1LD2 + CT HT HD2)d(t)

+2x(t)T P2D1d(t) + d(t)T (2DT
2 HT HM2M

T
2 HT HD2

+DT
2 HT HD2 − μ2 I )d(t) ≤ 0. (38)

By writing (38) in matrix inequality form, a nonlinear matrix inequality is achieved.
Finally, by using (38) and Schur complement, the linear form of matrix inequality may
be obtained as follows.

LM I (1) :
⎡
⎣

�11 0 �13
∗ �22 �23
∗ ∗ �33

⎤
⎦ ≤ 0, (39)

where

�11 =

⎡
⎢⎢⎣

	 γ I P1 J1 GM2
∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ , (40)

�22 =
⎡
⎣
AT P2 + P2A + 2N1NT

1 + 7N2NT
2 γ I P2 J1

∗ −I 0
∗ ∗ −I

⎤
⎦ , (41)

�13 =

⎡
⎢⎢⎣
P1D1 − GD2 + CT HT HD2

0
0
0

⎤
⎥⎥⎦ , (42)

�23 =
⎡
⎣
P2D1
0
0

⎤
⎦ , (43)

�33 = DT HT HD2 + 2DT
2 HT HM2M

T
2 HT HD2 − α I, (44)

	 = −Q + CT HT HC + 2CT HT HM2M
T
2 HT HC. (45)

The linear matrix inequality is achieved by assuming a new parameter α as the squared
value of μ.

3.2 Fault Sensitivity Criterion Based on H− Index

In order to satisfy the fault sensitivity criterion in the FD system, H− index is used in
this paper. As in [7], enhanced fault sensitivity based on H− index leads to an increase
in fault detection rate (FDR), which is defined as (46).
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FDR = βδ f min

Jth
, (46)

where Jth is a predefined threshold, δ f min is the minimum size of f which is defined
as the fault to be detected, and β is called the H− index with assumption that there is
no disturbance and uncertainties in the system [10].

H− index is defined in the form of (47) as mentioned in [18].

β = in f
f �=0

||r ||2
|| f ||2 . (47)

In other words, the following equation must be satisfied with the assumption that
there is no disturbance and uncertainties in the system [10].

r(t)r(t)T − β2 f (t) f (t)T ≥ 0. (48)

The Lyapunov function in this case is contemplated as (49), which is negative
semi-definite.

V = −e(t)T P1e(t) ≤ 0. (49)

It can be achieved that:

r(t)r(t)T − β2 f (t) f (t)T + V̇ ≥ 0. (50)

By substituting V̇ and (35) in the absence of uncertainty and disturbance and the
presence of fault in (50), the subsequent matrix inequality may be obtained.

[
� CT HT HQ2 − P1Q1 + GQ2

∗ QT
2 H

T HQ2 − β2 I

]
≥ 0, (51)

where

� = CT HT HC − P1A − AT P1 + GC + CTGT − γ 2 I − P1P1. (52)

The following LMI is achieved by using Schur complement and some simplifica-
tions in (51), which defines the fault sensitivity criterion.

LM I (2) :

⎡
⎢⎢⎣

11 γ I P1 14
∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ 44

⎤
⎥⎥⎦ ≤ 0, (53)

in which

11 = P1A + AT P1 − GC − CTGT − CT HT HC. (54)

14 = −CT HT HQ2 + P1Q1 − GQ2. (55)
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44 = −QT
2 H

T HQ2 + τ I. (56)

τ = β2. (57)

3.3 Lipschitz Constant Maximization

The previous methods on the fault detection for the Lipschitz nonlinear systems rely
on a fixed Lipschitz constant, which may be obtained from the nonlinear term of the
state space representation of the system. This nonlinear term, and subsequently the
considered Lipschitz constant, may also contain some uncertainties due to the fact
that this value is dependent on the parameters of the system, which may lead to false
and missed alarms in the FD system. In this paper, the FD system is obtained by
maximization of the Lipschitz constant which indicates the more robustness of the
proposed method. In other words, the fixed obtained value for the Lipschitz constant
is considered as the minimum value of the unknown Lipschitz constant. The maxi-
mized Lipschitz constant, in which the larger values mean the more robustness against
nonlinear uncertainties, is obtained by solving the multi-objective optimization prob-
lem.

3.4 Final Theorem

Finally, by considering the results of three previous subsections, the following theorem
can be achieved.

Theorem Consider the uncertain Lipschitz nonlinear system (1)–(2) along with the
observer as (5). The state estimation error dynamics (8) are asymptotically stable with
a predefined decay rate, and the output estimation error satisfies ||r(t)||2 ≤ μ||d(t)||2
and ||r(t)||2 ≥ β|| f (t)||2 for any nonzero d ∈ l2[0,∞) if there exist scalars α > 0
, τ > 0, γ > 0 and matrices P1 > 0, P2 > 0 and G such that the following LMI
optimization problem has solution.

min((1 − W )α − W (τ + γ ))

subject to:

LM I (1) ≤ 0, LM I (2) ≤ 0

||FT MT
2 HT HM2F || ≤ I,

where 0 ≤ W ≤ 1 is defined as the weighting factor of the optimization problem,
whose value is obtained by minimization of the following cost function.

J = min
W

k1μ

k2β + k3γ
,

where k1, k2 and k3 are used to place more or less emphasis on the considered criteria
and may be selected based on the studied system.
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Finally, the desired values of the unknown parameters are obtained as follows.

μ = √
α, L = P−1

1 G, β = √
τ .

The maximized Lipschitz constant (γ ) is also achieved from the optimization
problem, which means that the FD system is robust against all Lipschitz nonlinear
terms in (1) that have the Lipschitz constant equal to or less than obtained γ . Note that
the obtained constraint in the theorem will be satisfied by proper selection of matrix
H . Then, the other parameters can be calculated by solving the LMI optimization
problem.

4 Simulation Results

A numerical example as in [7] is given in this section to illustrate the performance
of the proposed method. The simulation results of the proposed method for an active
suspension system are given in Appendix of the paper as well. The development of a
method to derive the optimal values of k1 to k3 for an experimental setup of the active
suspension system is considered as the future work of the proposed method.

4.1 System Description and Obtained Results

The state space representation of the system is given by:

A =
⎛
⎝

− 6.5 3.9 5.2
0 − 9.1 3.9
1.3 3.9 − 7.8

⎞
⎠ ,C =

(
1 2 − 1
2 − 1 3

)
, ψ(x, u) =

⎛
⎝

0.5 sin x
0.5 cos x

0

⎞
⎠

M1 =
⎛
⎝

0.2
0.3
0.15

⎞
⎠ , N1 = (

0.25 0.1 0.33
)
, M2 =

(
0.38
1

)
,

N2 = (
0.25 0.1 0.33

)

D1 =
⎛
⎝

− 0.3 1 0.6
0 0.3 0.5
0.4 0 − 0.2

⎞
⎠ , D2 =

(
0.7 1 − 0.3
0 0.6 0.2

)

Q1 =
⎛
⎝

1.3 0.65
− 0.390 1.04
0.78 − 1.17

⎞
⎠ , Q2 =

(
1.6 0
0 − 1.6

)
.

Other parameters of the FD system design including the decay rate of the observer
and weighting matrix on the residuals are considered as:

υ = 0.55, H =
⎛
⎝

0.18 0.18
0.36 0.18

− 0.18 0.36

⎞
⎠ .
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Fig. 1 Different criteria of the optimization problem versus weighting factor
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Fig. 2 Optimal trade-off curves

The fixed Lipschitz constant of the system is given as 0.5. The obtained results
for the FD system without considering the maximization of the Lipschitz constant are
valid for any nonlinearity which satisfies this value for ψ(x, u).

The obtained results of the theorem for different weighting factors of the optimiza-
tion problem are given in Figs.1 and 2.

The optimal value of the weighting factor is obtained as W = 0.4 by assuming
k1 = 2, k2 = 0.5 and k3 = 1, which means the more emphasis on the fault sensitivity
and disturbance attenuation in comparison with the Lipschitz constant. The following
results are obtained by assuming the above-mentioned parameters.

P1 =
⎛
⎝

2.8643 − 1.7311 − 1.2421
− 1.7311 2.9924 2.5429
− 1.2421 2.5429 4.7105

⎞
⎠ ,

P2 =
⎛
⎝

2.3973 − 2.7380 − 1.4343
− 2.7380 9.6380 − 0.6920
− 1.4343 − 0.6920 5.3254

⎞
⎠

G =
⎛
⎝

2.3767 − 0.7859
− 0.8727 0.8834
0.5243 1.8861

⎞
⎠ , L =

⎛
⎝

0.9544 − 0.2045
− 0.0886 − 0.2171
0.4108 0.4637

⎞
⎠

γ ∗ = 1.1302, μ = 1.0770, β = 0.6249.
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The admissible Lipschitz constant is obtained as 1.1302 by the proposed method,
which means that it is improved by a factor of 2.26. In other words, the proposed
FD system is robust against any nonlinearity that satisfies the maximized Lipschitz
constant, which means the better performance and more robustness of the proposed
method.

The given system is simulated inMATLAB/Simulink platform in normal and faulty
situations taking into account the results of the theorem. The disturbance is simulated
as a sine wave as (58) for d1.

d1(t) = 0.25 sin (10t)u(t). (58)

d2 and d3 are also simulated as a step signal of amplitude 0.5 at t = 0 and a signalwhich
takes value randomly from a uniform distribution between [− 0.1, 0.1], respectively.

The initial states of the system and the observer are assumed as:

xTObs(0) = (
0 − 3 2

)
, xTPlant (0) = (

5 1 − 2
)
.

The residuals are evaluated using (59).

JL(t) =
√∫ t0+LW

t0
r(t)T r(t)dt, (59)

where t0 is the initial sample and LW is the window length of the residuals. The above
integral is calculated by trapezoidal rule for a moving fixed length window of the
residuals. The simulation results are given for t0 = 0 and LW = 20 samples.

The threshold on the residual evaluation function is assumed as fixed values as
follows [34]:

Jth = sup
d(t),u(t)∈l2, f (t)=0

JL(t). (60)

4.2 Normal Situation

In fault-free case, the obtained results for the residuals and their evaluation functions
in the presence of disturbances and parametric uncertainties are shown in Figs. 3 and
4, respectively.

The obtained thresholds are tabulated in Table 1.

4.3 Faulty Situation

Different fault scenarios can be simulated to demonstrate the effectiveness of the
proposed FD system. In this paper, two scenarios are investigated.

In the first scenario, an abrupt fault is injected in the system at t = 6s, which is
simulated as a step signal of amplitude 0.5 in f2. The simulated results of the residual
evaluation functions are plotted in Fig. 5.

As can be observed from the figure, the injected fault can be detected in an efficient
manner by using constant thresholds on the evaluation functions of the residuals. The
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Fig. 3 Residuals in fault-free case
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Fig. 4 Residuals evaluation in fault-free case

Table 1 Thresholds of the FD
system

Residual 1 Residual 2 Residual 3

Threshold 0.6774 1.0572 0.2504
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Fig. 5 Residuals evaluation in the first scenario (abrupt fault in f2)

FD system satisfies different criteria associated with robustness of the FD system
against disturbance, parametric uncertainties and uncertainty in the Lipschitz constant
as well. The considered fault can be detected using the third residual (r3), which can
be used for fault isolation purposes.
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Fig. 6 Injected incipient fault of f1 in the second scenario
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Fig. 7 Residual evaluation in the second scenario (incipient fault in f1)

In the second scenario, an incipient fault is injected in the system,which is simulated
as a ramp signal of f1 as shown in Fig. 6.

The evaluation function of the residuals is depicted in Fig. 7.
As shown in Fig. 7, the fault occurrence is declared due to exceeded residuals from

the predefined thresholds in both r1 and r2. The residual r3 is not sensitive to f1 fault,
which can be used for fault isolation purpose.

4.4 Robustness Against Nonlinear Uncertainties

In order to show the effectiveness of the proposed method, a comparison between the
proposed method and the previous studies is made.

In the previous studies on the fault detection of the Lipschitz nonlinear systems
based on the observer method, the fault sensitivity of the FD system is obtained
for a given fixed disturbance attenuation level and fixed Lipschitz constant as well.
Considering these assumptions, the observer gain for this example is obtained as
follows:

L =
⎛
⎝

0.5712 0.4187
− 0.4138 0.5462
0.6158 − 0.2219

⎞
⎠ .
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Table 2 Thresholds on the
residual evaluation without
Lipschitz constant maximization

Residual 1 Residual 2 Residual 3

Threshold 0.5753 0.8812 0.2743
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Fig. 8 Comparison between residual evaluation in the proposed method and FD system without Lipschitz
constant maximization in fault-free case in the presence of nonlinear term uncertainties

The fixed thresholds on the residual evaluation function as (59) are given in Table 2.
As can be seen from the table, the obtained thresholds are generally smaller than

the corresponding values in Table 1, which indicates the less conservatism in the FD
system design. The more conservatism of the proposed method is due to considering
the nonlinear uncertainties, i.e., the uncertainty in the Lipschitz constant.

The simulation results show the effectiveness of the proposed method against non-
linear uncertainties. For a better comparison between the proposed method and the FD
systemwithout Lipschitz constantmaximization, the obtained residuals and thresholds
in the case that some nonlinear uncertainties are considered in the non-faulty system
are depicted in Fig. 8.

As shown in the figure, the FD system without Lipschitz constant maximization
declared a fault occurrence in the system, while there is no fault in the system. In other
words, the presence of nonlinear uncertainty leads to false alarm in the FD system.

Some remarks may be given from the simulation results as follows:

– There is a great sensitivity against the Lipschitz constant in the FD system design
without Lipschitz constant maximization. In other words, any nonlinear uncertainty
may lead to false alarm. This sensitivity is reduced in the proposed method by
maximization of the Lipschitz constant in the observer design.

– The cost of this improvement by the proposed method may be stated as the greater
thresholds on the residuals, which is compensated by enhanced fault sensitivity in
the FD system design.

– The proposed method can also show great performance for linearized model of a
system in the cases that the operating point of the system is changed.

– The proposed method satisfies simultaneous enhanced fault sensitivity and distur-
bance attenuation level.

– Some trade-off may be considered between desired criteria according to the studied
system, which may be defined by setting appropriate values for k1, k2 and k3 in the
defined cost function J .
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– The fault sensitivity criterion is a limit that can be clearly discriminated from dis-
turbances or uncertainties in the system. The residuals are generated in a robust
manner; therefore, setting fixed thresholds on the residual evaluation function is
justifiable.

In this paper, the robust FD of the Lipschitz nonlinear systems is studied consid-
ering the different issues including disturbances, parametric uncertainties and faults.
Although the robustness of the FD system against parametric uncertainties has been
noticed in several studies for the Lipschitz nonlinear systems, the impact of these
parametric uncertainties on the Lipschitz constant is not considered in the literature.
As it is shown in the simulation results, the uncertainty in the Lipschitz constant,
which may be due to the parametric uncertainties, will lead to false alarm in the FD
system. This point may be stated as the main result of this study. The proposed method
may be used for real-world examples in the Lipschitz nonlinear form such as active
suspension system and single-link manipulator. The effect of parametric uncertainties
on the performance of the FD system may be evaluated for such real systems.

It is also worth noting that the fault isolation can also be achieved by creating
isolation logic table for different fault injection scenarios, which is not considered
in this current paper. As an example, r1 and r2 exceeded their threshold in f1 fault
injection, while r3 exceeded its threshold in f2 fault injection, which can be used to
isolate f1 from f2.

5 Conclusions

The optimal robust active fault detection for a class of uncertain Lipschitz non-
linear systems has been studied via observer-based approach. The FD system has
been designed by considering different criteria such as disturbance attenuation level,
enhanced fault sensitivity and FDR using H− index and also maximization of the
Lipschitz constant.

The robustness of the FD system against nonlinear uncertainties has been obtained
by maximization of the Lipschitz constant. The overall results have been presented as
a weighted multi-objective LMI problem, wherein the observer has been designed by
solving the obtained LMI using optimal selection of the parameters. The simulation
results have shown that the effect of nonlinear uncertainties may lead to false alarm
in the FD system. Although the proposed method has imposed some conservatism on
the thresholds, the enhanced fault sensitivity may reduce this conservatism. The con-
sidered criteria including the presence of parametric and nonlinear uncertainties and
disturbances are in accordance with practical cases. Different faults in abrupt or incip-
ient natures can be detected in an efficient manner by using the predefined thresholds
on the residual evaluation signal. The proposed FD system can be utilized for industrial
applications that can be represented as uncertain Lipschitz nonlinear systems.

6 Appendix

In this section, the proposed method is applied to an active suspension system as a
real-world system. The configuration of the system is depicted in Fig. 9.
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Fig. 9 A quarter car model [15]

State space representation of the system is given by

ẋ(t) =

⎛
⎜⎜⎝

0 0 1 − 1
0 0 0 1

− ks
ms

0 −Cs
ms

Cs
ms

ks
mu

− kt
mu

Cs
mu

−Cs+Ct
mu

⎞
⎟⎟⎠ x(t) +

⎛
⎜⎜⎝

0
− 1
0
Ct
mu

⎞
⎟⎟⎠ w(t) +

⎛
⎜⎜⎝

ψ1
ψ2

1
ms

u + ψ3

− 1
mu

+ ψ4

⎞
⎟⎟⎠

(61)

y(t) =
(
1 0 0 0
0 kt

(ms+mu)g
0 0

)
x(t).

The states of the system are defined as suspension deflection, tire deflection, sprung
mass speed and unsprung mass speed, respectively, which are represented as the fol-
lowing equations.

x1(t) = zx (t) − zu(t), (62)

x2(t) = zu(t) − zr (t), (63)

x3(t) = żs(t), (64)

x4(t) = żu(t). (65)

Disturbance is considered as
w(t) = żr (t), (66)

which is simulated as follows.

w(t) = 0.05 sin t. (67)

The nonlinear term of the state space equation is defined as the subsequent
equation.
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Table 3 Parameters of active
suspension system

Param. Definition Value

ms Sprung mass (car chassis) 973 kg

mu Unsprung mass 114 kg

ks Suspension system stiffness 42720 N/m

kt Compressibility of the tire 101115 N/m

Cs Suspension system damping 1095 Ns/m

Ct Damping of the pneumatic tire 14.6 Ns/m

ψ(t) =

⎛
⎜⎜⎝

0.09 sin t
0.04 cos t
0.07 sin t
0.01 sin t

⎞
⎟⎟⎠ . (68)

According to [15], the parameters of the system, their definition and considered
values of the active suspension system are tabulated in Table 3.

By using the values in the table, the matrices of the system can be obtained as:

A =

⎛
⎜⎜⎝

0 0 1 − 1
0 0 0 1

− 43.905 0 − 1.125 1.125
374.736 − 886.973 9.605 − 9.733

⎞
⎟⎟⎠ .

The disturbance and fault distribution matrices are defined as:

D1 =

⎛
⎜⎜⎝
0.3
0.6
0.1
0.4

⎞
⎟⎟⎠ , Q1 =

⎛
⎜⎜⎝

0 0.4
0.8 0.8
0.7 0
0.3 0.6

⎞
⎟⎟⎠

D2 =
(
0.4
0.5

)
, Q2 =

(
0.7 0.5

− 0.6 0.5

)
.

Two actuator and sensor faults are considered for the system. The disturbance
distribution matrices are assumed as D1 and D2 that is different from (61), which is
considered for more strict conditions wherein disturbance can influence all states of
the system instead of x2 and x4. It is also worth noting that the selection of disturbance
and fault distribution matrices has a direct effect on the disturbance attenuation level,
fault sensitivity and achievable Lipschitz constant as well.

The parametric uncertainties in the matrices of the system in (61) are assumed as
follows.

M1 =

⎛
⎜⎜⎝

0.11 − 0.04 0.02 0.11
0.15 0.13 0.12 0.02
0.0.1 − 0.11 0.03 0.04
0.03 − 0.08 0.11 − 0.06

⎞
⎟⎟⎠
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Fig. 10 Different criteria of the optimization problem versus weighting factor
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Fig. 11 Optimal trade-off curves

N1 =

⎛
⎜⎜⎝
0.063 − 0.055 0.074 0.094
0.015 0.012 0.011 0.064
0.073 − 0.101 0.043 0.045
0.034 − 0.028 0.083 − 0.061

⎞
⎟⎟⎠

M2 =
(
0.38
0.1

)
, N2 = (

0.15 0.1 0.13 0.1
)
.

The parameters for the observer design are considered as:

β = 0.29, H =

⎛
⎜⎜⎝

− 0.18 0.35
− 0.35 0.28
− 0.35 0.70
0.35 0.11

⎞
⎟⎟⎠ .

The obtained results of the theorem for different weighting factors of the optimization
problem are given in Figs. 10 and 11.

The optimal value for the weighing factor is obtained as W = 0.9. One can obtain
the following optimal values by solving the LMI problem.

μ = 0.926, γ = 0.091, β = 0.237.
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The observer gain is achieved as:

L =

⎛
⎜⎜⎝

− 0.193 0.750
0.243 1.411
1.669 0.119
2.365 − 0.582

⎞
⎟⎟⎠ .

The given values are obtained for k1 = k2 = k3 = 1. The optimal values of these
coefficients and validation of the proposed method for an experimental setup are
considered as future works of this study.
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