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Abstract This paper proposes a robust asynchronous controller for continuous-time
Markov jump linear systems (MJLSs). The asynchronous structure considers a case
in which the Markov chain governing candidate controllers does not match the chain
which manages the switching between system modes. This type of asynchronousy
arises because the real-time, exact and precise detection of the system modes is
not practical; therefore, the observed modes slightly differ with the actual modes.
This paper models the asynchronousy through an additional, observed Markov chain
which depends on the original Markov chain of the system according to uncer-
tain transition probabilities. By this representation, the whole system is viewed as
a non-homogeneous MJLS, and the sufficient stabilizability conditions as well as the
controller gains are obtained through multiple mode-dependent Lyapunov functions.
This approach leads to less conservative design results than the previous mode-
independent schemes andproposes amuch simplemethodology to obtain the controller
than the previousmode-dependent studies. Formoregenerality, the proposed controller
also takes the possible gain variations occurring in the implementation procedures into
account and reports all the results in terms of linear matrix inequalities. Simulation
results on a vertical takeoff and landing helicopter are presented and comparedwith the
common mode-independent controller to illustrate the effectiveness of the developed
method.
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1 Introduction

In the past decades, tremendous advances have occurred in the study of Markov jump
linear systems [5,8,28,34,41,48]. Themotivation for concentrating on such systems is
their widespread applications in power systems [22,26], biomedicine [23], aerospace
[3], and networked control systems (NCSs) [25]. This system can successfully describe
the structural variations induced by external or internal discrete events such as random
failures, repairs, changing subsystem interconnections and unexpected configuration
conversions [2,20]. MJLSs arise as a special class of both hybrid and stochastic sys-
tems. They consist of a set of continuous dynamics, the so-called modes, usually
described by linear difference or differential equations that are affected by discrete
events governed by a Markov chain with a finite number of states.

Up to now, various researches have been dedicated to the stabilization [5,6,8,15,
34,41] and control [16,23,43,48] problems of MJLSs. In these studies [5,6,8,15,16,
34,41,43,48], one key assumption is that the controller is strongly synchronous to the
system, i.e., the Markov process which orchestrates switching between the controller
modes is exactly the same as the Markov chain governing the system dynamic vari-
ations. This assumption does not come true in practice because the Markovian states
of the system may not always be available to the controller instantly. In other words,
the actual and the observed Markov chains may not be matched or synchronous. An
example of this type of asynchronous switching is found at NCSs without time stamp
information [4,38].

One introduced solution in case of inaccurate mode observations is the mode-
independent controller [2,22]. By the mode-independent design, it means that all the
systemvariations are neglected and the controller has a simple non-switching structure.
However, the mode-independent controller simplifies the studies and has a practical
appeal in case of non-accessible mode information, but it is very conservative and
cannot deal with the complex asynchronous phenomenon between the system and the
controller. Unlike the mode-independent structure, the asynchronous scheme takes
the advantage of an observed Markov chain to deal with the system variations. In this
case, the observed modes depend on the system modes according to some probabili-
ties. Toward relaxing the assumption of perfectly synchronously controlled systems,
different types of asynchronous phenomenon have been considered by researchers
[3,9–11,18,21,27,30,31,35–39,45–47]. These studies can be categorized into two
general categories: the studies dedicated to the deterministic switched systems and
those devoted to stochastic switched systems. In deterministic switched system, the
synchronous phenomenon is generally modeled by lags between the modes of the
controller and system modes [18,21,27,36,37,45–47]. This type of asynchronous
phenomenon generally arises in mechanical [3,31] or chemical systems [21]. For pre-
determined lags, stability problems are discussed in [9,35], controllers are designed
in [10,31,36,37], and asynchronous filters are developed in [47]. Unlike the deter-
ministic switching systems, the asynchronous switching in the stochastic systems has
not gained much attention. The asynchronousy in Markovian systems is discussed in
[2,22,32] through mode-independent designs and in [45,46] by assuming a random
switching lag between the system and the controller by a Bernoulli distribution. In
[30,45,46], the Markov chains of the system and the controller (filter) are supposed
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to be completely independent. This assumption is conservative because the observed
chain contains useful information on the original chain, and ignoring this information
can lead to performance loss. This assumption is eliminated by [11,38]; however,
these studies are limited to the state estimation problems, acquire perfectly known
Markovian properties of the observed chain and involve multiple design and slack
variables which make the design too complex.

Themotivation of this study is to design a more practical control scheme forMJLSs
such that following two problems could be dealt with simultaneously:

– The imperfect observation of the switching mechanism of a MJLS.
– The imperfect implementation of the controller gains.

Practically, not only theMarkovian states of the systemmay not always be available
to the controller instantly, but also the specifications of the observed chain, namely the
transition rates (TRs), may not precisely be obtained and may include uncertainties.
On the other hand, the controller gains face implementation limitations which may
result in relatively different designed and implemented gains due to finite word length
in digital systems, the inherent imprecision in analog systems, and analog to digital or
digital to analog transformers [12]. These factors lead to a poor design or an undesired
or even unstable response of the implemented controller.

The robust, non-fragile asynchronous controller proposed in this study is a solution
to the above mentioned problems. Such a scheme is applicable to more practical and
realistic situations. It not only involves less computational effort when modeling the
system’s Markov chain, but also minimizes the influence of unknown environmen-
tal disturbances that affect the observed mode information or the controller gains.
To design the robust, non-fragile, asynchronous controller, the asynchronousy is
expressed through an additional Markov chain which is mismatched with the system’s
Markov chain but depends on it probabilistically. This additional chain also considers
the effect of the inaccurate modeling in the form of uncertain, but bounded TRs. Then,
the whole system is viewed as a piecewise homogeneous MJLS as a special case of
non-homogeneous MJLSs [1] in which the TRs are time-varying but invariant within
an interval [6,8,13,42,44]. The controller is also assumed to contain additive bounded
uncertainties which represent the inaccuracies of the implementation procedures. In
this framework, the analysis and controller synthesis procedures are fulfilled by the
multiple, piecewise Lyapunov function.

Compared with the previous works, this paper mainly has the following four advan-
tages:

(i) Unlike the well-known mode-independent structures [2,22,32], the proposed
controller is mode-dependent; it imports the information of subsystems and their
interactions in the multiple Lyapunov functions; thus, it is a less conservative design.
(ii) The controller is designed based on an observation of the system’s switching
signal and not on the actual switching signal of the system which is usually unavail-
able. (iii) In comparison with other similar mode-dependent asynchronous design
schemes [11,38], this scheme removes the assumption of exactly known TRs of the
observed Markov process. (iv) It leads to a simpler set of LMIs with fewer number of
design variables compared with similar asynchronous schemes [11,30,38], due to the
non-homogeneous Markovian model utilized for the asynchronousy description. Sim-
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ulation results and comparisons with the controller referred at [2] show the potentials
of the proposed method.

The remainder of the paper is organized as follows. In Sect. 2, the preliminaries are
provided and the problem is formulated. In the Sect. 3, the robust stochastic stabiliza-
tion problem is tackled and a sufficient condition is derived. Then, the asynchronous
non-fragile controller gains are designed and some discussions are provided about
the important implementation issues of the proposed method. Section 4 includes a
practical example and the comparisons related to a VTOL subject to faults. Finally,
there are concluding remarks in Sect. 5.

Notation All the notations in the present paper are standard and can be found in
the relevant literature of Markovian switching systems. Additionally, all the matrices
contain real values with proper dimensions.

2 Preliminaries and Problem Formulation

Consider a complete probability space, (Ω, F, ρ) satisfying usual conditions, where
Ω, F and ρ represent the sample space, the algebra of events and the probability
measure on F , respectively. The uncertain MJLS is described over the probability
space by Eq. (1), {

ẋ(t) = A(rt )x(t) + B(rt )u(t),
x(t0) = x0, rt0 = r0

(1)

where x(t) ∈ R
n is the system state vector of dimension n,u(t) ∈ R

m is the controlled
input vector of dimension m and x(t0) = x0 is the initial state vector. The jumping
parameter {rt , t ≥ 0} represents a time-homogeneous Markov chain with discrete
values of the finite set, N =: {1, 2, . . . , N }. Here rt0 = r0,is the initial condition, and
the Markov chain has a square transition rate matrix specified by

� =

⎡
⎢⎢⎢⎣

λ11 λ12 . . . λ1N
λ21 λ22 . . . λ2N
...

...
. . .

...

λN1 λN2 . . . λNN

⎤
⎥⎥⎥⎦ (2)

in which the transition probabilities are as the following with h as the sojourn time.

Pr {rt+h = j |rt = i} =
{

λi j h + o(h) i �= j
1 + λi i h + o(h) i = j

. (3)

In Eq. (3), λi j denotes the transition rates from mode i at time t to mode j at time
t + h with the following conditions:

λi j ≥ 0 (4)

λi i = −
N∑

j=1, j �=i

λi j (5)
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The condition (4) means that TRs are never negative. By condition (5), it is guaranteed
that the systemmoves frommode i to somemode j with probability one. It is assumed
that the Markov chain is irreducible, possible to move from any modes to another in
a countable number of jumps.

In Eq. (1), A(rt ) and B(rt ) are linear mode-dependent system matrices with appro-
priate dimensions. For this system, the following controller is assumed.

u(t) = K (σt , t)x(t) (6)

Thematrix K (σt , t) is themode-dependent, time-varying controller gainwith the com-
patible dimension, designed to make the closed-loop system robustly, stochastically
stable. The parameter {σt , t ≥ 0} is the Markov chain governing switching between
candidate gains of K (σt , t). It is a continuous-time, discrete-valued Markov process
defined in finite set, M =: {1, 2, . . . , M} with the initial mode σt0 = σ0, a generator
square matrix in the form of (7) and elements given by (8).

Prt =

⎡
⎢⎢⎢⎣
prt11 prt12 . . . prt1M
prt21 prt22 . . . prt2M
...

...
. . .

...

prtM1 prtM2 . . . prtMM

⎤
⎥⎥⎥⎦ (7)

Pr {σt+h = n|σt = m} =
{
prtmnh + o(h) m �= n
1 + prtmmh + o(h) m = n

(8)

Here prtmn ≥ 0 with the condition of prtmm = −∑M
n=1,n �=m prtmn is the transition rate

from mode m of the controller at time t to mode n at time t + h. In the stochastic
variation, theMarkov chain rt is assumed to be independent on theσ -algebra generated
by σt .

The controller (6) is an asynchronous structure because theMarkov chain governing
the controller switching is different from the Markov process orchestrating the system
modes. However, the controller modes are mismatched with the modes of the system,
but depend on them according to certain probabilities. This dependency is shown by
defining Eq. (9).

Asmentionedbefore, generally it is difficult to determine the exact values of the con-
ditional TRs (8). Thus, it is assumed that the controller chain is modeled by uncertain
transition specifications. In this case, the exact values of the TR entries are not known,
but their upper bounds and lower bounds are available. Such an uncertain TRmatrix is
specified as Prt = P̄rt + �Prt here, where P̄rt = [ p̄rtmn], p̄rtmm = −∑M

n=1,n �=m p̄rtmn

and �Prt = [�prtmn],�prtmm = −∑M
n=1,n �=m �prtmn denote the nominal TRs and the

uncertain part of TRs. It is supposed that the TR uncertainty is bounded by amaximum
value of ζ rt

mn
> 0, i.e.,

∣∣�prtmn
∣∣ ≤ ζ

rt
mnm �= n.

The proposed asynchronous control structure in which the controller Markov chain
σt is an uncertain observation of the system Markov process rt is shown in Fig. 1.

The transition rates of the Markov process which governs the switching between
the controller modes are not continuously time-varying so the Markov process is
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Fig. 1 Architecture of the asynchronous control scheme

not purely non-homogeneous. The time variation of the TRs of σt is due to their
dependency to the signal rt ; considering the fact that rt is a piecewise constant signal,
the TRs of σt are piecewise constant functions of time t , i.e., they are varying but
invariant within an interval. Therefore, σt is a piecewise homogeneous Markov chain.
Since the system of Eq. (1) is a time-homogeneous MJLS and the controller structure
evolveswith a piecewise homogeneousMarkov chain, the closed-loop system involves
two decoupled Markov processes and generally is a piecewise homogeneous Markov
jump linear system.

To include uncertainties in the controller, the controller gain is assumed as
K (σt , t) = K̄ (σt ) + �K (σt , t).K̄ (σt ) is the nominal gain to be designed while
�K (σt , t) represents the time-varying, norm-bounded parametric uncertainty of the
controller.�K (σt , t) is an unknown,mode-dependentmatrixwith the following form,

�K (σt , t) = DK (σt )FK (σt , t)EK (σt ) (9)

in which DK (σt ), and EK (σt ) are known real-valued constant matrices, and FK (σt , t)
is unknown time-varying matrix with Lebesgue measurable elements satisfying
FT
K (σt , t)FK (σt , t) ≤ I.



4240 Circuits Syst Signal Process (2018) 37:4234–4255

Before obtaining the main results and designing the asynchronous controller, an
important definition and lemma are recalled.

Definition [2] For any initial mode r0, and any given initial state vector x0, the uncer-
tain system of Eq. (1) with u(t) = 0 is said to be robustly stochastically stable, if for
all admissible uncertainties the following condition holds

E

[∫ ∞

0
‖x(t)‖2 dt |x0, r0

]
< ∞ (10)

where E{·|·} is the expectation conditioning on the initial values of x0 and r0.

Lemma [40] Let Y be a symmetric matrix, H and E be given matrices with the appro-
priate dimensions and F satisfy FT F ≤ I , then the following equivalent relations
hold:

1. For any ε > 0, HFE + ET FT HT ≤ εHHT + ε−1ET E
2. Y + HFE + ET FT HT < 0 holds if and only if there exists a scalar ε > 0 such

thatY + εHHT + ε−1ET E < 0.

After introducing the system and the controller structure, finally the problem is
formulated; consider a MJLS and derive stabilizability conditions for the closed-loop
system which involves an asynchronous controller. Additionally, design non-fragile,
state-feedback gains which are only dependent to the observed chain such that the
closed-loop system is robustly, stochastically stable.

3 Main Results

The purpose of this section is to deal with the stabilization problem. By a sufficient
condition, the existence of the asynchronous, non-fragile, state-feedback controller is
checked, and then, the gains (6) are designed such that the system (1) is stochastically
stable over all admissible uncertainties in the system and controller. The condition as
well as the feedback gains are reported in terms of a set of coupled LMIs which can
be solved systematically and effectively.

Consider the control law (6), substituting the controller gains into Eq. (1) yields the
dynamic of the closed-loop system described by

{
ẋ(t) = Ā(rt , σt , t)x(t)
x(t0) = x0, rt0 = r0, σt0 = σ0

(11)

where

Ā(rt , σt , t) = A(rt ) + B(rt )K (σt , t) (12)

The upcoming theorem presents a sufficient stabilizability condition.
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Remark 1 Hereafter in the whole paper, for the convenience of notations rt =
i is used. It specifies the modei of the system. Thus, matrices are labeled as
A(i), B(i), K (m),�K(m, t), EK (m), DK (m) and FK (m, t). The initial time is set
to be zero, t0 = 0. Additionally, the initial state vector, x0 and the initial modes, r0 and
σ0, are supposed to be available.

Theorem There exist controller gains K (σt , t) such that the closed-loop system
ẋ(t) = Ā(rt , σt , t)x(t) with the initial conditions x(t0) = x0, rt0 = r0, σt0 = σ0,

is robustly stochastically stable, if there exists a set of square, symmetric, positive
definite mode-dependent matrices X (m) and P(m), a set of mode-dependent matrices
Y (m), V (m), Z(m) and a set of positive mode-dependent scalars εK (i), εip(m, n),

such that the following set of constraints hold for all i ∈ N and m ∈ M .

⎡
⎣ J (i,m) X (m)ET

K (m) X (m)

EK (i)X (m) −εK (m)I 0
X (m) 0 −Z(m)

⎤
⎦ < 0 (13)

[
Q(i,m) S(m)

ST (m) −R(m)

]
< 0 (14)

where

X (m) = P−1(m) (15)

V (m) = Z−1(m) (16)

J (i,m) = X (m)AT (i) + A(i)X (m) + Y T (m)BT (i)

+ B(i)Y (m) + εK (m)B(i)DK (m)DT
K (m)BT (i) (17)

Q(i,m) = −V (m) +
M∑
n=1

p̄imn P(n) + 1

4

M∑
n=1

εip(m, n)(ζ imn)
2 I (18)

S(m) = [P(m) − P(1), . . . , P(m) − P(m − 1),

P(m) − P(m + 1), . . . , P(m) − P(M)] (19)

R(m) = diag
[
εip(m, 1)I, . . . , εip(m,m − 1)I,

εip(m,m + 1)I, . . . , εip(m, M)I
]

(20)

then, the stabilizer gain is obtained asK (m) = Y (m)X−1(m).

Proof Construct the multiple quadratic Lyapunov candidate as

V (x(t), rt , σt ) = xT (t)P(σt )x(t) (21)

The function is multiple because of the variations of the dynamics and controller
gains. P(m) denounce symmetric and positive definite matrices.
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The infinitesimal generator of the Lyapunov function is as Eq. (22).

LV (x(t), i,m) = lim
h→0

(E[V (x(t + h), rt+h, σt+h)|x(t) = x(t), rt = i, σt = m]
− V (x(t), i,m)) /h (22)

Applying the law of total probability and using the property of the conditional
expectation, the infinitesimal generator is written as Eq. (23).

LV (x(t), i,m)

= limh→0

⎛
⎜⎜⎜⎜⎝

∑
j ∈ N,

n ∈ M

Pr(rt+h = j, σt+h = n| rt = i, σt = m)xT (t + h)

P(n)x(t + h) − xT (t)P(m)x(t)

⎞
⎟⎟⎟⎟⎟⎠

/h (23)

For the system of (1), the probabilities of the both Markov chains are involved.
Considering decoupledMarkov chains of the two levels; it can be found that Pr (rt+h =
j , σ t+h = n | rt = i , σ t = m) = Pr (rt+h = j | rt = i , σ t+h = n, σ t = m) =
Pr ( σ t+h = n | rt = i , σ t = m). Thus, the infinitesimal generator of the Lyapunov
function will be computed as:

LV (x(t), i,m) = lim
h→0

⎧⎨
⎩

∑
j∈N, j �=i

λi j h

⎡
⎣ ∑
n∈M,n �=m

xT (t + h) p j
mnhP(n)x(t + h)

+
(
1 + p j

mmh
)
xT (t + h)P(m) x(t + h)

⎤
⎦

+ (1 + λi i h)

⎡
⎣ ∑
n∈M,n �=m

xT (t + h) pimnhP(n)x(t + h)

+
(
1 + pimmh

)
xT (t + h)P(m)x(t + h)

⎤
⎦ − xT (t)P(m)x(t)

⎫⎬
⎭/h

(24)
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Byusing the relations
∑

n∈M,n �=m pmn+pmm = ∑
n∈M pmn and

∑
j∈N, j �=i λi j P(m)

+ λi i P(m) = ∑
j∈N λi j P(m), Eq. (24) can be written as (25);

LV (x(t), i,m) = x(t)T
[
ĀT (i,m, t)P(m) + P(m) Ā(i,m, t)

+
N∑
j=1

λi j P(m) +
M∑
n=1

pimn P(n)

⎤
⎦ x(t) (25)

Consider
∑N

j=1 λi j P(m) = 0, as a result of the total probability law and the
conditions of (4) and (5), if the following inequality holds,

ĀT (i,m, t)P(m) + P(m) Ā(i,mt) +
M∑
n=1

pimn P(n) < 0 (26)

there exist stabilizing state-feedbackgains K (m) such that onehasLV (x(t), i,m) < 0.
By considering a similar line in the proof of Theorem4 in Section 2.2 of [2], the closed-
loop system is stochastically stable and the Definition 1 is verified for the closed-loop
system (11).

To derive the controller gains (6), replace Ā(i,m, t) with A(i) + B(i) (K (m)+
�K (m, t)) in Eq. (26), thus, the following is achieved.

AT (i)P(m) + P(m)A(i) + KT (m)BT (i)P(m)

+ P(m)B(i)K (m) + �KT (m, t)BT (i)P(m)

+ P(m)B(i)�K (m, t) +
M∑
n=1

pimn P(n) < 0 (27)

If substitute the uncertain TRs of the observed chain by prt = p̄rt +�prt , Eq. (27)
turns to Eq. (28).

AT (i)P(m) + P(m)A(i) + KT (m)BT (i)P(m)

+ P(m)B(i)K (m) + ET
K (m)FT

K (m, t)DT
K (m)BT (i)P(m)

+ P(m)B(i)DK (m)FK (m, t)EK (m)

+
M∑
n=1

p̄imn P(n) +
M∑

n=1,n �=m

�pimn (P(n) − P(m)) < 0 (28)

Based on Lemma 1, the following inequalities can be written for the uncertain parts
of (28),

P(m)B(i)DK (m)FK (m, t)EK (m) + ET
K (m)FT

K (m, t)DT
K (m)BT (i)P(m)

≤ εK (m)P(m)B(i)DK (m)DT
K (m)BT (i)P(m) + ε−1

K (m)ET
K (m)EK (m) (29)
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M∑
n=1,n �=m

�pi
mn

(P(n) − P(m)) ≤ 1

4

M∑
n=1

εip(m, n)(ζ imn)
2 I

+
N∑

n=1,n �=m

εip(m, n)−1 (P(n) − P(m))2 (30)

where εK (m) and εip(m, n), specify the degree of robustness of the system.
Taking the advantage of the inequalities (29) and (30), Eq. (28) can be rewritten in

the form of the following.

AT (i)P(m) + P(m)A(i) + KT (m)BT (i)P(m)

+ P(m)B(i)K (m) + εK (m)P(m)B(i)DK (m)DT
K (m)BT (i)P(m)

+ ε−1
K (m)ET

K (m)EK (m)

+
M∑
n=1

p̄imn P(n) + 1

4

M∑
n=1

εip(m, n)(ζ imn)
2 I

+
N∑

n=1,n �=m

εip(m, n)−1 (P(n) − P(m))2 < 0 (31)

Define V (m) = Z−1(m) such that

M∑
n=1

p̄imn P(n) + 1

4

M∑
n=1

εip(m, n)(ζ i
mn

)2 I +
M∑
n=1

εip(m, n)−1 (P(n) − P(m))2 < V (m)

(32)

By defining Q(i,m), S(m) and R(m) in the form of Eqs. (18), (19) and (20) and
applying the Schur complement lemma to Eq. (32), the inequality (14) of the theorem
is achieved.

Furthermore, Eq. (31) leads to (33) if one takes the advantage of Eq. (32).

AT (i)P(m) + P(m)A(i) + KT (m)BT (i)P(m)

+ P(m)B(i)K (m) + εK (m)P(m)B(i)DK (m)DT
K (m)BT (i)P(m)

+ ε−1
K (m)ET

K (m)EK (m) + V (m) < 0 (33)

The condition of Eq. (33) is nonlinear in P(m) and K (m). In order to find controller
gains it is desired to transform (33) into a linear form, let X (m) = P−1(m). Pre- and
post-multiplying (33) by X (m) provides (34).

X (m)AT (i) + A(i)X (m) + X (m)KT (m)BT (i)

+ B(i)K (m)X (m) + εK (m)B(i)DK (m)DT
K (m)BT (i)

+ ε−1
K (m)X (m)ET

K (m)EK (m)X (m) + X (m)V (m)X (m) < 0 (34)
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Let Y (m) = K (m)X (m), then the inequality of (35) is obtained from (34).

X (m)AT (i) + A(i)X (m) + Y T (m)BT (i)

+ B(i)Y (m) + εK (m)B(i)DK (m)DT
K (m)BT (i)

+ ε−1
K (m)X (m)ET

K (m)EK (m)X (m) + X (m)V (m)X (m) < 0 (35)

By definingJ (i,m) as (17) and using the Schur complement equivalence mentioned in
Lemma 2, the inequality of (35) can be written in the form of inequality (13). Finally,
the state-feedback gains are derived as K (m) = Y (m)X−1(m) which ends the proof.

	

Remark 2 It should be noted that, due to the uncertainties in the system (1), the theorem
is only a sufficient conditionon the stochastic stabilizability of the system.Thus, further
works need to be done to improve the conditions.

Remark 3 Compared with the Markov jump systems, semi-Markov jump systems (S-
MJLSs) are more practical stochastic models for real-world applications [7,17,29].
WhileMJLSs are characterized by a fixedmatrix of transition rates, S-MJLSs are iden-
tified by time-dependent TRs with relaxed conditions on the sojourn time probability
distributions. Definitely, the method of this study can be extended to deal with the
asynchronous switching phenomenon in the control of semi-Markov jump systems.
In that case, the switching of the system and the controller could be modeled by two
distinguished semi-Markov processes. By considering both processes integrated in the
closed-loop system, the controller can be readily designed.

3.1 Discussions

3.1.1 Design Parameters

A drawback of the proposed method is that the conditions depend on a number of
parameters ε that must be suitably tuned. These parameters rise due to the lemma
used for dealing with the system uncertainty. According to [40], this lemma holds
for any ε > 0. Although these parameters could take any values, it is preferred to
select them properly. The reason is that these parameters determine the system degree
of robustness and improper values may increase conservativeness and even lead to
infeasible LMI sets. There exist two approaches for dealing with the parameters ε.
The first approach is to select them a priori to afford a prescribed degree of robustness.
This approach is extensively used in the robust controller design problems [40] and is
also preferred by the authors in the current study. The main advantage of this approach
is providing the conditions of a fair comparison between the multiple results. The
second approach is to optimize the parameters ε which is addressed in [24].

3.1.2 Uncertainties

As mentioned before, the uncertainty in the proposed control structure appears both
in the observed Markov chain and the gains of the controller. Both uncertainties are
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a result of imperfect system information and modeling errors. The TR uncertainty
is specified by a bound of ζ

rt
mn , and the controller gains’ uncertainty is specified by

the matrices of EK (m), DK (m) and FK (m, t). Generally, these specifications are
determined empirically from an admissible portion (for example up to, 20%) of the
nominal value of the transition rates and the system gains after lots of statistics in
practice. In this study, these bounds and matrices are supposed to be a priori available
from the modeling procedure.

3.1.3 Number of the Controller Modes

There is no specific relation between the number of system modes and the number of
the controller modes. In other words, M and N may either be equal or not. Although
in normal situations M and N are supposed to be equal, in a case where the mode
information is not complete and some modes are not observable, M may be less than
N . Also, in noisy and disturbed situations, the number of observed modes may be
more than the number of actual modes. In this study, it is assumed that both M and N
are previously known. Obtaining the Markov chain of the controller, or the problem
of how to observe its parameters, is beyond the scopes of this paper and may be a
significant and interesting problem for further investigations.

3.1.4 Feasibility of the Controller from Implementation and Computational Point of
Views

The asynchronous controller is highly feasible from the implementation point of view,
but it is also subject to some technical limitations. These limitations are relevant
to the implementation of state-feedback gains and the construction of the switching
mechanism. In case of feedback gain implementation, the proposed scheme faces
difficulties exactly similar to those that come up in the implementation of a normal
control gain for a linear system and it is not a major concern. In case of Markov
chain construction and the mode identification, the proposed controller is also feasible
and there exist plenty of studies dedicated to the Markov chain implementations [33].
Remarkably, the presented switching controller is more feasible than the traditional
control scheme for MJLSs since it does not require perfect access to the Markov chain
of the system but depends on the observed chain. From the computational point of
view, the factors that affect the feasibility of the controller are the uncertainty bounds
of the TRs and feedback gains involved in the LMI constraints. Although the LMIs
are essentially convex constraints and easily solvable by optimization algorithms and
software, large uncertainty bounds may reduce the feasibility of the LMIs.

4 Illustrative Example

In this section, simulation results are provided to test the effectiveness and the applica-
bility of the proposed theory. For this purpose, an stabilizing non-fragile asynchronous
controller is designed and applied to a vertical takeoff–landing vehicle extended from
[14] which is modeled as a MJLS. To get the simulation results, MATLAB 2016b, and
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for LMI solving, YALMIP [19] is used here. Also, the computer is an Intel�CoreTM

I7-6700HQ 2.60 GHz CPU with 16 GB RAM.
Due to the stochastic nature of theMarkovian systems, the simulation results cannot

be convincing on the basis of a single realization; therefore, the results are obtained for
10 multiple runs and also represented as the average of 10,000 Monte Carlo runs. Fur-
thermore, to show the superiority of the proposed controller, the results are compared
to the mode-independent controller referred at [2].

The VTOL states, x(t) = [x1(t), x2(t), x3(t), x4(t)], are defined in Table 1.
The vertical takeoff–landing vehicle is a fault-prone system and can be represented

by a Markovian jump linear model. The VTOL system matrices are A(1) and B(1) in
the normalworking conditions. The fault scenario in this system is the lost effectiveness
of the collective pitch control input u1(t) to the vertical velocity x2(t) by 50%. Under
such fault circumstances, the systemmatrices are A(2) (= A(1)) and B(2), in which the
first element of the second row of the input matrix B(2) is half of that of B(1). Without
loss of generality, only one type of fault is considered in the numerical example, so
N = M =2. System matrices are as the following.

A(1) = A(2) =

⎡
⎢⎢⎣

− 0.0366 0.0271 0.0188 − 0.4555
0.0482 − 1.010 0.0024 − 4.0208
0.1002 0.3681 − 0.7070 1.4200
0 0 1 0

⎤
⎥⎥⎦ ,

B(1) =

⎡
⎢⎢⎣
0.4422 0.1761
3.5446 − 7.5922
− 5.520 4.490
0 0

⎤
⎥⎥⎦ ,

B(2) =

⎡
⎢⎢⎣
0.4422 0.1761
1.7723 − 7.5922
− 5.520 4.490
0 0

⎤
⎥⎥⎦ (36)

The TR matrix of the fault process is (37), and the nominal observed transition rate
matrices are as (38).

Table 1 VTOL states and state variables

State variables Input variables

VTOL variable Horizontal
velocity

Vertical
velocity

Pitch rate Pitch angle Collective
pitch control

Longitudinal
cyclic pitch
control

Variable Name x1(t) x2(t) x3(t) x4(t) u1(t) u2(t)

Unit Knot Knot Degree per
second

Degree Degree Degree
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Fig. 2 Fault occurrence trajectory of the VTOL

Fig. 3 States of the observed Markov process

� =
[− 2 2
1 − 1

]
(37)

P1 =
[− 0.1 0.1
0.15 − 0.15

]
, P2 =

[− 0.2 0.2
0.1 − 0.1

]
(38)

It is assumed that the observed chain has uncertainties up to 50% of the nomi-
nal values. It means that the upper and lower bounds of the TRs are assumed to be
|�pmn| ≤ pmn/2m �= n.

A single mode evolution of the Markov process rt which demonstrates the fault
occurrence trajectory is depicted in Fig. 2. The corresponding, observedMarkov chain,
σt is also illustrated in Fig. 3.

The controller gain uncertainties in this example are assumed to be (39).

DK (1) = DK (2) =
[
1 0 0 0
0 1 0 0

]
, EB(1) = EB(2) = 0.1 ∗ eye(4) (39)

The uncontrolled states of the VTOL system are depicted in Fig. 4 by the initial
conditions and modes of x1(0) = -1.2, x2(0) = 0.9, x3(0) = 0.2, x4(0) = -1, r0 = σ 0 =1.
It is clear that all the states of the uncontrolled system are unstable.
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Fig. 4 Uncontrolled states of the VTOL system

By solving the conditions of Theorem in Sect. 3, with the prescribed degree of
robustness εA(1) = εB(1) = 0.5, εA(2) = εB(2) = 0.1, and εip(m, n)= 0.5, the following
controllers are obtained.

K (1) =
[− 1.1255 − 1.0359 1.5716 1.6765

− 0.1085 1.0903 − 0.1290 − 0.5368

]
,

K (2) =
[− 0.7770 0.1750 0.7440 1.0035
0.5341 1.6649 − 0.1679 − 1.4685

]
(40)

By the initial conditionsmentioned above, the state trajectories of the controlled system
and the corresponding control signals are illustrated in Figs. 5 and 6 for 10 individual
runs.

For a better understanding, the average state responses and the relevant control
efforts are also shown in Figs. 7 and 8 for 10,000 Monte Carlo runs.

For more investigation, denote the settling time, Ts given by (41),

‖x(t)‖2 ≤ 1.5% ‖x(0)‖2 , t > Ts (41)

Statistics of the settling time and the approximated normal distribution are summarized
in Fig. 9.

Thefigures clearly demonstrate that by the asynchronous controller the states tend to
the origin. Also, the control signals are enough smooth. Consequently, the proposed
non-fragile controller can effectively manage the effect of the mismatched Markov
chains of the system and the controller as well as the controller uncertainties.

In order to show the superiority of the developed method to the mode-independent
controller in case of mismatched chains, the results are compared with the mode-
independent controller referred at [2]. By solving the conditions for the non-fragile
case, the controller is obtained as (42).

K =
[− 0.4326 − 0.3214 0.5680 0.6607

− 0.1034 0.4026 0.0018 − 0.4363

]
(42)
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Fig. 5 Controlled states of the VTOL for 10 runs

Fig. 6 Control signals of the VTOL for 10 runs

The average controlled states of 10,000 Monte Carlo runs are depicted in Fig. 10
with the relevant control efforts of Fig. 11. The histogram and the normal distribution
of the settling time are also depicted in Fig. 12.

Notably, to provide a fair comparison, the uncertainty bounds and the robustness
degrees are selected equal to the asynchronous controller.

As the figures show, the asynchronous controller shows faster response (smaller
settling time) than the mode-independent controller. The following table summarizes
the comparison results (Table 2).

The reason of the more efficient performance of the proposed control scheme is that
the mode-independent controller ignores the switching information of the dynamics,
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Fig. 7 Average controlled states of the VTOL for 10,000 Monte Carlo runs

Fig. 8 Average control signals of the VTOL for 10,000 Monte Carlo runs

Histogram
Normal Distribution

Fig. 9 Statistics of the settling time of the controlled states for 10,000 Monte Carlo runs
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Fig. 10 Average controlled states of the VTOL under the mode-independent control [2] for 10,000 Monte
Carlo runs

Fig. 11 Average control signals of the VTOL under the mode-independent control [2] for 10,000 Monte
Carlo runs

Fig. 12 Statistics of the settling time of the controlled states under the mode-independent control [2] for
10,000 Monte- Carlo runs
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Table 2 Results of comparing the asynchronous controller with the mode-independent controller for the
VTOL

Design method Mean settling time Deviation of the
settling time

Number of con-
troller gains

Proposed 5.3428 0.0804 2

Mode-independent [2] 7.3749 0.1384 1

thus leading to more conservative gains. It is fairly admitted that, the cost of this
improvement is the more number of LMIs to be solved. Although the asynchronous
controller has more computational complexity, in complex asynchronous situations it
is more likely to provide feasible results.

5 Conclusions

In this study, an asynchronous control scheme is proposed for the continuous-time
MJLS. The proposed scheme includes an additional uncertain Markov chain as an
observation of the original chain. This chain is slightly different from the original
chain, but depends on it according to certain probabilities. It also contains uncer-
tain TR information to take account for the imperfect observation procedures. Such
a scheme is capable to deal with practical situations in which the real-time, exact
and precise detection of the system modes is not possible. This design also takes
inaccuracies of the controller implementation into account and helps reducing the
implementation cost. Here, the piecewise homogenous Markov chain approach helps
obtaining the results in the form of LMIs which are easily solvable. The proposed
method to deal with the asynchronous phenomenon of MJLSs is superior to the previ-
ous techniques in case of conservativeness of the stability analysis conditions and the
designed controller gains; the reason is that it provides a more realistic representation
for the asynchronous switching. It is also more likely to provide feasible results in
comparison with the previous methods. Remarkably, the proposed method is capable
of being extended to multi-objective problems such as asynchronous controller design
for MJLSs subject to disturbances or noises. It can also be generalized to deal with
S-MJLSs with asynchronous switching between the system and controller modes.
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