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Abstract In this paper, a novel robust design algorithm based on estimation of signal
steering vector and covariance matrix is developed. The theoretical covariance matrix
is first estimated via the shrinkage method. Subsequently, the desired signal steering
vector is estimated based on maximizing array output power under the correlation
coefficient constraint and norm constraint. The original nonconvex quadratic pro-
gramming problem, whose relaxation is tight through analyzing the hidden convexity
properties, can be solved by the relaxed semidefinite programmingmethod.Moreover,
the interference-plus-noise covariance matrix is estimated with the corrected steering
vector and the subspace theorem, whose efficiency is analytically proven. Numerical
experiments show that the proposed algorithm has the advantages of high efficiency
and accuracy.
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1 Introduction

Adaptive design technique has been considered as an important role in many fields of
applications like radar, sonar,wireless communications, and soon in recent years [4,16,
20,21,28]. The well-known conventional adaptive beamforming algorithm is usually
used to extract the desired signal and suppress simultaneously the interference as well
as noise at the array output. However, it has also been recognized that the conventional
beamformer is sensitive to the imprecise signal information especiallywhen the desired
signal component is present in the received data (i.e., the self-null phenomenon in the
direction of desired signal [17], which will result in severe performance degradation
of adaptive beamformers.

As a solution, various robust techniques that combine different principles were
developed to improve the performance [6–8,10,11,14,22,25,27,29,30]. One of the
most popular robust approaches is the Diagonal loading (DL) algorithm, which relies
on the diagonal loading of the sample covariance matrix [6]. However, the suitable
diagonal loading factor is hard to be selected in practice. As for the eigenspace-
based projection beamformer developed in [8], the desired signal steering vector
can be obtained by projecting the presumed steering vector on the estimated signal-
plus-interference subspace. This algorithm may suffer considerable performance
degradation in the low signal-to-noise ratio (SNR) because the signal subspace may be
corroded by the noise subspace. In [7], a robust method is proposed by automatically
choosing the diagonal loading level, which has the potential to enhance the robust per-
formance. The worst-case technique delimits the uncertainty set by upper bounding
the norm of the mismatch vector in [25]. It has been proved the worst-case technique
belongs to the variants of DL technique. In [27], a robust adaptive beamforming tech-
nique (RAB) with magnitude response constraints employs convex optimization to
restrict the region of interest, which can be flexibly controlled with specified robust
region.

In order to remove the signal of interest from the sample covariancematrix, recently,
some approaches have been considered based on the interference-plus-noise covari-
ance matrix reconstructive method. An iterative shrinkage-based algorithm which
estimates the steering vector and covariance matrix was investigated in [22]. This
beamforming approach offers excellent performance when the interference power is
weak. A classic design approach based on the desired signal steering vector estimation
and the interference-plus-noise covariance matrix reconstruction is originally studied
byGu and Leshem in [10]. The algorithm based on spatial power spectrum sampling is
shown to bemore robust and excellent than that by using the sample covariancematrix.
Motivated by this landmark experimental result, there are several further researches
on efficient adaptive beamformer design based on the principle of desired signal steer-
ing vector estimation and interference-plus-noise covariance matrix reconstruction
[11,14,29,30]. A sparse way to reconstruct the interference covariance matrix was
proposed in [11], the robust design is solved via compressive sensing techniques
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[23,31]. In [29,30], the robust designs for coprime array adaptive beamforming are
proposed. The authors also demonstrate that a good performance can be achieved in
the reconstruction-based adaptive beamformer. Hence, covariance matrix optimiza-
tion plays an important role in further improving the system performance. This fact
motivates us to explore the research on adaptive robust design.

On the basis of the studies mentioned above, we devise a novel robust design algo-
rithm via estimating the desired signal steering vector and covariance matrix. We first
utilize the shrinkage method to estimate the theoretical covariance matrix. Then, the
steering vector is corrected by maximizing the array output power under correlation
coefficient and norm constraint. The hidden convexity property of the design is analyt-
ically proved. Thus, the formulated nonconvex quadratic programming problem can
be globally solved using the semidefinite relaxation (SDR) technique [5].Moreover, in
order to remove thedesired signal component from the estimated covariancematrix, the
interference-plus-noise covariance matrix is estimated based on the corrected steering
vector and subspace theorem. The performance of the proposed algorithm is improved
expectantly in terms of achieved signal-to-interference-plus-noise ratio (SINR). The-
oretical analysis and numerical simulations exhibits satisfactory performance.

The remainder of this paper is organized as follows. The signal model is described
in Sect. 2. In Sect. 3, a novel steering vector method is proposed. Then, a new method
to estimate the interference-plus-noise covariance matrix is introduced. In Sect. 4, we
evaluate the performance via numerical simulations. Finally, conclusions are drawn
in Sect. 5.
Notation

CN (μ,�) denotes the circularly symmetric complex Gaussian distribution with
mean μ and covariance matrix �. Vectors are denoted by bold-case letters, e.g., a
(lowercase); matrices are represented by capitalized bold-case letters and sets e.g., A
(uppercase). The Hermitian, transpose and conjugate operators are denoted by (·)H ,
(·)T and (·)∗, respectively. ‖·‖F denotes the Frobenius norm. ‖·‖ denotes the Euclidean
norm. |·| is an absolute operator. tr (A) denotes the trace of A. I and 0 denote, respec-
tively, the identity matrix and the matrix with zero entries (Their size is determined
from the context). Rm , Cm , and H

m are the sets of m-dimensional vectors of real
numbers, the sets ofm-dimensional vectors of complex numbers, andm×m Hermitian
matrices, respectively.

2 System Model and Problem Statement

Assume that a uniform linear array (ULA) equippedwithM omnidirectional antennas.
The P + 1 narrowband far-field signals are received by the array

x(t) = xs(t) + xi (t) + n(t) =
P∑

i=0
si (t)a(θi ) + n(t), (1)

where t is the index of time, n(t) denotes the additive white Gaussian noise vector,
distributed as CN (

0, σ 2
n

)
, σ 2

n represents the noise power. si (t) and θi are the i th signal
waveform and the corresponding signal direction, respectively. Assume that the signal
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sources and noise are statistically independent with each other. xs(t) = s0(t)a(θ0) and
xi (t) = ∑P

i=1 si (t)a(θi ) denote the desired signal and interference vectors, respec-
tively. a(·) ∈ C

M represents the steering vector, which has the following general
form

a(θ) =
[
1 e j2πd sin θ/λ . . . e j2π(M−1)d sin θ/λ

]T
, (2)

where λ and d denote the carrier wavelength and the array spacing, respectively. The
output of beamformer is expressed as

y(t) = wHx(t), (3)

wherew ∈ C
M stands for the weight vector. Under the assumption that both the signal

steering vector and the datamatrix are knownprecisely, the beamformingweight vector
w can be obtained via maximizing the output SINR

SINR = σ 2
0

∣
∣wHa(θ0)

∣
∣2

wHRinw
, (4)

whereσ 2
0 � E

{|s0(t)|2
}
denotes the desired signal power, andσ 2

i is the i th interference
power. The interference-plus-noise covariance matrix Rin can be defined as

Rin = E
[
(xi (t) + n(t)) (xi (t) + n(t))H

]
= Ri + σ 2

n I, (5)

where Ri denotes the covariance matrix of interference. We also can find that the
solution to the adaptive weight vector is able to maintain a distortionless response
toward the desired signal and minimize the output interference-plus-noise power, i.e.,

min
w

wHRinw, s.t. wHa(θ0) = 1. (6)

The adaptive weight vector based on minimum variance distortionless response
(MVDR) principle is given by

wMVDR = R−1
in a(θ0)

aH (θ0)R
−1
in a(θ0)

. (7)

In practice, the covariance matrix is difficult to obtain, and it is usually replaced by
the sample covariance matrix R̂x, which is calculated from the received signal vectors
as

R̂x = 1

N

N∑

t=1

x(t)xH (t), (8)

where N is the number of snapshots. In addition, the adaptive beamformer is sensitive
to the desired signal steering vector errors, which may cause self-null phenomenon
in the direction of desired signal. Thus, the imperfect covariance matrix or imprecise
signal information will result in dramatic performance degradation. Motivated by
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the reasons, this paper will focus on estimation of the desired steering vector and
covariance matrix for robust design.

3 Proposed Algorithm

In this section, we propose a novel approach to obtain the beamforming weight vec-
tor w. The main idea is to estimate the theoretical covariance matrix based on the
shrinkage method first and then use the shrinkage estimate covariance matrix in the
following estimation of the desired signal steering vector and the interference-plus-
noise covariance matrix.

As discussed in previous work [17], the sample covariance matrix is a poor estimate
of the theoretical covariance matrix when the sample size is small. Compared with
the classical adaptive approaches, the shrinkage-based methods have the potential to
enhance the performance of covariance matrix estimate with small number of samples
[7], we get

R̃x = α0I + β0R̂x, (9)

where α0 and β0 are combination coefficients (β0 ∈ [0, 1] , α0 ≥ 0), which are
solutions to the minimization of the Mean Squared Error (MSE) formulation

MSE
(
R̃x

)
= E

{∥
∥
∥R̃x − Rx

∥
∥
∥
2

F

}

= E

{∥
∥
∥α0I − (1 − β0)Rx + β0

(
R̂x − Rx

)∥
∥
∥
2

F

}

= ‖α0I − (1 − β0)Rx‖2 + β2
0E

{∥
∥
∥R̂x − Rx

∥
∥
∥
2

F

}

= α2
0M − 2α0 (1 − β0) tr (Rx) + (1 − β0)

2 ‖Rx‖2F
+β2

0E

{∥
∥
∥R̂x − Rx

∥
∥
∥
2

F

}

, (10)

whereRx represents the theoretical covariancematrix of the array output. As suggested
in [7], the optimal shrinkage parameters α0 and β0 are given by

α̂0 = min

[
ν̂ρ̂

∥
∥
∥R̂x−ν̂I

∥
∥
∥
2

F

, ν̂

]

, β̂0 = 1 − α̂0
ν̂

, (11)

where ρ̂ = 1
N2

N∑

t=1
‖x (t)‖4 − 1

N

∥
∥
∥R̂x

∥
∥
∥
2

F
, ν̂ = tr

(
R̂x

)
/M . Substituting (11) into (9),

we can obtain an enhanced form of the estiamte R̃x [12,15]:

R̃x = α̂0I + β̂0R̂x. (12)

The estimate in (12) is a kind of completely automatic diagonal loading approaches
with diagonal loading factor α̂0/β̂0. The shrinkage estimate R̃x will be used in the
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following estimation of the desired signal steering vector and the interference-plus-
noise covariance matrix.

3.1 Desired Signal Steering Vector Estimation

From the standpoint of covariance matrix, the Capon spatial spectrum P(θ) is usually
used to estimate the direction of arrival, i.e.,

P(θ) = 1

aH (θ)R̃−1
x a(θ)

. (13)

Using the definition in (13), we aim to obtain the beamformer that maximizes the array
output power, namely, min

a
aH R̃−1

x a, where a represents the actual desired steering

vector.We assume that ā
(
θ̄0
)
is the presumed desired steering vector, where θ̄0 denotes

the presumed direction of desired signal. The correlation coefficient of two given
vectors a1 and a2 can be generally defined as

cor (a1, a2) =
∣
∣aH1 a2

∣
∣

‖a1‖ ‖a2‖ . (14)

In this paper, we assume that the steering vector satisfies the same norm constraint
(i.e., ‖a‖ = ∥

∥ā
(
θ̄0
)∥
∥ = √

M , the normconstraint is reasonable in the cases of direction
error or phase perturbations, and the norm constraint still holds approximately for the
small gain perturbations [17]). From (14), it is straightforward to deduce that

ρ ≤
∣
∣aH ā

(
θ̄0
)∣
∣

M
≤ 1, (15)

where ρ is an appropriate scalar factor. For a robust beamforming, the constraint on
steering vector correlation coefficient can be exploited to restrict the desired signal in
the region of interest [24]. As a reference, we assume ρ = āH

(
θρ

)
ā
(
θ̄0
)
/M , with the

symmetric structure of the correlation coefficient property for the symmetric structure
array, ā

(
θρ

)
is a reference vector, which can be set by the region of interest. Without

loss of generality, we assume that the possible angular sector of the desired signal is
set to be 
 = [

θ̄0 − θ̄ ′
0, θ̄0 + θ̄ ′

0

]
,1 where θ̄ ′

0 accounts for the uncertainty on θ̄0. Then,
ρ can be set according to the following problem:

ρ ≤ minimize

⎧
⎨

⎩

∣
∣
∣a
(
θ̄0 − θ̄ ′

0

)H ā
(
θ̄0
)∣∣
∣

M
,

∣
∣
∣a
(
θ̄0 + θ̄ ′

0

)H ā
(
θ̄0
)∣∣
∣

M

⎫
⎬

⎭
. (16)

As for ā
(
θρ

)
, we can choose 
 ∈ [

θ̄0 − θρ, θ̄0 + θρ

]
so that (16) is satisfied. Thus,

(15) can be used to flexibly control the beamwidth of the robust region via choosing the

1 In this work, we assume that the interference is neither close to nor in the mainlobe beam region of the
array [19].
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parameterρ.Weappend the correlation coefficient and the normconstraint. Proceeding
in this way, the steering vector a ∈ C

M estimation problem can be formulated as

P1

⎧
⎪⎨

⎪⎩

minimize
a

aH R̃−1
x a,

subject to ν ≤ ∣
∣aH ā

(
θ̄0
)∣
∣ ≤ M, (ν = ρM),

‖a‖ = √
M .

(17)

The original optimization problem is a nonconvex quadratic program. The difficulty
for solving (17) is its nonconvexity due to the left side of the inequality constraint
ν ≤ ∣

∣aH ā
(
θ̄0
)∣
∣ and the nonlinear equality constraint ‖a‖ = √

M . Such problems
are in general NP-hard, and thus, the original design cannot be directly solved by the
convex optimization technique. Next, we focus on solving the nonconvex problem.
The homogenized version of problem P1 is given by

P2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
a,s

tr
([

R̃−1
x 0
0 0

] [
aaH as∗
aHs |s|2

])

,

subject to ν2 ≤ tr
([

ā
(
θ̄0
) (
ā
(
θ̄0
))H 0

0 0

] [
aaH as∗
aHs |s|2

])

≤ M2,

tr
([

IM 0
0 0

] [
aaH as∗
aHs |s|2

])

= M,

tr
([

0 0
0 1

] [
aaH as∗
aHs |s|2

])

= 1.

(18)

where s is a complex-valued scalar,which is used to construct the homogenized version
for problemP1.2 Precisely, problemP1 andP2 have the same optimal solutions, i.e.,
ν (P1) = ν (P2). Specifically, suppose that ã# = [

a#, s#
]T

is an optimal solution for
problem P2. Then a#/s# solves P1. Thus, we can get the optimal solution of P1 by
solving problem P2. The SDP relaxation of P2 is

P3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize
A

tr {Q0A} ,

subject to ν2 ≤ tr {Q1A} ≤ M2,

tr {Q2A} = M,

tr {Q3A} = 1,
A 	 0.

(19)

where Qi ∈ H
M+1 and A ∈ H

M+1 are defined as follows

Q0 =
[
R̃−1
x 0
0 0

]

,Q1 =
[
ā
(
θ̄0
) (
ā
(
θ̄0
))H 0

0 0

]

,Q2 =
[
IM 0
0 0

]

, (20)

2 Here, we consider a general homogenized form for the optimization problem P1 with an extra variable
s. A similar procedure was employed in [1,13].
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and

Q3 =
[
0 0
0 1

]

,A =
[
aaH as∗
aHs |s|2

]

. (21)

In general, the solution obtained by solving a relaxed SDP problem may not be
exactly rank-one. Nevertheless, better approximation can be obtained for lower rank
of the solution. The relationship between the rank of the matrix and the number of
constraints has been addressed in [18]. For a complex-valued problem, solving the
relaxed SDP problem is equivalent to solving the original quadratically constrained
quadratic programming (QCQP) problem when the number of constraints is no more
than 3 [13]. Furthermore,Ai et al. [1] have proven the rank-one decomposition theorem
and used it to show that the SDRs of a large class of complex-valued homogeneous
QCQPs with no more than four constraints are in fact tight. Hence, the relaxed SDP
problem P3 is tight due to the fact that the original design with three homogeneous
constraints, is hidden convex, and the objective function of P1 evaluated at a#/s# is
equal to the optimal value of P3, provided that

[
a#, s#

]T
is optimal to P3 [2,9].

Thus, once an optimal solution A# is obtained, we can check the rank of A#. If the
rank of A# equals to one, then ã# can be obtained exactly, and P1 is solved. If A#

has rank higher than one, we can construct a rank-one optimal solution via the matrix
decomposition theorem [1, Theorem 2.3]. Specifically, let us check the conditions
of the matrix decomposition theorem to P3: First, it is easy to verify that for any
nonzero complex Hermitian positive semidefinite matrix Y of size (M + 1) × (M +
1), (Tr (Q0Y) ,Tr (Q1Y) ,Tr (Q2Y) ,Tr (Q3Y)) 
= (0, 0, 0, 0). More precisely, there
exists (a1, a2, a3, a4) ∈ R

4+ such that a1Q0 + a2Q1 + a3Q2 + a4Q3 � 0; Second, the
condition (M + 1) ≥ 3 is mild and practical. Thus, the assumptions in [1, Theorem
2.3] are satisfied. Then,

• if rank
(
A#

) ≥ 3, there is a rank-one decomposition A# = ∑r
i=1 ãi ã

H
i , where r

denotes the rank of A#, and for all z ∈ Null
(
A#

)
, ãHi z = 0, i.e., ãi ∈ Range

(
A#

)
,

i = 1, . . . , r . Thus one can find a nonzero vector ã# ∈ Range
(
A#

)
(synthetically

denoted as ã# = D1
(
A#,Q0,Q1,Q2,Q3

)
3) satisfying

(
Tr

(
Q0A#

)
,Tr

(
Q1A#

)
,Tr

(
Q2A#

)
,Tr

(
Q3A#

))

=
((

ã#
)H

Q0ã#,
(
ã#
)H

Q1ã#,
(
ã#
)H

Q2ã#,
(
ã#
)H

Q3ã#
)

. (22)

• if rank (A#
) = 2, there exists a rank-one decompositionA# = ã1ãH1 + ã2ãH2 , then

we have C(M+1)/Range
(
A#

) 
= ∅ since (M + 1) ≥ 3. Thus, for any z /∈ Range
(
A#

)
,

one can find a nonzero vector ã# in the linear subspace spanned by z ∪ range
(
A#

)

(synthetically denoted as ã# = D2
(
A#,Q0,Q1,Q2,Q3

)
), satisfying (22).

3 Functions D1 and D2 are used to schematize the mapping (formally defined and proved in [1, Theorem

2.3]) between A# and a rank-one matrix ã#
(
ã#
)H

for cases where rank
(
A#

)
≥ 3 and rank

(
A#

)
= 2,

respectively. The MATLAB implementation is provided in http://www1.se.cuhk.edu.hk/~ywhuang/dcmp/
paper.html.

http://www1.se.cuhk.edu.hk/~ywhuang/dcmp/paper.html
http://www1.se.cuhk.edu.hk/~ywhuang/dcmp/paper.html
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Consequently, we can get that

Tr
(
Q0ã#

(
ã#
)H

)
= Tr

(
Q0A#

)
, (23)

and
ν2 ≤ Tr

(
Q1ã#

(
ã#
)H

)
= Tr

(
Q1A#

) ≤ M2,

Tr
(
Q2ã#

(
ã#
)H

)
= Tr

(
Q2A#

) = M,

Tr
(
Q3ã#

(
ã#
)H

)
= Tr

(
Q3A#

) = 1.

(24)

Therefore, ã#
(
ã#
)H

is the optimal rank-one solution forP3 and the optimal solution of
P1 ( i.e.,a#/s#) canbeobtained. Finally, the procedure for solvingP1 is summarized in
Algorithm 1. In our work for the steering vector estimation, the theoretical covariance
matrix is first estimated based on the shrinkagemethod [7].We assume that the desired
signal region and interference region can be distinguished via the correlation coeffi-
cient and norm constraint. The constraint set is also used to restrict the desired signal in
the region of interest. Then, we can obtain the corrected desired signal steering vector
based on the Capon spatial spectrum estimator, which provides efficiency because the
extended Capon beamformer can determine accurately the power of the desired signal,
even when only imprecise knowledge of its steering vector is available. Thus, with the
constraint set, the steering vector is estimated through the beamformer output power
maximization under the constraint, where the estimate dose not converge to any of
the interference steering vectors or corresponding linear combinations. Furthermore,
exploiting the hidden convexity properties of the original design, the optimal solution
steering vector can be found based on SDR and matrix decomposition algorithms [1,
Theorem 2.3].

Algorithm 1 Procedure for Solving P1
Require:

Initial value: a (θ0), ν, R̂x, α̂0, β̂0.
Ensure:

An optimal solution a#.
1: Solve the problem P3, obtain A#;

2: if rank
(
A#

)
= 1 then

3: Perform an eigendecomposition A# = ã#
(
ã#
)H

, where ã# =
[
a# s#

]T
, getting a#=ã#/s# and

terminate;

4: else if rank
(
A#

)
= 2 then

5: Find ã# = D2

(
A#,Q0,Q1,Q2,Q3

)
;

6: else
7: Find ã# = D1

(
A#,Q0,Q1,Q2,Q3

)
;

8: end if

9: Let ã# =
[
a# s#

]T
;

10: Output a#=ã#/s#, and report a = a#.
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3.2 Covariance Matrix Estimation

As stated above, although the shrinkage-based methods have the potential to enhance
the performance of covariance matrix estimate, the estimated covariance matrix R̃x
still includes the desired signal. Next, we will attempt to eliminate the desired signal
component from the covariance matrix R̃x. The eigendecomposition of the R̃x is

R̃x =
M∑

j=1

λ ju ju j
H = Us�sUs

H + Un�nUn
H , (25)

where λ1 ≥ λ2 ≥ · · · λp ≥ λp+1 ≥ · · · ≥ λM are the eigenvalues in the descend-
ing order, u j denotes the eigenvector of R̃x. For notational simplicity, we exploit the
notationsUs = [u1 . . . uP+1] to represent the signal subspace, which includes desired
signal and interference signal, �s = diag[λ1, . . . , λP+1], Un = [uP+2, . . . ,uM ]
denotes the noise subspace, �n = diag[λP+2, . . . , λM ]. Based on the subspace theo-
rem, the signal subspace spans the same space with the steering matrix, i.e.,

span {u1,u2, . . . ,uP+1} = span {a(θ1), a(θ2), . . . , a(θP+1)} . (26)

Moreover, the adaptive beamforming approaches are able to synthesize array pat-
ternswith deep nulls at the interference directions,which can be shaped as a subtraction
of eigenbeams from the quiescent array pattern [6], and can be written by

Ga(θ) = Gq(θ) −
M∑

j=1

λ j − λM

λ j

[
wH
q u j

]
G j (θ), (27)

whereGq(θ) = wH
q a(θ) is the quiescent array pattern that has no ability to null inter-

ference, wq is the quiescent weight vector. G j (θ) = uH
j
a(θ) denotes the eigenbeam

of the j th eigenvector. wH
q u j scales the eigenbeams to proper size. The eigenbeam

usually appears as beam pointed in the direction of the corresponding interference so
that the nulls are produced in the directions of the interference when the eigenbeams
are subtracted from the quiescent pattern [19,26]. Thus, we get

G j (θ j ) = maximize
{
uH

j
a(θ)

}
, ( j = 1, 2, . . . , P + 1). (28)

From (27), it is also seen that for large eigenvalues associated with powerful inter-
ferences the factor

λ j−λM
λ j

approaches 1and causes the eigenvalue energy to be nulled
almost completely, i.e.,

λ j − λM

λ j
≈ 1, j = 1, 2, . . . , P + 1. (29)
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For the small eigenvalues near the noise level, this factor approaches 0 and no sub-
traction occurs, i.e.,

λ j − λM

λ j
≈ 0, j = P + 2, . . . , M. (30)

As mentioned above, if the eigenvalue of R̃x decrease to the level of background
noise, a large part of the corresponding signal source component in the covariance
matrix R̃x will be eliminated. It is because this eigenvalue contains most of the signal
energy. Next we focus on obtaining the corresponding eigenvector and the correspond-
ing eigenvalue of the desired signal. It is known that the maximum of correlation
coefficients is achieved when ed is the eigenvector of the corrected desired signal a.
Thus, ed can be given by

ed = argmaximize
u j

∣
∣
∣uH

j a
∣
∣
∣

∥
∥u j

∥
∥ ‖a‖ j = 1, . . . , P + 1. (31)

Then, the corresponding eigenvalue of ed can be obtained, which is the correspond-
ing eigenvalue of the desired signal. Usually, each steering vector of signal is assumed
to be the set of signal in a linear space, which implies that the steering vector of signal
is a linear combination of u j , j = 1, . . . , P + 1. As stated above, if the eigenvalue
of desire signal is decreased to the level of background noise, a large portion of the
desired signal will be eliminated. Here, the eigenvalue of desire signal is replaced by
the noise power. Furthermore, in order to eliminate the effect of noise perturbation,
the eigenvalues of noise can be replaced by the average of the small eigenvalues of
sample covariance matrix

σ̃ 2
0 = σ̃ 2

n = 1

(M − P − 1)

∑M

j=P+2
λ j

(
R̃x

)
, (32)

where λ j denotes the j th largest eigenvalue of the matrix within braces. Consequently,
the interference-plus-noise covariance matrix R̃in is given by

R̃in = U�̃UH , (33)

where �̃ = diag[λ1, . . . , σ̃ 2
0 . . . , λP+1, σ̃

2
n , . . . , σ̃ 2

n ] is the reconstructed eigenvalue
matrix, and the eigenvector matrix remains unchanged, namelyU = [Us,Un]. Finally,
the proposed beamforming algorithm based on the estimated covariance matrix R̃in

and the steering vector a is given by

w =
˜R−1
in a

aH ˜R−1
in a

. (34)
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In summary, we can obtain an estimate of the desired steering vector based on
maximizing array output power under the correlation coefficient constraint and norm
constraint. The optimal solution steering vector can be obtained based on SDR and
matrix decomposition algorithms. Note that the smaller ρ, the larger the constraint
region becomes, i.e., the robust design is able to flexibly control the beamwidth of
the robust region with constraints on steering vector. Then, with the corrected steering
vector and the subspace theorem, the interference-plus-noise covariance matrix can be
estimated effectively. Finally, the adaptive beamformer weight vector can be obtained.
As for the computational complexity connected with the implementation of the algo-
rithm, the computation complexity of the modified interference-plus-noise covariance
matrix estimation is O

(
M3

)
due to the eigendecomposition of the Hermitian matrix

R̂x. Additionally, the main complexity of the proposed algorithm is attributed to the
desired steering vector estimation, which can be solved by taking the interior point
approaches in order of O

(
M4.5 log (1/η)

)
(where η > 0 represents a prescribed accu-

racy [3]), and the computation complexity of the rank-one decomposition is O
(
M3

)
.

4 Simulation Results

In the following simulations, a ULA of M = 17 omnidirectional elements with the
inter-element spacing of half wavelength is considered. Without loss of generality, we
assume three far-field sources, two interferenceswith the directions of arrival−25◦ and
35◦, respectively. The interference-to-noise ratio (INR) equals to 30 dB. The nominal
direction of the desired signal is set to 0◦, and the SNR is fixed to be 10 dB (except the
figures where SNR varies). The number of snapshots is fixed as N = 100 (except the
figures where number of snapshots varies), and 200 Monte-Carlo trials are performed
for each scenario. For reference, we assume that ρ = 0.8 in the proposed method.

In all simulation runs, the performance of the proposed beamformer is compared
with several typical robust adaptive beamformers given as follows.

1. The DL method in [6], the Diagonal loading factor is assumed as 10 times noise
power;

2. The signal subspace projection (SSP) method in [8];
3. The Worst-Case Optimization in [25], the value ε = 0.3M is used in the figures;
4. The robust design with magnitude response constraints (RAB-MRC) in [27]. We

assume that the ripple of the RAB-MRC approach equals to 0.2 dB and a fixed
beamwidth is 8◦. The relative regularization factor γ is chosen as 6, and the
designed beamwidth is discretized with a step size of 1◦;

5. The reconstruction-based beamformer (Reconstruction) in [10], the possible angu-
lar sector of the desired signal is set to be 
 = [

θ̄0 − 5◦, θ̄0 + 5◦], so the
corresponding complement sector is 
̄ = [−90◦, (θ̄0 − 5◦)

) ∪ (
(θ̄0 + 5◦), 90◦],

and the region of interference is discretized with a step size of 1◦.

In the first example, we investigate the effects of different values of input SNR
versus the output SINR in the case of the fixed signal direction error. The optimal
performance is also provided for comparison. We assume that the actual direction is
fixed to be 3◦. As shown in Fig. 1, one can observe that the proposed method and the
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Fig. 1 Output SINR versus
SNR in the case of the fixed
signal direction error
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reconstruction-based beamformer in [10] achieve better performance in a large range
of SNR as compared with the beamformers in [6,8,25,27], and this improvement
is especially remarkable at high SNRs. It implies that the proposed method is not
sensitive to the power of the desired signal, i.e., the desired signal steering vector and
interference-plus-noise covariance matrix estimation in our method are effective in
this situation. The DL method is sensitive to the direction mismatch. This may be
due to the ill-suited DL factor. It can be observed that the performance of proposed
method is less than the reconstruction beamformer in [10] when SNR is larger than
5 dB. The main reason is that a few part of desired signal energy is still existing in
interference-plus-noise covariance matrix for the proposed design.

In the second example, the SINR performances of these methods are shown versus
the number of training snapshots. Other parameters are as the same as in the first
experiment except the number of snapshots. The result is shown in Fig. 2. Compared
with the existing algorithms, the proposedmethod provides a satisfactory convergence
rate and output performance. This performance behavior implies that the proposed
covariance estimator is well conditioned under small sample sizes. The reconstruction-
based beamformer in [10] also has excellent sample convergence rate.

In the third example, we analyze the impact of the correlation coefficient constraint
parameter ρ on the output SINR of the proposed algorithm. The direction mismatch
is assumed to be random and uniformly distributed over [− 5◦, 5◦]. We can see from
Fig. 3 that the proposed method experiences serious performance degradation when
ρ is small. The main reason is that the constraint region is larger for smaller ρ. If
the region of interest includes the interference signal, it may result in the interference
being regarded as the desired signal, and the beamformer may attempt to suppress the
desired signal as if it was interference. Namely, the calculated steering vector may
converge to an interference steering vector or corresponding linear combination due
to the large constraint set. Therefore, if possible, ρ should not be chosen too small. It
can be also observed that the proposed method suffers from performance degradation
in output SINR when ρ is too large. The main reason is that when ρ is too large, the
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Fig. 2 SINR versus the number
of snapshots in the case of the
fixed signal direction error
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Fig. 3 Output SINR versus the
correlation coefficient constraint
parameter ρ

constraint region may not cover all the uncertainly regions, and thus, the output SINR
will degrade.

The SINRperformance versus the pointing error is illustrated in Fig. 4. The pointing
error changes from − 5◦ to 5◦. According to the results of the third example, here ρ

is updated to 0.7 in the proposed method, and the beamwidth of [27] is set to be 10◦.
Other parameters remain the same as in the first experiment. As expected, a wider
range of the mismatch angle leads to a worse SINR. It can be observed that even small
pointing error can lead to severe performance degradation for the DL beamformer.
Meanwhile, other approaches are more robust against the pointing error. The proposed
algorithm also achieves very close performance to the beamformer in [10]. The result
indicates that the proposed algorithm can keep robust over a large pointing error range
because the proposed method can flexibly control the beamwidth of the robust region
via choosing the parameter ρ.

For the more practical scenario with random look direction mismatch, we consider
the influence of random signal direction error on array output SINR. We assume that
the random direction of arrive mismatch of the desired signal is uniformly distributed
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Fig. 4 SINR versus pointing
error

Fig. 5 Output SINR versus
SNR in the case of the random
direction errors

in [− 5◦, 5◦]. Other parameters remain the same as the first experiment. Figure 5
shows the output SINR of the beamformers versus input SNR. It is observed that the
proposed method still performs well and maintains a satisfactory performance. Thus,
the proposed method is robust against the desired signal look direction mismatch.

From the above arguments, we only consider the direction mismatch of the desired
signal. For further insight, the performance of a more general mismatch scenario is
considered in the following. This mismatch is modeled as a = ā

(
θ̄0
) + e, where e

is a zero-mean complex Gaussian random vector, distributed as CN (
0, σ 2

e

)
. In this

example, σ 2
e is set as σ 2

e = 0.1. Other parameters are identical to the case of the fixed
signal direction error. Figures 6 and 7 correspond, respectively, to the performance
curves versus the SNR and the number of snapshots in the case of the steering vector
random error. It can be observed from the figures that the proposed technique still
has satisfactory performance for this more general type of mismatch scenario. This
indicates that the proposed method has the potential to play a significant role in a more
general mismatched situation.
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Fig. 6 Output SINR versus
SNR in the case of the steering
vector random error

Fig. 7 SINR versus the number
of snapshots in the case of the
steering vector random error

Fig. 8 Output SINR versus σ 2
e

in the case of steering vector
error

In this example, we investigate the impacts of steering vector random error on the
proposed algorithm. The output SINR of the proposed algorithm is displayed versus
σ 2
e in Fig. 8. It can be observed that the proposed algorithm is sensitive to the steering
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vector error σ 2
e . The main reason is that the proposed algorithm imposes the desired

signal steering vector to satisfy the norm constraint, which may lead to an inaccurate
approximation and the performance degradation of the beamformer. In addition, we
assume that the correlation coefficient constraint can be used to distinguish the desired
signal region and interference regionbasedon thenormconstraint. If the steeringvector
norm is violated severely, the correlation coefficient constraint may also be invalid.
Hence, the proposed algorithm is more suitable for the applications where steering
vectors satisfy or approximate the norm constraint scenarios.

5 Conclusion

In this paper, we derived a novel robust adaptive beamforming technique that achieves
satisfactory performance by estimating signal steering vector and covariance matrix.
The desired signal steering vector was designed to guarantee the robustness against the
steering vectormismatch and the finite sample effects. The optimal solution of steering
vector can be found through exploiting the hidden convexity properties of the original
design. Moreover, a novel formulation for interference-plus-noise covariance matrix
estimation is developed based on the subspace theorem. Several numerical examples
have been used to demonstrate the effectiveness of the proposed design.
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