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Abstract In this study, based on the finite-time unknown input observer (FT-UIO), the
problem of distributed fault diagnosis (FD) for multi-agent systems (MAS) with actu-
ator faults and disturbances is investigated. Firstly, using the communication topology
and local information, the global multi-agent system dynamics are represented with
respect to a certain agent. Then, in order to construct a FT-UIO at the selected agent,
the system will be decomposed into three subsystems after coordinate transformation.
Furthermore, constituted by two distinct observers, the FT-UIO is designed to con-
verge in a pre-assigned finite time, which is chosen as the time delay of the observers.
With the state estimation obtained from the FT-UIO in the selected agent, a FD algo-
rithm is also proposed to diagnose the faults occurred in its neighbor agents. Finally,
simulation results are presented to illustrate the effectiveness and advantages of the
proposed FT-UIO-based distributed FD scheme for MAS.
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1 Introduction

As a powerful tool to handle complicated system, multi-agent technology has been
the focus of many researchers and has been applied in many significance fields, for
instance, in automotive control systems [17], satellite constellations [19], unmanned
aerial vehicles [18], [14], and so on. In order to investigate the issue of MAS, there
have been a considerable number of fruitful results [8,13,22], which include consensus
problems, formation control, and cooperative control.

The structure ofMAS is distributed and there isn’t a centralized entity tomonitor the
whole system. Thus, if an agent becomes faulty, the fault may spread to other agents
through the special communication topology in the MAS and then the performance
of the entire system will suffer a difficult situation. Consequently, in order to improve
the safety and reliability of system, the FD scheme, including fault detection, fault
isolation, and fault estimation (FE), must be considered. FD technology is mainly
used to monitor the system state, determine the location of the occurred fault and
eventually obtain detailed fault information. Its application to awide range of industrial
and commercial processes has attracted a great deal of attention for several decades
[2,6,16,20,26].

It should be noted that most of the existing works on FD are based on centralized
systems. Owing to the fact that the MAS is a distributed system, where all of the
measurements are not available to each agent, it makes these works on FD difficult to
be directly applied to MAS. Therefore, distributed FD schemes should be proposed to
deal with the FD for theMAS instead of the centralized FDmethod. In [24], for a class
of interconnected nonlinear systems, the method of distributed FD was proposed. Qin
et al. [15] presented a survey of FD for swarm systems. A dynamic neural network-
based fault detection and isolation (FDI) scheme was studied to perform the formation
flying mission of satellites in [21]. And in [25], for MAS with directed graphs, the
design of adaptive technique-based distributed FE observer was put forward.

A model-based scheme is built upon the precise mathematical model, whereas
the presence of uncertainties and external disturbances is not avoidable in practical
systems. Thus, to weaken or eliminate such unexpected effects of uncertainties, the
design of unknown input observer (UIO) has been extensively studied because of its
insensitivity to the unknown input. An UIO has also provided a useful method to
achieve FD with robustness against unknown inputs, in which the residual is designed
to be insensitive to unknown inputs and some researchers pay more attention to the
UIO-based FD approaches [7,11,28].

The stability of a system remains in a priority position in the processes of analysis
and design. In general, the stability which we often said in the field of dynamical
systems, such as the Lyapunov stability and bounded-input bounded-output stabil-
ity are all asymptotically stable. In many applications, however, it is desirable that
the trajectories of a dynamical system can converge to a equilibrium state in finite
time rather than merely asymptotically. Besides, the state of the asymptotically stable
system is not limited in a circle, as long as it can be bounded. In these cases, the
concept of the finite-time stability (FTS) is put forward, which is different from tra-
ditional notions of stability and has been focused on the convergence performance
and transient performance of the system. Some early results on FTS are shown
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in [3,23]. In [12], FTS for time-varying nonlinear dynamical systems is proposed.
Extensions of FTS to discrete switched singular positive systems can be found in
[9].

In these observer-based FD schemes, the effect of FD depends mainly on the
steady-state performance of the observer without taking the transient performance
into consideration. However, owing to the fact that MAS is a high cost as well as
high investment technique, its FD technique has to be accurate and fast. Hence, both
transient performance and convergence performance are required by the FD for MAS.
So far, despite a few academic results on application of FTS for MAS in terms of
consensus problems and cooperative control [4,5,10,27], the body of application
of FTS for FD research on MAS is much smaller because such research is more
challenging.

Motivated by the above discussion, the problem of FT-UIO-based distributed FD
for MAS with actuator faults and disturbances is put forward in this paper. And dif-
ferent from the traditional way of constructing observers in every agent, the method
proposed in this paper is putting one observer in a certain agent to diagnose the faults
occurred in its neighbor agents, so that only with one or two observers, the distributed
FD for MAS can also be achieved. The main contributions of this study are summa-
rized in four aspects: (I) under the communication topology, the global multi-agent
system dynamics is represented with respect to a certain agent and the output of the
system becomes the local information which can be used by the selected agent; (II)
based on the system dynamics obtained, by coordinate transformation, the system
will be decomposed into three subsystems and one of them is independent of faults
as well as disturbances, which can improve the robustness of FD ; (III) with the
reduced-order system obtained in (II), the FT-UIO, constituted by two distinct UIOs,
is constructed at the selected agent and is designed to converge in a pre-assigned
finite time, which is chosen as the time delay of the UIOs; (IV) using the state esti-
mation from the FT-UIO in the selected agent, a FD algorithm is also proposed to
diagnose the faults occurred in its neighbor agents, and then not only the location of
the faults but also the detailed information of the faults can be obtained in a finite
time.

The remainder of this paper is organized as follows. Preliminaries and problem
formulation are presented in Sect. 2. Section 3 contains the procedure of system
decomposition and the design of FT-UIO-based distributed FD for MAS. Simulation
results are provided to illustrate the effectiveness of the proposed methods in Sect. 4.
Finally, a conclusion is made in Sect. 5.

In this paper, some notations are used as follows. BT denotes the transpose of a
matrix B. ⊗ stands for the Kronecker product. |N | means the cardinality of the set N .
C† stands for the left pseudoinverse of a matrix C . I denotes an identity matrix with
appropriate dimension.
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2 Preliminaries and Problem Formulation

2.1 Graph Theory

Consider a weighted undirected graph G of a network, in which V = {v0, v1, v2 . . . ,

vN } denotes the set of nodes, and ε = {(vi , v j ) : vi , v j ∈ v} denotes the set of
edges. Denote the associated adjacency matrix � = [ai j ] ∈ R

N×N , where ai j means
the weight of an edge (vi , v j ) and ai j = 1 if (vi , v j ) ∈ ε, otherwise ai j = 0. For
the undirected graph used by this paper, we define aii = 0 without considering the
connectivity of the node itself. The neighborhood set of the node vp is denoted by
Np = {v j ∈ V : (vp, v j ) ∈ ε, p �= j}. DefineG = diag(g1, . . . , gN ), gi = ∑N

j=1 ai j
as the degree matrix and the Laplacian matrix of G as L = G − �.

2.2 Problem Formulation

Consider a single system with actuator fault of each agent labeled by node vi in the
graph G as follows:

{
ẋi (t) = Axi (t) + Bui (t) + E fi (t) + Ddi (t)

yi (t) = Cxi (t)
(1)

where xi (t) ∈ R
n is the state, ui (t) ∈ R

m is the input, yi (t) ∈ R
p1 is the output,

fi (t) ∈ R
q1 represents the actuator fault and di (t) ∈ R

l1 is the external disturbance
and model uncertainties [i.e.�Axi (t)+�Bui (t)] [1]. A, B, E ,C , and D are constant
real matrices of appropriate dimensions. It is assumed that matrices E and D are of
full column rank.

Based on undirected graph theory, the global fault multi-agent system dynamics
can be represented as

{
ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)u(t) + (IN ⊗ E) f (t) + (IN ⊗ D)d(t)

y(t) = (IN ⊗ C)x(t)
(2)

where

x(t) = [
xT1 (t), xT2 (t), . . . , xTN (t)

]T
, u(t) = [

uT1 (t), uT2 (t), . . . , uTN (t)
]T

,

y(t) = [
yT1 (t), yT2 (t), . . . , yTN (t)

]T
, f (t) = [

f T1 (t), f T2 (t), . . . , f TN (t)
]T

,

d(t) = [
dT1 (t), dT2 (t), . . . , dTN (t)

]T
.
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With respect to the agent p, the systems are rewritten as

⎧
⎪⎨

⎪⎩

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)u(t) + (IN ⊗ E)r fr (t) + (IN ⊗ E)−r f−r (t)

+ (IN ⊗ D)d(t)

yp(t) = (�p ⊗ In)x(t)
(3)

where fr (t) is the fault occurred in agent r (r ∈ Np), and f−r (t) is the matrix obtained
by removing component fr (t) of f (t) . Correspondingly, (IN ⊗ E)r is the distribution
matrix of fr (t) as well as the submatrix of IN ⊗ E . And (IN ⊗ E)−r , the distribution
matrix of f−r (t), is the surplus of IN⊗E after removing (IN⊗E)r . yp(t) ∈ R

|N p |n×Nn

is the local information which can be used by agent p. |N p| denotes the cardinality
of the set N p, where N p = Np ∪ {p}, i.e., the set N p consists of agent p and its
neighbor agents. �p ⊗ In is the local information matrix of full row rank. The matrix

�p ∈ R
|N p |×N is also full row rank and is a submatrix of the associated adjacency

matrix �.

Define M = [
(IN ⊗ E)−r IN ⊗ D

]
, ω(t) =

[
f−r (t)
d(t)

]

, then (3) can be reorga-

nized as follows
{

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)u(t) + (IN ⊗ E)r fr (t) + Mω(t)

yp(t) = (�p ⊗ In)x(t)
(4)

Due to the fact that yp(t) is the local information which can be used by agent p,
through an UIO technology, we can construct an observer in agent p to estimate the
state in system (4). Then with a FD algorithm, the estimation of fr (t) can be obtained.

3 Main Results

3.1 System Decomposition

For the sake of distributed finite-time FD for MAS with actuator faults f (t) and
disturbances d(t), a FT-UIO will be constructed in the special agent p with respect
to its neighbor agent r . Owing to the fact that ω(t) is consisted by f−r (t) and d(t),
one can obtain a reduced-order system which is independent of faults as well as
disturbances by regarding the term fr (t) and ω(t) as unknown inputs. Through the
following coordinate transformation, the system (4) can be decomposed into three
subsystems.

Assumption 1 In this paper, we assume that M and (IN ⊗ E)r are of full column
rank. Note that �p ⊗ In is of full row rank, we can define rank(�p ⊗ In) = p,
rank(M) = l, and rank((IN ⊗ E)r ) = q, (l + q ≤ p), then it can be assumed that
rank

[
M (IN ⊗ E)r

] = l + q, rank((�p ⊗ In)M) = l, rank((�p ⊗ In)(IN ⊗
E)r ) = q, and rank

[
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r

] = l + q. So that the matrix[
(�p ⊗ In)M (�p ⊗ In)(IN ⊗E)r

]
has the left pseudoinverse

[
(�p ⊗ In)M (�p ⊗

In)(IN ⊗ E)r
]†, where X† = (XTX)−1XT and X†X = I .
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Next, for the purpose of the state coordinate transformation, there exists a non-
singular matrix

T = [
N M (IN ⊗ E)r

]
, T ∈ R

Nn×Nn, (5)

where N = P1N0, N ∈ R
Nn×(Nn−l−q), and N0 is chosen as an arbitrary matrix to

make
[
N0 M (IN ⊗ E)r

]
non-singular. The square matrix P1 = INn − [

M (IN ⊗
E)r

][
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r

]†
(�p ⊗ In) satisfies P2

1 = P1, which means
P1 is idempotent. As long as if the matrix

[
N0 M (IN ⊗ E)r

]
is non-singular, the

matrix T is also non-singular.
With the transformation matrix T , the system (4) can be decomposed into the

following form

{
ẋ(t) = Ax(t) + Bu(t) + E fr (t) + Mω(t)

yp(t) = C px(t)
(6)

where

x(t) = T x(t) = T

⎡

⎣
x1(t)
x2(t)
x3(t)

⎤

⎦ , A = T−1(IN ⊗ A)T =
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦

B = T−1(IN ⊗ B) =
⎡

⎣
B1

B2

B3

⎤

⎦ , M = T−1M =
⎡

⎣
0
Il
0

⎤

⎦ , E = T−1(IN ⊗ E)r =
⎡

⎣
0
0
Iq

⎤

⎦

C p = (�p ⊗ In)T = [
(�p ⊗ In)N (�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r

]

with x1(t) ∈ R
Nn−l−q , x2(t) ∈ R

l , x3(t) ∈ R
q .

Obviously, the differential equations of x2(t) and x3(t) are affected directly by the
terms of ω(t) and fr (t), respectively. Removing the differential equations of x2(t)
and x3(t), the system without ω(t) and fr (t) is written as follows

{ [
INn−l−q 0 0

]
ẋ(t) = [

A11 A12 A13
]
x(t) + B1u(t)

yp(t) = [
(�p ⊗ In)N (�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r

]
x(t)

(7)

Furthermore, in order to achieve the output transformation, there exists a non-
singular matrix

U = [
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r Q

]
,U ∈ R

p×p (8)

where Q = P2Q0, Q ∈ R
p×(p−l−q), and Q0 is chosen as an arbitrary matrix

to make
[
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r Q0

]
non-singular. The square matrix

P2 = Ip − �p ⊗ In
[
M (IN ⊗ E)r

][
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r

]† satisfies
P2
2 = P2, which means P2 is idempotent. As long as the matrix

[
(�p ⊗ In)M (�p ⊗

In)(IN ⊗ E)r Q0
]
is non-singular, the matrix U is also non-singular.
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Define

U−1 =
⎡

⎣
U1
U2
U3

⎤

⎦ ,U1 ∈ R
l×p,U2 ∈ R

q×p,U3 ∈ R
(p−l−q)×p,

and we can obtain

U−1U =
⎡

⎣
U1
U2
U3

⎤

⎦
[
(�p ⊗ In)M (�p ⊗ In)(IN ⊗ E)r Q

] =
⎡

⎣
Il 0 0
0 Iq 0
0 0 Ip−l−q

⎤

⎦ .

Lemma 1 [7] From the information above, it also holds that U1(�p ⊗ In)N =
0l×(Nn−l−q) and U2(�p ⊗ In)N = 0q×(Nn−l−q).

Then, multiplied by U−1 on both sides of the output equation in system (7) , the
following equations can be obtained

U1yp(t) = x2(t) (9)

U2yp(t) = x3(t) (10)

U3yp(t) = U3(�p ⊗ In)Nx1(t) (11)

Note that the differential equations of x2(t) and x3(t) are affected directly by the
terms of ω(t) and fr (t), respectively. Meanwhile, these vectors can be represented
only by output measurements. Hence, by substituting the relations (9), (10) and (11)
into the system (7), the reduced-order system independent of the unknown inputs is
obtained as follows

{
ẋ1(t) = A11x1(t) + B1u(t) + Ẽ yp(t)

y p(t) = C̃ px1(t)
(12)

where Ẽ = A12U1 + A13U2, C̃ p = U3(�p ⊗ In)N , and y p(t) = U3yp(t).
By regarding the term fr (t) and ω(t) as unknown inputs, the system (4) has been

decomposed into three subsystems. The subsystem (12) we obtained is obviously
independent of faults and disturbances, which can improve the robustness of FD. Then,
based on (12), the FT-UIO, constituted by two distinct observers, can be designed in
the special agent p with respect to its neighbor agent r .

3.2 FT-UIO-Based Fault Diagnosis Design

It is assumed that the pair (A11, C̃ p) is observable, then the two UIOs are described
by

ż1(t) = (A11 − L1C̃ p)z1(t) + B1u(t) + L∗
1yp(t) (13)

ż2(t) = (A11 − L2C̃ p)z2(t) + B1u(t) + L∗
2yp(t) (14)
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where L∗
1 = L1U3 + Ẽ and L∗

2 = L2U3 + Ẽ . And the matrices L1 and L2 are the
gain of observers to be designed.

By defining

z(t) =
[
z1(t)
z2(t)

]

,G =
[
B1

B1

]

, H =
[
L∗
1

L∗
2

]

,

F =
[
F1 0
0 F2

]

=
[
A11 − L1C̃ p 0

0 A11 − L2C̃ p

]

,

these two observers can be combined in one equation. Using a delay τ to estimate the
state x1(t), the FT-UIO constructed in the special agent p with respect to its neighbor
agent r is obtained as follows

{
ż(t) = Fz(t) + Gu(t) + Hyp(t), t ≥ t0

x̂1(t) = K [z(t) − eFτ z(t − τ)] (15)

Due to the delay, this observer has initial conditions for z(t), t ∈ [t0 − τ, t0]. Without
loss of generality, we assume z(t) = Sx̂1(t0), ∀t ∈ [t0 − τ, t0], where x̂1(t0) =[
INn−l−q 0 0

]
T−1 x̂(t0) and x̂(t0) is arbitrary but bounded.

Theorem 1 After defining K = [
INn−l−q 0Nn−l−q

] · [
S eFτ S

]−1 and S =[
INn−l−q

INn−l−q

]

, if there exist a matrix H and an non-negative scalar τ such that the

following conditions hold

i) F is stable,
ii) det[S, eFτ S] �= 0,

then the FT-UIO (15) exists and can estimate the state x1(t) of the reduced-order
system (12) in finite time τ with a bounded estimation error e(t) = x̂1(t) − x1(t)
(∀t ∈ [t0, t0 + τ ]).

Proof The proof is consisted by two parts. In the first place, the boundedness of the
estimation error e(t) = x̂1(t) − x1(t) during the time interval [t0, t0 + τ ] is certified.
Secondly, it is proved that the FT-UIO can converge in finite time τ , i.e. x̂1(t) = x1(t)
∀t ≥ t0 + τ .

Since the FT-UIO exists, there is

d

dt
(z(t) − Sx1(t)) = ż(t) − Sẋ1(t)

= Fz(t) + Gu(t) + Hyp(t) − S(A11x1(t) + B1u(t) + Ẽ yp(t))

= F(z(t) − Sx1(t)) + FSx1(t) + (H − SẼ)yp(t)

+ (G − SB1)u(t) − SA11x1(t) (16)
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Note that

(H − SẼ)yp(t) =
([

L1U3 + Ẽ
L2U3 + Ẽ

]

−
[
Ẽ
Ẽ

])

yp(t)

=
[
L1
L2

]

U3yp(t)

=
[
L1
L2

]

y p(t)

=
[
L1
L2

]

C̃ px1(t)

G − SB1 =
[
B1

B1

]

−
[
INn−l−q

INn−l−q

]

B1

= 0

we can substitute the above equations to (16), then

d

dt
(z(t) − Sx1(t)) = F(z(t) − Sx1(t)) +

([
A11 − L1C̃ p 0

0 A11 − L2C̃ p

]

−
[
A11

A11

]

+
[
L1C̃ p

L2C̃ p

])

x1(t)

= F(z(t) − Sx1(t)). (17)

On the basis of this equation, the boundedness and convergence can be proved.
BoundednessMultiplied by e−Ft and then integrating from t0 to t , with t ∈ [t0, t0+τ ],
on both sides of (17), it can be easily shown that

⇒ e−Ft [z(t) − Sx1(t)
] − e−F(t0)

[
z(t0) − Sx1(t0)

] = 0 (18)

⇒ z(t) − Sx1(t) = e−F(t0−t)[z(t0) − Sx1(t0)
]

= eF(t−t0)
[
z(t0) − Sx1(t0)

]

= eF(t−t0)S
[
x̂1(t0) − x1(t0)

]
(19)

With the assumption that z(t) = Sx̂1(t0), ∀t ∈ [t0 − τ, t0], it can be obtained that
z(t − τ) = Sx̂1(t0), t ∈ [t0, t0 + τ ]. Using the FT-UIO (15), when t ∈ [t0, t0 + τ ],
one can further obtain

x̂1(t) = [
Kz(t) − K eFτ z(t − τ)

]

= K Sx1(t) + K eF(t−t0)S
[
x̂1(t0) − x1(t0)

] − K eFτ z(t − τ)

= K Sx1(t) + K eF(t−t0)S
[
x̂1(t0) − x1(t0)

] − K eFτ Sx̂1(t0) (20)

Note that K S = INn−l−q , and K eFτ S = 0, (20) becomes

x̂1(t) = x1(t) + K eF(t−t0)S
[
x̂1(t0) − x1(t0)

]
(21)
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Then the estimation error is

e(t) = x̂1(t) − x1(t)

= K eF(t−t0)S
[
x̂1(t0) − x1(t0)

]
(22)

Owing to the assumption that x̂1(t0) and x1(t0) are bounded, it’s obvious that the
estimation error shown in (22) stays bounded ∀t ∈ [t0, t0 + τ ].
Finite-Time Convergence Multiplied by e−Ft and then integrating from t0 to t − τ ,
with t ≥ t0 + τ , on both sides of (17), we have:

⇒ e−F(t−τ)
[
z(t − τ) − Sx1(t − τ)] − e−F(t0)[z(t0) − Sx1(t0)

] = 0 (23)

⇒ z(t − τ) − Sx1(t − τ) = e−F(t0−(t−τ))
[
z(t0) − Sx1(t0)

]

= eF(t−τ−t0)
[
z(t0) − Sx1(t0)

]

= eF(t−τ−t0)S
[
x̂1(t0) − x1(t0)

]
(24)

Using the FT-UIO (15), equations (19) and (24), when t ≥ t0 + τ , one can further
obtain

x̂1(t) = [
Kz(t) − K eFτ z(t − τ)

]

= K Sx1(t) + K eF(t−t0)S
[
x̂1(t0) − x1(t0)

]

−K eFτ Sx1(t − τ) − K eFτ eF(t−τ−t0)S
[
x̂1(t0) − x1(t0)

]

= K Sx1(t) + K eF(t−t0)S[x̂1(t0) − x1(t0)]
−K eFτ Sx1(t − τ) − K eF(t−t0)S

[
x̂1(t0) − x1(t0)

]

= K Sx1(t) − K eFτ Sx1(t − τ) (25)

Note that K S = INn−l−q , and K eFτ S = 0, (25) becomes

x̂1(t) = x1(t), t ≥ t0 + τ (26)

Therefore, the FT-UIO (15) can estimate the state x1(t) of the reduced-order system
(12) in finite time τ . ��
Theorem 2 For any i, j ∈ (1 ∼ Nn − l − q), if L1 and L2 are chosen such that

(i) Re(λi (F1)) �= Re(λ j (F2)),
(ii) Re(λi (F1)) < 0,
(iii) Re(λi (F2)) < 0,

then the conditions that F is stable and det[S, eFτ S] �= 0 in Theorem 1 can bematched
for almost all τ ∈ R

+. This ensures the existence of thematrix K and thus the existence
of the FT-UIO (15) for almost any finite time τ .
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Proof Since (A11, C̃ p) is observable and

F =
[
F1 0
0 F2

]

=
[
A11 − L1C̃ p 0

0 A11 − L2C̃ p

]

,

as long as Re(λi (F1)) < 0 and Re(λi (F2)) < 0, F can be stable.
While

[
S eFτ S

] =
[
INn−l−q eF1τ

INn−l−q eF2τ

]

and the delay τ > 0, if Re(λi (F1)) �= Re(λ j (F2)) for any i, j ∈ (1 ∼ Nn − l − q),
then the condition det[S, eFτ S] �= 0 can also be achieved. ��
Remark 1 From the relations (9), (10) and (11), the vectors x2(t) and x3(t) can be
represented only by output measurements, respectively. Hence, using the system (6),
the estimation of the state x(t) in system (4) can be expressed as follows

x̂(t) = T x̂(t) = T

⎡

⎢
⎣

x̂1(t)
x̂2(t)
x̂3(t)

⎤

⎥
⎦ = T

⎡

⎣
x̂1(t)

U1yp(t)
U2yp(t)

⎤

⎦ (27)

Therefore, through the FT-UIO, the exact estimation of the state x(t) in system (4)
with disturbance and actuator fault can be obtained in a pre-assigned finite time. Once
the estimation of x(t) is obtained, the estimation of fi (t) in system (4) can be found
immediately. Similarly with the system (4), we have

[
0 0 Iq

]
ẋ(t) = ẋ3(t) = [

A31 A32 A33
]
x(t) + B3u(t) + fr (t) (28)

Considering the system (28) and equation (27), the estimation f̂r (t) of fr (t) is
given as

f̂r (t) = ˙̂x3(t) − [
A31 A32 A33

]
x̂(t) − B3u(t)

= U2 ẏp(t) − A31 x̂1(t) − (A32U1 + A33U2)yp(t) − B3u(t)
(29)

Remark 2 The FD algorithm above contains the derivative of yp(t), and it is feasible
as long as ẏp(t) can be obtained. However, in case that it cannot be easily obtained
for certain systems, ẏp f (t) is proposed instead of ẏp(t) [18] as

ẏp f (t) = − 1

α
(yp f (t) − yp(t)) (30)

By this method, (29) can be rewritten as

f̂r (t) = U2 ẏp f (t) − A31 x̂1(t) − (A32U1 + A33U2)yp(t) − B3u(t) (31)
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Remark 3 In this paper, a FT-UIO is constructed in a special agent p to monitor its
neighbor agents r (r ∈ Np). And it is assumed that fr (t) is the fault occurred in agent
r . In fact, the fr (t) can be all of the faults occurred in the neighbor agents around
agent p so that the FT-UIO constructed in agent p can diagnose the faults occurred in
its neighbor agents simultaneously.

4 Simulation Results

To show the effectiveness of the method, we consider a group of linearized dynamic
models in the vertical plane of a VTOL aircraft as an illustrative example, which can
be described as

{
ẋi (t) = Axi (t) + Bui (t) + E fi (t) + Ddi (t)

yi (t) = Cxi (t)
(32)

where

xi (t) =

⎡

⎢
⎢
⎣

horizontal velocity (kt)
vertical velocity (kt)
pitch rate (deg/s)
pitch angle (deg)

⎤

⎥
⎥
⎦

ui (t) =
[

collective pitch control
longitudinal cyclic pitch angle

]

A =

⎡

⎢
⎢
⎣

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200
0.0000 0.0000 1.0000 0.0000

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

0.4422 0.1761
3.5446 −7.5922

−5.5200 4.4900
0.0000 0.0000

⎤

⎥
⎥
⎦ ,

C =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ , D = [0 0 1 0]T.

It is assumed that the band-limited white noise is added as the unknown disturbance
di (t) and the actuator fault which usually occurs in the input channel is also taken into
consideration with assumption E = B. The structure of the MAS is described by

Fig. 1, with the associated adjacency matrix � =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎤

⎥
⎥
⎦.
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Fig. 1 Topology structure of the
multi-agent system

In this study, a FT-UIO is constructed at agent 2 to diagnose the faults occurred
in its neighbor agents, which are agents 1, 3 and 4. The press-assigned finite time
designed as the delay in FT-UIO is chosen as τ = 1, with α = 0.001. According to
Lemma 4, using MATLAB, we can obtain these important parameters by placing the
poles at [− 2 − 1 − 2 − 2] and [− 7 − 6 − 7 − 7], respectively.

IN ⊗ E−r =
[
0 0 0 0 0.4422 3.5446 − 5.5200 0 0 0 0 0 0 0 0 0

0 0 0 0 0.1761 − 7.5922 4.4900 0 0 0 0 0 0 0 0 0

]T

IN ⊗ Er =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4422 0.1761 0 0 0 0

3.5446 − 7.5922 0 0 0 0

− 5.5200 4.4900 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.4422 0.1761 0 0

0 0 3.5446 − 7.5922 0 0

0 0 − 5.5200 4.4900 0 0

0 0 0 0 0 0

0 0 0 0 0.4422 0.1761

0 0 0 0 3.5446 − 7.5922

0 0 0 0 − 5.5200 4.4900

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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L1 =

⎡

⎢
⎢
⎢
⎢
⎣

3.4404 1.7202 − 1.7202 − 1.7202

0.7202 0 0 0

− 1.7202 0 0 1.7202

− 1.7202 0 1.7202 0

⎤

⎥
⎥
⎥
⎥
⎦

L2 =

⎡

⎢
⎢
⎢
⎢
⎣

13.4404 6.7202 − 6.7202 − 6.7202

5.7202 0 0 0

− 6.7202 0 0 6.7202

− 6.7202 0 6.7202 0

⎤

⎥
⎥
⎥
⎥
⎦

K =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.0068 0 0 0 1.0068 0 0 0

0 − 0.0068 0 0 0 1.0068 0 0

0 0 − 0.0068 0 0 0 1.0068 0

0 0 0 − 0.0068 0 0 0 1.0068

⎤

⎥
⎥
⎥
⎥
⎦

During the process of coordinate transformation, N0 and Q0 are chosen as follows
and then some important parameters are also obtained.

Q0 = N0 =

⎡

⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

T

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4892 0 0 0 0 0 1 0

0.0557 0 0 0 0 0 1 0

0.0749 0 0 0 0 0 0 0

0.5448 0 0 0 0 0 − 1 0

0 0.4892 0 0 0.4422 0.1761 0 1

0 0.0557 0 0 3.5446 − 7.5922 0 1

0 0.0749 0 0 − 5.5200 4.4900 0 0

0 0.5448 0 0 0 0 0 − 1

0 0 0.4892 0 0 0 0 1

0 0 0.0557 0 0 0 0 1

0 0 0.0749 0 0 0 0 0

0 0 0.5448 0 0 0 0 − 1

0 0 0 0.4892 0 0 0 0

0 0 0 0.0557 0 0 0 0

0 0 0 0.0749 0 0 0 0

0 0 0 0.5448 0 0 0 0
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0 0 0.4422 0.1761 0 0 0 0

0 0 3.5446 − 7.5922 0 0 0 0

0 0 − 5.5200 4.4900 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0.4422 0.1761 0 0 0

0 0 0 3.5446 −7.5922 0 0 0

0 0 0 − 5.5200 4.4900 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0.4422 0.1761

0 1 0 0 0 0 3.5446 − 7.5922

0 0 0 0 0 0 − 5.5200 4.4900

0 − 1 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4422 0.1761 0 1 0 0 0 0

3.5446 − 7.5922 0 1 0 0 0 0

− 5.5200 4.4900 0 0 0 0 0 0

0 0 0 − 1 0 0 0 0

0 0 1 0 1 1 0.4422 0.1761

0 0 1 0 1 1 3.5446 − 7.5922

0 0 0 0 0 0 − 5.5200 4.4900

0 0 − 1 0 − 1 − 1 0 0

0.4422 0.1761 0 1 0 1 0 0

3.5446 − 7.5922 0 1 0 1 0 0

− 5.5200 4.4900 0 0 0 0 0 0

0 0 0 − 1 0 − 1 0 0

0.4422 0.1761 0 1 1 0 0 0

3.5446 − 7.5922 0 1 1 0 0 0

− 5.5200 4.4900 0 0 0 0 0 0

0 0 0 − 1 − 1 0 0 0
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0 0 0 0 0.4892 0 0 0

0 0 0 0 0.0557 0 0 0

0 0 0 0 0.0749 0 0 0

0 0 0 0 0.5448 0 0 0

0.4422 0.1761 0.4422 0.1761 0 0.4892 0 0

3.5446 − 7.5922 3.5446 − 7.5922 0 0.0557 0 0

− 5.5200 4.4900 − 5.5200 4.4900 0 0.0749 0 0

0 0 0 0 0 0.5448 0 0

0 0 0.4422 0.1761 0 0 0.4892 0

0 0 3.5446 − 7.5922 0 0 0.0557 0

0 0 − 5.5200 4.4900 0 0 0.0749 0

0 0 0 0 0 0 0.5448 0

0.4422 0.1761 0 0 0 0 0 0.4892

3.5446 − 7.5922 0 0 0 0 0 0.0557

− 5.5200 4.4900 0 0 0 0 0 0.0749

0 0 0 0 0 0 0 0.5448

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To validate the effect of the FD methods, after constructing a FT-UIO in agent 2,
the following two simulation cases are used.

Case I Assume that agents 1 , 2 and 4 all occur faults and there is no fault in agent 3.
It should be noted that the agent 2 is the agent constructed the FT-UIO and its fault
should theoretically not affect the FD of its neighbor agents.

For the agent 1: f1(t) =
[
f11(t)
f12(t)

]

:

f11(t) =
{

0 0s ≤ t < 2s
0.05e−0.3(t−4) 2 ≤ t < 7s

, f12(t) = 0

For the agent 3: f2(t) =
[
f21(t)
f22(t)

]

:

f21(t) =
{

0 0s ≤ t < 1s
0.5 sin(2(t − 4)) 1s ≤ t < 7s

, f22(t) = 0

For the agent 4: f4(t) =
[
f41(t)
f42(t)

]

:

f41(t) =
{

0 0s ≤ t < 3s
0.6 sin(−1.5(t − 4)) 3s ≤ t < 7s

, f42(t) = 0

The obtained simulation results are shown as follows (Fig. 2):

Case II Assume that faults are occurred in agents 2, 3 and 4. In accordance with the
above, the agent 2 is the agent constructed the FT-UIO and its fault should theoretically
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Fig. 2 Simulation results of case I

not affect the FD of its neighbor agents. Andwe assume that the fault occurred in agent
2 remains the same.

For the agent 3: f3(t) =
[
f31(t)
f32(t)

]

:

f31(t) =
{

0 0s ≤ t < 3s
− 0.7e0.2(t−5) 3s ≤ t < 7s

, f32(t) = 0

For the agent 4: f4(t) =
[
f41(t)
f42(t)

]

:

f41(t) =
{

0 0s ≤ t < 3s
0.65 sin(t − 4) 3s ≤ t < 7s

, f42(t) = 0

The obtained simulation results are shown as follows (Fig. 3):
As shown in these figures, when the faults occur in the neighbor agents, the FT-UIO

in agent 2 can diagnose the faults in finite time τ = 1s. Furthermore, the FD of each
neighbor agent will not be affected by the faults occurred in other agents including
the agent 2, which is selected to construct the FT-UIO. Simulation results show the
effectiveness of the proposed design technique.

5 Conclusion

In this paper, a FT-UIO-based distributed FD scheme forMASwith actuator faults and
disturbances is proposed. Under the communication topology , the global multi-agent
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Fig. 3 Simulation results of case II

system dynamics are represented with respect to a certain agent and the output of the
system becomes the local information which can be used by the selected agent. Then,
the systemwill be decomposed into three subsystems. Next, constituted by two distinct
observers, the FT-UIO is constructed at the selected agent and is designed to converge
in a pre-assigned finite time, which is chosen as the time delay of the observers. With
the state estimation obtained from the FT-UIO in the selected agent, a FD algorithm
is also proposed to diagnose the faults occurred in its neighbor agents, and then not
only the location of the faults but also the detailed information of the faults can be
obtained in a pre-assigned finite time. Finally, the effectiveness and advantages of the
proposed distributed FD method are shown through simulation studies performed on
the control of a VTOL aircraft in the vertical plane.
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