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Abstract A digital electrocardiogram (ECG) detector with low power consumption
and high performance based on biorthogonal 2.2 wavelet transform and applicable for
themodern implantable cardiac pacemakers is proposed in the present work. Biorthog-
onal 2.2 wavelet transform is chosen due to its high SNR, less number of coefficients,
resemblance of shape with ECG wave and ability to increase QRS complex detection
performance. Architecture of the proposed ECGdetector includesmodified biorthogo-
nal 2.2 wavelet filter bank and a modified soft threshold-based QRS complex detector.
Three low-pass filters and one high-pass filter with pipelined architecture are used
which are lesser than the earlier designed detectors. Various blocks of proposed detec-
tor are designed to denoise the input ECG signal and then to find the correct location of
R-wave. Verilog hardware description language for design entry,Modelsim embedded
in Xilinx ISE v.14.1 for simulation, Virtex-6 FPGAs for synthesis and Xilinx ISE tools
are used to measure the performance, area and power of the proposed ECG detector
and its constituent blocks. A low detection error rate of 0.13%, positive predictivity
(P+) of 99.94% and sensitivity (Se) of 99.92% are achieved for the proposed ECG
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detector which are better compared to the previous results. Also, it consumes only 20
mW of total power at 50 KHz and shows the overall delay of 18.924 ns which makes
it useful for the low power and high-performance applications.

Keywords Implantable cardiac pacemaker (ICP) · Wavelet-based ECG detector
biorthogonal 2.2 wavelet · MATLAB · Verilog HDL · Xilinx

1 Introduction

For the aging population, improved health care and lowering its cost have become a
major challenge. The combination of electrical and information technologywith recent
discoveries in biology andmedicine can address many such health management issues
[24]. As the demand for healthcare applications such as implantable medical devices
increased, researchers are focusing on designing electronic biomedical devices using
integrated circuit (IC) technology.Oneof themost commonly implementedbiomedical
devices is a cardiac pacemaker [17],which is implanted inside the humanbody to detect
and monitor a person’s heart beating rate and submit the data to medical staff as well
as other devices using wireless methods. A typical block diagram of an implantable
cardiac pacemaker IC (ICPIC) is shown in Fig. 1 [25].

The required cure is provided to the patient after receiving abnormal signals from the
pacemaker. Human heart consists of four chambers, i.e., two atria and two ventricles
through which blood is injected and purified and electrocardiogram (ECG) waveform
gets generated. Electrocardiogram (ECG)waveform consists of Pwave, QRS complex
(combination of Q, R and S waves) and T wave. It is one of the most important
parameters for heart activity monitoring, and full form analysis of the ECG signal is
helpful in detection of various types of deflections. Figure 2 shows the characteristic
points of sinus rhythm [9].

Among three waves of ECG, QRS complex is the most striking one and has more
energy as well as amplitude compared to P and T waves. QRS detection provides
the fundamentals for approximately all automated ECG analysis algorithms because
after the QRS identification, the heart rate as well as some other parameters can be

Fig. 1 Block diagram of a typical implantable cardiac pacemaker integrated circuit (ICPIC)
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Fig. 2 Basic pattern of electrical activity across the heart [9]

examined to avoid serious pathologies. In implantable cardiac pacemaker integrated
circuits (ICs), QRS complex of the ECG waveform is detected using a QRS complex
detector block which is a functional block used to detect the QRS peaks of the sinus
rhythm. The working of this block must be highly accurate along with less power
consumption and less hardware use (small chip area).

In the present work, an improved ECG detector applicable for implantable cardiac
pacemaker systems is proposed. Biorthogonal 2.2 wavelet transform has been used to
design wavelet filter banks. Biorthogonal 2.2 wavelet transform is chosen for this work
due to its higher SNR compared to other wavelet transforms. In addition, it uses lesser
number of coefficients and its shape resembles the ECG wave. The proposed filter
architecture is different from previously designed architectures. Instead of using filter
pairs of low- and high-pass filters, a new architecture that contains only three low-
pass filters and a high-pass filter with a pipeline-based architecture is proposed. In the
proposed architecture, the number of high-pass filters used is reduced compared to the
previous works. Furthermore, decimated wavelet filter banks (WFBs) are used which
have the advantages of lower dynamic power dissipation and less number of gates
in implementation with different clock frequency at each level, over the undecimated
WFBs. Filter architecture also plays important role in lowpower and processing timeof
whole system performance; hence, pipelined architecture is used for this purpose. The
main advantage of the proposed architecture is that by using this architecture hardware
is reduced. This is because there is no use of a multiplier in the present architecture as
there is only one signal that comes through theWFBs output. Also, there is no need of
noise detector. In the QRS complex detector block, only a comparator and a counter
are used.
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2 Literature Overview

Several algorithms have been proposed for ECG detection in last few years, such as
morphological transform [20], artificial neural networks [7,18,22,26], genetic algo-
rithm [15], wavelet transforms filter banks [1,8], heuristic methods based on nonlinear
transforms [10,19,21]. Various ECG detection algorithms have been proposed for
noise effect elimination and peak point detection of the ECG signal [3]. Comparison
of various ECG detection algorithms based on the hardware complexity and the detec-
tion performance is done in [12]. It has been found [12] that a wavelet transform-based
approach ismost effective, considering the trade-off between hardware complexity and
detection accuracy. Another approach based on wavelet transform has taken the help
of electrocardiogram (ECG) delineation, and QRS complexes are detected using an
algorithm based on themultiscale approach as proposed by Li et al. [11]. Pan et. al [13]
proposed an algorithm for electrocardiogram (ECG) characteristics points detection
using biorthogonal spline wavelet transform. In it, the equations of the low-pass H(z)
and high-pass G(z) filters used in equivalent filter bank architecture are as follows:

H(z) = 1+ 3z−1 + 3z−2 + z−3

4
(1)

G(z) = −1− 3z−1 + 3z−2 + z−3

4
(2)

where H(z) and G(z) are the transfer functions of biorthogonal spline wavelet
transform-based low-pass and high-pass filters. z−1, z−2 and z−3 are the delay ele-
ments. Coefficients of the low- and high-pass filters are:

h0 = 1

4
, h1 = 3

4
, h2 = 3

4
, h3 = 1

4
(3)

g0 = −1

4
, g1 = −3

4
, g2 = 3

4
, g3 = 1

4
(4)

From equations (3) and (4), it is obvious that the equivalent filter bank architecture
uses only four coefficients and all these coefficients are small fractions. As a result,
the amount of computation required to do the transformation is relatively small which
makes this transformation faster compared to the method used in [11].

Rodrigues et. al [16] proposed the digital implementation of a wavelet-based R-
wave detector suitable for the cardiac pacemakers that uses a wavelet filter bank to
decompose the input signal into subbands, followed by a hypothesis testing as shown
in Fig. 3.

Threshold function of the hypothesis test determines whether the incoming beat is
considered as noise or as cardiac activity. Significant power savings (around 67%) are
achieved by using a dual operation mode detector, and leakage power is also reduced
by 97% with the help of sleep transistor used in the power supply rails. The major
drawbacks of this approach are: GLRT-based QRS complex detector consumes lots
of power, and the detection accuracy is poor. Wang et. al [23] proposed a real-time
ECG detection algorithm based on band pass filtering with a peak detection stage and
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Fig. 3 Block diagram of the wavelet-based event detector [16]

implemented the proposed algorithmon application-specific integrated circuit (ASIC).
Major drawbackwith the time domain-based approaches is that extractingECGsignals
by removing noises with band pass filter (a combination of low-pass and high-pass
filters) is quite difficult, and detection accuracy is degraded. Min et. al [12] proposed a
wavelet transform-based electrocardiogram (ECG) detector for low power implantable
cardiac pacemakers that consist of a wavelet decomposer with wavelet filter banks, a
QRScomplex detector and a noise detectorwith zero-crossing points. The combination
of multi-scaled product algorithm and soft threshold algorithm reduces the power
consumption and increased thedetection accuracy.Themulti-scaledproduct ofwavelet
filter bank outputs is expressed as:

MpI =
∏

I

|WFI | (5)

where MPi is the product of wavelet filter bank outputs.
∏

i |WFI | represents the
multiplication of different wavelet filter bank outputs say WF1, WF2, WF3 and WF4,
and I is the subset of wavelet filter bank outputs.

The use of add-shift multiplier for signal multiplication in multi-scaled product
block increases processing time and consumes more hardware. Bhavtosh et. al [2]
proposed aQRS complex detector that has been designed for thewearable ECG system
using multi-scaled product with booth multiplier and soft threshold algorithms. The
use of booth multiplier instead of add-shift multiplier is helpful in reducing the delay
for quick QRS complex wave detection.

The architectures of some of the above-mentioned approaches are shown in
Figs. 4, 5, 6 and 7.

The main drawbacks of [2] are (1) this paper used conventional wavelet filter
bank based on dyadic wavelet transform. wavelet filter bank, both decimator- and
undecimator-based architectures with the filter pairs of low- and high-pass filters are
used which increases the hardware and power consumption; (2) as they perform mul-
tiplication using booth multiplier [2] instead of conventional add-shift multiplier, the
complexity of the multi-scaled product block has been increased. To remove these
problems, a new wavelet filter bank based on biorthogonal 2.2 wavelet transform is
used in the present work.
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Fig. 4 Soft threshold-based ECG detector [12]

Fig. 5 a Multiscale product-based detector, b soft threshold algorithm-based structure [12]

Fig. 6 QRS detection ASIC [23]

To reveal the hidden features within the signal, wavelet transform is used. It enables
variable window sizes in analyzing different frequency components within a signal.
Furthermore,wavelets have oscillatingwavelike characteristics that resemble band like
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Fig. 7 Multi-scaled product using booth multiplier [2]

spectrumwhichmakes them better in removing noises from signals [4].Wavelet trans-
form is having two types of functions, namely scaling function and wavelet function.
Scaling function is used as low-pass filter, and wavelet function is used as high-pass
filter. There are only few wavelet functions that can be applied to denoise the ECG
signal because out of these so many types of wavelet functions only few wavelet func-
tions have high signal-to-noise ratio and shape of the wavelet function is similar to
the ECG signal. There are several types of wavelet transforms available in the lit-
erature. Some of these are dyadic wavelet transform, orthogonal wavelet transform,
biorthogonal wavelet transform, etc. These are used for different-different applica-
tions, but biorthogonal wavelet transform provides more degree of freedom compared
to other wavelet transforms. Some of its features are: (1) It generates possibilities to
construct symmetrical wavelet functions. (2) It has two different scaling and wavelet
functions which generate different multi-resolution analyses. And (3) it is more suit-
able for biomedical signals due to its waveforms matching with signals. Hence, it
removes noises better than other wavelets. Keeping in mind the above-mentioned
points, biorthogonal wavelet transform is used in the present work.

Compared to [2,12,23], the proposed architecture uses a biorthogonal 2.2 wavelet
transform-based modified wavelet filter bank and a modified QRS complex detector
block. The wavelet filter bank architecture used in [2,12] passes the noisy ECG sig-
nal through a parallel combination of low-pass and high-pass filters called wavelet
filter bank 1 (WF1) and repeats the procedure through wavelet filter bank 4 (WF4).
This wavelet filter bank consumes significant amount of hardware. In the proposed
architecture, a modified wavelet filter bank that passes the noisy ECG signals through
a series combination of three low-pass filters and one high-pass filter is used. Fur-
thermore, the pipelined architecture used in the proposed wavelet filter bank makes it
faster compared to [2,12].

Also, in [2,12] denoised ECG signal is first multiplied and then compared with the
threshold value. But because of the modified wavelet filter bank in the proposed work,
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denoised ECG signal is directly compared with the threshold value, which makes the
proposed architecture efficient and faster compared to [2,12].

3 Proposed ECG Detector

The methodology used for designing of proposed electrocardiogram (ECG) detector
applicable for implantable cardiac pacemakers is presented in this section. Flow chart
of the proposed electrocardiogram (ECG) detector is shown in Fig. 8. Various steps
shown in Fig. 8 are discussed.

Initially, different electrocardiogram (ECG) inputs such as 100, 101 and 102 are
taken from MIT-BIH arrhythmia database in .mat (i.e., 100.mat, etc.) form. Electro-
cardiogram (ECG) signals taken fromMIT-BIH may be corrupted by various kinds of
noises (i.e., power line interference,muscle contraction, baseline drift,motion artifacts,
electrode contact noise, electrosurgical noise and instrumentation noise generated by
electronic devices used in signal processing). To include the noise, a noise signal is
generated and added to the original signal using instruction in MATLAB environ-
ment. In the present work, biorthogonal 2.2 wavelet transform with a decomposition
level four (4) is used for the analysis of noisy ECG signals. WF1, WF2, WF3 and
WF4 are the filter bank outputs which can also be represented as W21 f (n)W21f(n),

Fig. 8 Flow chart of the proposed ECG detector
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W22 f (n)W22f(n), W23 f (n)W23 f (n) and W24 f (n)W24f(n). If scales and position
are based on power of two, these are called dyadic scales and positions and in this
case analysis becomes more accurate and efficient. In wavelet transform terminology,
signals are defined as approximation (high scale and low frequency component) and
detail (low scale and high frequency component). The decomposition process can
be iterative, with successive approximations being decomposed further on, so that
one signal is broken down into many lower resolution components. This is called the
wavelet decomposition tree or wavelet filter bank. After that, using the designed ECG
detector, incoming wavelet filter bank (WFB) output signal (A) is compared with the
threshold value. If the threshold value is greater than A, then it is counted as R-peak.
Also, R–R-peak time is calculated, and finally, total number of peaks is counted.

3.1 Selection of Wavelet Transform

Three categories of ECG detection algorithms can be found in the literature, namely
syntactic, nonsyntactic and hybrid. Syntactic approach-based ECG detection algo-
rithms are time-consuming because each class of patterns requires grammar inference
[14]. This is the reason that a large number of the proposed ECG detectors are based on
nonsyntactic approach [5,6]. This approach-based ECG detectors first filter the ECG
signal with a band pass filter (or a matched filter); then, output of the bandpass filter is
passed through a nonlinear transformation (i.e., derivative and square) to enhance the
QRS complexes, and finally, some logic is applied to determine the QRS complexes
present in the signal. Nonsyntactic approaches mainly suffer from two problems: First,
frequency band of the QRS complex is different for different subjects and different
beats of the same subject. Second, there is a overlapping of the frequency band of the
noise and QRS complex.

Out of the total 74 wavelet transforms (i.e., haar, symlet, biorthogonal), biorthog-
onal 2.2 wavelet transform has been found suitable for the proposed ECG detector.
Biorthogonal 2.2 wavelet transform is chosen based on three parameters: 1) signal-
to-noise ratio (SNR), 2) no. of coefficients and 3) shape of the wavelet. Table 4 in
“Appendix” shows the signal-to-noise ratio for different MIT-BIH signals (100.mat
and 215.mat).

Formula used for SNR calculation is:

SNR = 10 log10
mean(reconstructed signal)2

mean(original signal− reconstructed signal)2
(6)

It is obvious from Table 4 in “Appendix” that biorthogonal 2.2 wavelet has very high
SNR values. Only biorthogonal 3.1 and 3.3 wavelets have better SNR values compared
to biorthogonal 2.2 wavelet, but these wavelets need larger number of coefficients.
Larger number of coefficients increase the hardware area and power consumption of
the system. Furthermore, the shape of biorthogonal 2.2 wavelet closely resembles
the ECG signal compared to biorthogonal 3.1 and 3.3 wavelets as shown in Fig. 9.
Based on above considerations, biorthogonal 2.2 wavelet is found most suitable for
the proposed ECG detector designed for the implantable cardiac pacemaker systems.
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Fig. 9 Shapes of the different biorthogonal wavelet transforms

Fig. 10 Block diagram of the proposed ECG detector

3.2 Architecture

The block diagram of the architecture of proposed ECG detector is shown in Fig. 10.
The proposed design consists of two main blocks; first one is decimated wavelet filter
bank with pipelined structure-based filter pairs used to analyze electrocardiogram
(ECG) signal in four levels. Another one is modified threshold comparator.

In the previously published work, Mallat-based architecture is used in which signal
is decomposed into two parts, i.e., approximation (high scale and low frequency com-
ponent) and detail (low scale and high frequency component). Since the QRS complex
generally lies in the frequency range of 10 to 25 Hz, a pipelined architecture-based
wavelet filter bank as shown in Fig. 11 is proposed in the present work. It consists of
three low-pass filters, namely WF1, WF2, WF3 and a high-pass filter WF4.
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Fig. 11 aBlock diagram of modified wavelet filter bank, b pipelined architecture-based decimated wavelet
filter bank circuit

Although the signal at WF4 output is very smooth, in some cases the T wave or
impulse noise is in same bandwidth of QRS signal. Decision of threshold comparator
is affected in this type of situations due to high amplitude of these noises or unwanted
signals. Hence, in the present work soft threshold is preferred over the hard threshold
used in earlier works. The block diagram of the proposed ECG detector with soft
threshold block and other constituent components is shown in Fig. 10. Output of the
WF4 is given to the comparator and a soft threshold (Vth) is set at the maximum value
of one fourth (i.e., 0.25) of the wavelet filter bank (WFB) output. Various values of
threshold are tested on MIT-BIH arrhythmia database such as 0.15*(max) value of
WF4, 0.20*(max) value of WF4, 0.30*(max) value of WF4 and 0.35*(max) value of
WF4. Threshold values other than the proposed value either detect the extra number of
R-peaks or detect less number of peaks.Hence, the proposedvaluewhich is 0.25*(max)
value of WF4 is chosen for the proposed work. Performance comparison of different
thresholds with 100.mat of MIT-BIH arrhythmia database is shown in Table 1.

After that, comparator compares the wavelet filter bank (WFB) output with the
threshold value. If this value is greater than the threshold, then it is counted as a peak;
otherwise, no peak is counted. Total number of peaks is counted by the counter.
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Table 1 Performance comparison of 100.mat signal with different threshold values

Record no. Threshold value TP FN FP Se (%) +P (%)

100.mat 0.15*(max) value of WF4 2280 6 1 99.73 99.95

100.mat 0.20*(max) value of WF4 2275 2 0 99.91 100

100.mat 0.25*(max) value of WF4 2273 0 0 100 100

100.mat 0.30*(max) value of WF4 2271 0 2 100 99.91

100.mat 0.35*(max) value of WF4 2260 3 10 99.86 99.55

Fig. 12 Wavelet decomposition of ECG signal into four levels using MATLAB inbuilt wavelet tool box

4 Results and Discussions

Various ECG inputs such as 100, 101 and 102 are taken from MIT-BIH arrhythmia
database in .mat form; 60 Hz Gaussian noise is generated and added to the original
signal usingMATLABR2013b environment. After that, noisy signal is passed through
the wavelet filter bank (WFB). All the results are verified at the algorithmic level using
inbuilt wavelet toolbox “wavemenu.”

Figure 12 shows thewavelet filter bank output for each scale 1 to 4 forMIT-BIH 100
ECG signal using MATLAB. Frequency response of the WFBs is shown in Fig. 13.

Various ECG signals (e.g., 100, 101, 102…) taken from MIT-BIH database have
been tested using biorthogonal 2.2 wavelet transform. A 60 Hz white Gaussian noise
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Fig. 13 Frequency response of wavelet filters at different scales

Fig. 14 Wavelet filter bank outputs of MIT-BIH 100 signal

is added to include the effect of the internal and external noise sources. Some of
these obtained results are shown here. Figure 14 shows wavelet filter bank (WFB)
output of 100 ECG signal, whereas Fig. 15 shows WFB 4 output obtained using
MATLAB.

4.1 Post-Processing Results

Verilog HDL and Xilinx ISE 14.1 have been used for coding, synthesis and perfor-
mance analysis of the proposed ECG detector. Xilinx Virtex-6 FPGAs are used to



4008 Circuits Syst Signal Process (2018) 37:3995–4014

Fig. 15 WFB 4 output

Fig. 16 RTL view of the proposed ECG detector

Fig. 17 RTL view of wavelet filter banks (WFBs)

implement the proposed detector. 16-bit input ECG signal along with clock and reset
signal is applied toWFBs. Figures 16 and 17 show the RTL view of the proposed ECG
detector and wavelet filter banks (WFBs), respectively, using Xilinx ISE 14.1.
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4.2 Output of Wavelet Filter Bank and ECG Detector

Threshold is assumed to be 16 bits, and the input coming from theWF4 preprocessing
stage is also 16 bit. Figure 18 shows the output waveform of wavelet filter banks
(WFBs). The output of ECG detector block used to determine the R-peak for 100
ECG input is shown in Fig. 19. Figures 18 and 19 confirm the operation of WFBs and
ECG detector.

Various performance parameters have been used in the literature to analyze and
compare the performance of the ECG detection algorithms. Sensitivity (Se), positive
predictivity (P+) and detection error rate (DER) are used to assess the performance

Fig. 18 Waveform of wavelet filter banks (WFBs)

Fig. 19 Waveforms of ECG detector
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of the proposed ECG detector and its comparison with previously designed ECG
detectors.

Sensitivity (Se) is given as

Se = TP

TP + FN
% (7)

where false TP is the true positive which denotes the number of correctly detected
QRS complexes and FN is the false negative which represents the number of missed
detection.

Positive predictivity (P+) is computed by

P+ = TP

TP + FP
% (8)

where FP is the false positive which represents the detection of false QRS complex.
Detection error rate (DER) is calculated by

DER = FP + FN

Total number of QRS complexes
% (9)

Proposed algorithm is tested for almost all signals (i.e., 100.mat, 101.mat, 201.mat),
but only some randomly selected ECG signals and their performance analysis are
shown in Table 2. It is obvious from Table 2 that the proposed design has positive
predictivity of 99.94. Only few false positive peaks are detected during processing of
the signal. Detection error rate (DER) of our design is also very low that is 0.13%
in comparison with 0.196% of previous design [12]. Sensitivity (Se) of the proposed
detector is found to be 99.92%.

Table 2 Performance parameters of the proposed ECG detector

ECG signal Total (beats) TP (beats) FN (beats) FP (beats) Se% P+% DER %

100 2273 2273 0 0 100 100 0

101 1865 1862 3 0 99.83 100 0.16

102 2187 2184 3 2 99.86 99.90 0.22

105 2572 2570 2 0 99.92 100 0.07

116 2412 2412 0 0 100 100 0

201 1963 1960 3 10 99.84 99.94 0.06

230 2256 2255 1 0 99.95 100 0.04

232 1780 1778 2 0 99.88 100 0.11

233 3079 3077 2 0 99.93 100 0.06

Average 20387 20371 16 12 99.92 99.94 0.13
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Table 3 Comparison of hardware cost for ECG detectors

ECG detection approaches Low- and high-pass filters Multiplexers Multipliers Comparators

Wavelet filter bank-based
detector [12]

7 3 1 1

Booth multiplier-based
detector [2]

7 3 1 1

Proposed detector 4 0 0 1

4.3 Hardware Utilization

Proposed design has less hardware than previous designs [12,22]. Noise detector, 3
multiplexers and one multiplier have been reduced compared to the previous designs.
This reduction in hardware blocks makes the proposed design more efficient. Xilinx
ISE 14.1 is used to measure the performance, area and power of the proposed ECG
detector.

The overall delay of the proposed ECG detector is significantly reduced from
37.036ns to 18.924ns [12] using this technique. The low delay makes the proposed
detector useful for the high-performance cardiac applications.

The hardware cost of proposed detector is compared with previous wavelet-based
detector [2,12] which is shown in Table 3. It is obvious from Table 3 that the proposed
ECG detector uses lesser hardware which results in lower area on chip and lower cost
compared to the previous designs.

5 Conclusion

Biorthogonalwavelet transform-based ECGdetector applicable in implantable cardiac
pacemaker systems has been proposed in the present work. This ECG detector uses
four-level wavelet filter banks (WFBs) for filtering purpose and a comparator and
counter module for peak detection process. A digitized ECG wave is first applied to
the four-level WFBs which separate the QRS Complex peaks from noises (unwanted
signals generated by human body, instruments and other external sources). After this,
ECG detector is used to detect and count the QRS complex peaks. A threshold (max
value of 0.25) is setup to detect peaks from the WFBs outputs using a comparator. If
the comparator output is high, it means that a peak is present, and then, it is counted (a
counter is used at output stage for this purpose). A lowdetection error rate (DER) better
positive predictivity (P+) and better sensitivity (Se) are achieved for the proposed ECG
detector. Hardware cost as well as power dissipation is also reduced compared to the
previously designed ECG detectors.

Appendix

See Table 4.
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