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Abstract This paper is concerned with the problem of finite-time control of uncertain
fractional-order positive impulsive switched systems (UFOPISS) via mode-dependent
average dwell time (MDADT). The uncertainties refer to interval and polytopic uncer-
tainties. Firstly, the proof of the positivity of UFOPISS is given. By constructing linear
copositive Lyapunov functions, the finite-time stability (FTS) of autonomous system
with MDADT is studied. Then, state feedback controllers are designed to guarantee
the FTS of the resulting closed-loop system with interval and polytopic uncertainties,
respectively. All presented conditions can be easily solved by linear programming.
Finally, a fractional-order circuit model is employed to illustrate the effectiveness of
the proposed method.
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1 Introduction

During the past decade, positive switched systems with integer order derivative have
been paid much attention [8,17,20,30,36]. By contrast, because fractional differential
equations have been proved to be valuable tools in the modeling of many practical
dynamics systems, such as fractional PID control [10,11], fractional electrical net-
works [3,16], fractional-order Chuas circuit [13], fractional-order biological system
[1] and so on, fractional calculus is more feasible than integer calculations to model
the behavior of such systems. Recently, fractional calculus has been introduced to the
stability analysis of switched systems [7,14,15,24,31].

Very recently, a few results about fractional-order positive switched systems
(FOPSS) have been presented [2,19,34,35]. [2] considered the controllability of
FOPSS for fixed switching sequence. [35] considered the problem of state-dependent
switching control of FOPSS. However, these studies mainly focus on the asymptotic
stability, which reflects the asymptotic behavior of the system in an infinite time inter-
val. Compared with asymptotic stability, FTS is a more practical concept to study the
behavior of the system within a finite interval. For FOPSS, [34] studied the FTS of
FOPSS with average dwell time (ADT) approach. [19] considered the guaranteed cost
finite-time control of FOPSS with ADT approach. As we know, MDADT approach
allows that every subsystem has its own ADT to make the individual properties of
each subsystem unneglected, which is more applicable and less conservative com-
pared with ADT. Then, for FOPSS, MDADT must be taken into account in analyzing
and implementing finite-time controller scheme.

In addition, affected by the environment and the system itself, the impulse effects
always appear at the switching points of switched systems. Moreover, due to the
model construction, installation error, and themeasurement error of parameters, almost
all control systems contain uncertainties. Recently, some results studied the stability
and stabilization analysis of fractional-order impulsive switched systems or uncertain
fractional-order systems [4,5,18,32]. When the impulsive jumps and uncertainties
happen simultaneously in the FOPSS, it will lead to some difficulties for the FTS
analysis. To the best of our knowledge, the problem of FTS analysis for fractional-
order positive impulsive switched systems with uncertainties is still open.

Motivated by the above discussions, in this paper, the problem of finite-time control
of UFOPISS via MDADT is investigated. The main contributions of this paper can be
summarized as follows: (i) The proof of the positivity of UFOPISS is given and the
definition of finite-time stability is extended to UFOPISS. (ii) By using copositive-
type Lyapunov function and MDADT approach, two state feedback controllers are
designed. (iii) Some sufficient conditions are obtained to guarantee the corresponding
closed-loop systems with interval and polytopic uncertainties are finite-time stable,
respectively. Such conditions can be easily solved by linear programming.

The rest of the paper is organized as follows. In Sect. 2, problem formulation
and some necessary lemmas are given. In Sect. 3, the issue of finite-time control for
UFOPISS with interval and polytopic uncertainties are developed. Section 4 gives a
fractional-order circuit model to illustrate the effectiveness of the proposed approach.
Section 5 concludes the paper.
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Notations Throughout this paper, A � 0 (� 0,≺ 0,� 0) means that ai j > 0
(≥ 0,< 0,≤ 0), which is applicable to a vector. A � B (A � B)means that A−B � 0
(A− B � 0); The symbols R, Rn and Rn×n denote the set of real numbers, the space
of the vectors of n-tuples of real numbers and the space of n × n matrices with real
numbers, respectively. Rn+ is the n-dimensional nonnegative (positive) vector space.
Matrix A ∈ [A, Ā] means that ai j ∈ [ai j , āi j ]. AT denotes the transpose of matrix A.
I represents the identity matrix. Matrices are assumed to have compatible dimensions
for calculating if their dimensions are not explicitly stated.

2 Preliminaries and Problem Statements

2.1 Fractional-Order Calculus

Fractional-order integro-differential operator is the generalization of integer order
integro-differential operator. There are different definitions of the fractional-order
integral or derivative. Given 0 < α < 1, the uniform formula of a fractional integral
is defined as

t0D
−α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ (1)

whereΓ (α) denotes the Gamma function with non-integer arguments. For 0 < α < 1,
the Riemann–Liouville (RL) definition of fractional derivative is given as

RL
t0 Dα

t f (t) = 1

Γ (1 − α)

d

dt

∫ t

t0

f (τ )

(t − τ)α
dτ, (2)

and Caputo definition of fractional derivative is given as

C
t0D

α
t f (t) = 1

Γ (1 − α)

∫ t

t0

f ′(τ )

(t − τ)α
dτ, (3)

where f (t) is an arbitrary integrable function, t0D
−α
t is the fractional integral of order

α on [t0, t], Γ (α) = ∫ ∞
0 e−t tα−1dt . RLt0 Dα

t and RL
t0 Dα

t represent Riemann–Liouville
and Caputo fractional derivatives of order α of f (t) on [t0, t], respectively. We mainly
use these two fractional-order operators in this paper. From the above two definitions,
we can obtain the following relation between them:

RL
t0 Dα

t f (t) =C
t0 Dα

t f (t) + t−α

Γ (1 − α)
f (t0), (4)

Lemma 1 [17] Let α ∈ (0, 1), if f (0) ≥ 0, then RL
t0 Dα

t f (t) ≤ C
t0D

α
t f (t).
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2.2 Uncertain Fractional-Order Positive Impulsive Switched Systems

Consider the following UFOPISS:

{
C
t0D

α
t x(t) = Aσ(t)x(t) + Bσ(t)u(t), t �= tk, k ∈ Z+

x(t) = Jσ(t−)x(t
−), t = tk, k ∈ Z+, 0 < α < 1.

(5)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm represents the control input. Ct0D
α
t

denotes Caputo fractional-order derivative. x(t−k ) = limh→0− x(tk + h), tk denotes
the k-th impulsive jump instant, t0 = 0 is the initial time. σ(t) : [0,∞) → S =
{1, 2, . . . , S} is the switching signal, S is the number of subsystems; ∀p ∈ S, Ap, Bp

and Jp are constant matrices with appropriate dimensions, p denotes the pth systems.

Remark 1 In reality, because of abrupt jumps at certain instants during the switching
processes, the states of systems always show impulsive dynamical behaviors, which
can be modeled by x(t) = Jσ(t−)x(t

−). This model has been reported in temperature
process control, induction-motor, biochemical process, transportation and so on (see
[6,21,28,29]).

Remark 2 The system model (5) is a more general form. Especially, if Jp = I, then
the system (5) is turned into fractional-order positive switched systems in [18,34,35].

Next, we will present some definitions, lemmas and inequalities for the UFOPISS
(5) for our further study.

Definition 1 [34] The system (5) is said to be positive if for any switching signals
σ(t), any initial conditions x(t0) � 0, the corresponding trajectory satisfies x(t) � 0
for all t � 0.

Definition 2 [17] A matrix A is called a Metzler matrix if the off-diagonal entries of
matrix A are nonnegative.

Lemma 2 [17] A matrix is a Metzler matrix if and only if there exists a positive
constant ς such that A + ς In � 0.

Definition 3 [30] For any switching signal σ(t) and any t2 ≥ t1 ≥ 0, let Nσ p(t1, t2)
denote the switching numbers that the pth subsystem is activated over the interval
[t1, t2) and Tp(t1, t2) denote the total running time of the pth subsystem over the
interval [t1, t2). If there exist N0p ≥ 0 and Tαp > 0 such that

Nσ p(t1, t2) ≤ N0p + Tp(t1, t2)

Tαp
, ∀ t2 ≥ t1 ≥ 0,∀ p ∈ S (6)

then Tαp and N0p are calledMDADT and mode-dependent chattering bounds, respec-
tively. Generally, we choose N0p = 0.

Lemma 3 The system (5) is positive if and only if Ap, ∀p ∈ S are Metzler matrices,
Bp � 0 and Jp � 0.
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Definition 4 [19] For given time constant T f and vectors δ � ε � 0, the system (5)
is said to be finite-time stable with respect to (δ, ε, T f , σ(t)), if

xT(0)δ ≤ 1 ⇒ xT(t)ε ≤ 1,∀ t ∈ [0, T f ]. (7)

2.3 Some Inequalities

The following inequalities are necessary for our further study.

Lemma 4 (Gronwall–Bellman inequality) Let a(t), b(t) and g(t) be continuous real-
valued functions. If a(t) is nonnegative and if g(t) satisfies the integral inequality

g(t) ≤ a(t) +
∫ t

0
b(s)g(s)ds,

then

g(t) ≤ a(t) +
∫ t

0
a(s)b(s) exp

(∫ t

s
b(r)dr

)
ds.

If, in addition, a(t) is a constant, then

g(t) ≤ a(t) exp(
∫ t

0
b(s)ds).

Lemma 5 (Cp inequality) For 0 < a < 1 and any positive real numbers
x1, x2, . . . , xk ,

n∑
k=1

xak ≤ n1−a
( n∑

k=1

xk

)a

.

Lemma 6 (Young’s inequality) If a and b are nonnegative real numbers, p and q are
positive real numbers such that 1/p + 1/q = 1, then

ab ≤ a p

p
+ bq

q
.

Definition 5 [6] The function V : R+ × Rn → R+ belongs to class ζ if
(i) the function V is continuous in each of the sets [tk, tk+1) × Rn and for each

x, y ∈ Rn ,
t ∈ [tk, tk+1), k ∈ Z+, lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists;
(ii) V (t, x(t)) is locally Lipschitzian in all x ∈ Rn , and for all t ≥ t0, V (t, 0) ≡ 0.

The aim of this paper is to design two state feedback controllers u(t) = Kσ(t)x(t)
and a class of switching signals σ(t) for UFOPISS (5) such that the corresponding
closed-loop systems with interval and polytopic uncertainties are finite-time stable,
respectively.
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3 Main Results

3.1 Finite-Time Stability Analysis

In this subsection, we consider the problem of FTS for UFOPISS (5) with u(t) ≡ 0.
Consider two types of uncertainties: interval and polytopic uncertainties, the following
theorems give sufficient conditions of FTS of system (5) via the MDADT approach,
respectively.

Firstly, we give the following key lemma.

Lemma 7 Assume ∀p ∈ S,Ap � Ap � Ā p, 0 � Bp � Bp � B̄p and Jp � 0, where
Ap is a Metzler matrix, then system (5) is positive.

Proof Let t1, t2, . . . , tk, . . . , tN denote the switching instants on the interval [t0, T f ].
When t �= tk , similar to Theorem 1 in [23], the positivity of the system can be easily
proved. Next, when t = tk , the positivity analysis of the system (5) is given as follows.

Sufficiency: When t = tk , x(tk) = Jσ(t−k )x(t
−
k ), since x(t−k ) � 0, if Jσ(t−k ) � 0, we

have x(tk) � 0.
Necessity: When t = tk , x(tk) = Jσ(t−k )x(t

−
k ). Suppose Jσ(t−k ) dissatisfies Jσ(t−k ) �

0, since x(t−k ) � 0 is any vector, there exists a x(t−k ) such that x(tk) dissatisfies
x(tk) � 0, it follows that the system (5) is not positive. Therefore, there must be
Jp � 0, ∀p ∈ S.

From the above, the system (5) is positive under any switching signals if and only
if Ap are Metzler matrices, Bp � 0 and Jp � 0, ∀p ∈ S. ��

3.1.1 Interval Uncertainty

In this subsection,we consider the FTSof the system (5)with the interval uncertainties.
Consider the following interval uncertainties:

For all p ∈ S, we have Ap � Ap � Ā p and 0 � Bp � Bp � B̄p, which can be

denoted by Ap ∈ [Ap, Ā p] and Bp ∈ [Bp, B̄p].

Theorem 1 Assume Ap ∈ [Ap, Ā p] for each p ∈ S, where Ap is a Metzler matrix.
Consider the system (5) with u(t) ≡ 0. Given positive constants T f , λp, vectors
δ � ε � 0, if there exist positive constants ξ1, ξ2, μp, and positive vectors vp, p ∈ S,
such that the following inequalities hold:

ĀT
pvp � λpvp (8)

JTp vp � μpvq (9)

ξ1ε ≺ vp ≺ ξ2δ (10)
λ(αT f − α + 1)

Γ (α + 1)
< ln

ξ1

ξ2
(11)
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where ∀p ∈ S, vp = [vp1, vp2, . . . , vpn]T, λ = maxp∈S{λp}, μp ≥ 1, then under the
following MDADT scheme

Tα > T ∗
α = T f

(
lnμp + λ(1 − α)

Γ (α + 1)

)/(
ln

ξ1

ξ2
− λ(αT f − α + 1)

Γ (α + 1)

)
(12)

the UFOPISS (5) is finite-time stable with respect to (δ, ε, T f , σ (t)).

Proof Constructing the multiple linear-type Lyapunov–Krasovskii functional for the
system (5) as follows:

Vσ(t)(t, x(t)) = xT(t)vσ(t) (13)

where vp ∈ Rn+, ∀p ∈ S.
Denote t0, t1, . . . as the switching instants over the interval [0, T f ]. When t ∈

(tk, tk+1), calculating the upper right-hand derivative of Vσ(t)(t) along the trajectory
of the system (5) with u(t) ≡ 0, from (8), we have

C
t0D

α
t Vσ(t)(t, x(t)) = xT(t)AT

σ(t)vσ(t) ≤ xT(t) ĀT
σ(t)vσ(t) ≤ λpVσ(tk )(t, x(t)) (14)

Taking the fractional integral Ct0D
−α
t to both sides of (14) during the period (tk, t) for

t ∈ (tk, tk+1) leads to

Vσ(t)(t, x(t)) ≤ Vσ(tk )(tk, x(tk)) + λσ(tk )

Γ (α)

∫ t

tk
(t − s)α−1Vσ(t)(s, x(s))ds (15)

From Lemma 4 and the properties of Gamma function Γ (α), for t ∈ (tk, tk+1), we
have

Vσ(t)(t, x(t)) ≤ Vσ(tk )(tk, x(tk)) + λσ(tk )

Γ (α)

∫ t

tk
(t − s)α−1Vσ(t)(s, x(s))ds

≤ Vσ(tk )(tk, x(tk)) exp

{
λσ(tk )

Γ (α)

∫ t

tk
(t − s)α−1ds

}

= Vσ(tk )(tk, x(tk)) exp

{
λσ(tk )

αΓ (α)
(t − tk)

α

}

= Vσ(tk )(tk, x(tk)) exp

{
λσ(tk )

Γ (α + 1)
(t − tk)

α

}
(16)

On the other hand, when t = tk , from (5), (9) and (13), it yields that

Vσ(tk )(tk) = xT(t−k )JT
σ(t−k )

vσ(tk ) ≤ μσ(t)x
T(t−k )vσ(t−k ) = μpVσ(t−k )(t

−
k ) (17)

From (16), (17) and exp{ λσ(tk )

Γ (α+1) (t − tk)α} > 0, we have

Vσ(t)(t, x(t)) ≤ μσ(tk )Vσ(t−k )(t
−
k , x(t−k )) exp

{
λσ(tk )

Γ (α + 1)
(t − tk)

α

}
(18)
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Then, from (16) and (18), for t ∈ [0, T f ), we get

Vσ(t)(t, x(t)) ≤ Vσ(tk )(tk, x(tk)) exp

{
λσ(tk )

Γ (α + 1)
(t − tk)

α

}

≤ μσ(tk )Vσ(t−k )(t
−
k , x(t−k )) exp

{
λσ(tk )

Γ (α + 1)
(t − tk)

α

}

≤ μσ(tk )Vσ(tk−1)(tk−1, x(tk−1)) exp

{[
λσ(tk )

Γ (α + 1)
(t − tk)

α

+ λσ(tk−1)

Γ (α + 1)
(tk − tk−1)

α

]}

≤ μσ(tk )μσ(tk−1)Vσ(t−k−1)
(t−k−1, x(t

−
k−1)) exp

{[
λσ(tk )

Γ (α + 1)
(t − tk)

α

+ λσ(tk−1)

Γ (α + 1)
(tk − tk−1)

α

]}

≤ · · ·

≤
(

k∏
i=1

μσ(ti )

)
Vσ(0)(0, x(0)) exp

{[
λσ(tk )

Γ (α + 1)
(t − tk)

α

+ λσ(tk−1)

Γ (α + 1)
(tk − tk−1)

α + · · · + λσ(t0)

Γ (α + 1)
(t1 − t0)

α

]}
(19)

Let λ = maxp∈S{λp}, we have

Vσ(t)(t, x(t)) ≤
(

k∏
i=1

μσ(ti )

)
Vσ(0)(0, x(0)) exp

{
λ

Γ (α + 1)

[
(t − tk)

α

+(tk − tk−1)
α + · · · + (t1 − 0)α

] }
(20)

From Definition 3 and Lemma 5, for t ∈ [0, T f ], we have

Vσ(t)(t, x(t)) ≤
⎛
⎝ S∏

p=1

μ
Nσ p(0,t)
p

⎞
⎠ Vσ(0)(0, x(0)) exp

{
λ

Γ (α + 1)
[(t − tk)

α

+(tk − tk−1)
α + · · · + (t1 − 0)α]

}

≤
⎛
⎝ S∏

p=1

μ

Tp (0,t)
Tαp

p

⎞
⎠ Vσ(0)(0, x(0)) exp

{
λ

Γ (α + 1)
[(t − tk)

α

+(tk − tk−1)
α + · · · + (t1 − 0)α]

}

≤ e
∑S

p=1
lnμp
Tαp

Tp(0,t)Vσ(0)(0, x(0)) exp

{
λ

Γ (α + 1)
[(t − tk)

α
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+(tk − tk−1)
α + · · · + (t1 − 0)α]

}

≤ e
∑S

p=1
lnμp
Tαp

Tp(0,T f )Vσ(0)(0, x(0)) exp

{
λ

Γ (α + 1)

·
[(

Tp(0, T f )

Tαp
+ 1

)1−α

T α
f

]}

= Vσ(0)(0, x(0)) exp

⎧⎨
⎩

S∑
p=1

lnμp

Tαp
Tp(0, T f )

+ λ

Γ (α + 1)

[(
Tp(0, T f )

Tαp
+ 1

)1−α

T α
f

]}
(21)

According to Lemma 6, (21) can be rewritten as

Vσ(t)(t, x(t)) ≤ Vσ(0)(0, x(0)) exp

⎧⎨
⎩

S∑
p=1

lnμp

Tαp
Tp(0, t)

+ λ

Γ (α + 1)

[
(1 − α)

(
Tp(0, t)

Tαp
+ 1

)
+ αT f

]⎫⎬
⎭

≤ Vσ(0)(0, x(0)) exp

⎧⎨
⎩

S∑
p=1

lnμp

Tαp
Tp(0, t)

+ λ

Γ (α + 1)

[
(1 − α)

(
lnμp

Tαp
· Tp(0, t)

lnμp
+ 1

)
+ αT f

] ⎫⎬
⎭ (22)

Let β = maxp∈S{ lnμp
Tαp

}, we have

Vσ(t)(t, x(t)) ≤ Vσ(t0)(t0, x(t0)) exp

{
βT f + λ

Γ (α + 1)[
(1 − α)

(
β

T f

lnμp
+ 1

)
+ αT f

]}
(23)

From (10), (13) and (23), for t ∈ [0, T f ), we have

Vσ(t)(t, x(t)) ≥ ξ1x
T(t)ε (24)

Vσ(t)(t, x(t))≤ ξ2x
T(0)δ exp

{
βT f + λ

Γ (α+1)

[
(1−α)

(
β

T f

lnμp
+ 1

)
+ αT f

]}

(25)
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Combining (24) with (25), we obtain

xT(t)ε ≤ ξ2

ξ1
{xT(0)δ} exp

{
βT f + λ

Γ (α + 1)

[
(1 − α)

(
β

T f

lnμp
+ 1

)
+ αT f

]}

(26)

Substituting (12) into (26), one has

xT(t)ε < 1 (27)

From Definition 4, we conclude that the system (5) with u(t) = 0 is finite-time stable
with respect to (δ, ε, T f , σ (t)). Thus, the proof is completed. ��
Remark 3 If Ap = Ap = Ā p, then Theorem 1 is still held, where Ap is a Metzler
matrix, p ∈ S. One just needs to change (8) into AT

pvp � λpvp, following the proof
line of Theorem 1. The same result can be obtained.

3.1.2 Polytopic Uncertainty

Next, we consider the FTS of the system (5) with the polytopic uncertainties. Consider
the following polytopic uncertainties:

Ap ∈ co{Ai
p, i = 1, 2, . . . , n.} and Bp ∈ co{Bi

p, i = 1, 2, . . . , n.}. ∀p ∈ S, where
co represents the convex hull of the vertex matrices Ai

p(or B
i
p). Ap = ∑n

i=1 γi Ai
p,

where Ai
p is a Metzler matrix, γi ∈ (0, 1) and

∑n
i=1 γi = 1.

Theorem 2 Assume Ap ∈ co{Ai
p, i = 1, 2, . . . , n.} for each p ∈ S. Consider the

system (5) with u(t) ≡ 0. Given positive constants T f , λp, vectors δ � ε � 0, if
there exist positive constants ξ1, ξ2, μp, and positive vectors vp, p ∈ S, such that the
following inequalities hold:

Ai
p
T
vp � λpvp (28)

JTp vp � μpvq (29)

ξ1ε ≺ vp ≺ ξ2δ (30)
λ(αT f − α + 1)

Γ (α + 1)
< ln

ξ1

ξ2
(31)

where ∀p ∈ S, vp = [vp1, vp2, . . . , vpn]T, λ = maxp∈S{λp}, μp ≥ 1, then
under the MDADT scheme (12), the UFOPISS (5) is finite-time stable with respect
to (δ, ε, T f , σ (t)).

Proof Since Ap ∈ co{Ai
p, i = 1, 2, . . . , n.}. Ap = ∑n

i=1 γi Ai
p, where γi ∈ (0, 1)

and
∑n

i=1 γi = 1. Due to (28),

AT
pvp =

n∑
i=1

γi A
i
p
T
vp �

n∑
i=1

γiλpvp = λpvp (32)
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i.e., AT
pvp � λpvp. In Theorem 1, if one chooses Ap = Ā p, Theorem 2 is equivalent

to Theorem 1. Thus, the proof is completed. ��
Corollary 1 Replace C

t0D
α
t x(t) by

RL
t0 Dα

t x(t) in Theorem 1. If the conditions in Theo-
rem 1 hold, then the UFOPISS (5) is finite-time stable with respect to (δ, ε, T f , σ (t)).

Proof According to (4) and Lemma 1, we can obtain

C
t0D

α
t Vσ(t)(t, x(t)) ≤ RL

t0 Dα
t Vσ(t)(t, x(t))

≤ xT(t)AT
σ(t)vσ(t)

≤ xT(t) ĀT
σ(t)vσ(t)

≤ λpx
T(t)vσ(t)

≤ λpVσ(t)(t, x(t)) (33)

Similar to the proof process of Theorem 1, we can obtain the same results and the
proof is omitted. ��
Remark 4 Replace C

t0D
α
t x(t) by

RL
t0 Dα

t x(t) in Theorem 2, if the conditions in Theo-
rem 2 hold, then the UFOPISS (5) is finite-time stable with respect to (δ, ε, T f , σ (t)).
From the proof process of Theorem 2 and Corollary 1, we can obtain the same results
easily and the proof is omitted.

3.2 Finite-Time Controller Design

In this section, we focus on the problem of finite-time controller design of the system
(5). The state feedback controller will be designed to ensure the corresponding closed-
loop system is finite-time stable.

Consider the system (5), under the controller u(t) = Kσ(t)x(t), the corresponding
closed-loop system is given by

{
C
t0D

α
t x(t) = (Aσ(t) + Bσ(t)Kσ (t))x(t) t �= tk, k ∈ Z+

x(t) = Jσ(t−)x(t
−), t = tk, k ∈ Z+, 0 < α < 1

(34)

According to Lemma 2, to guarantee the positivity of the system (34), Ap + BpK p

should be Metzler matrices, ∀p ∈ S. The following two theorems give some sufficient
conditions to guarantee that the closed-loop system (34) with interval or polytopic
uncertainties is finite-time stable, respectively.

Theorem 3 Consider the UFOPISS (34) with interval uncertainties. Assume Ap ∈
[Ap, Ā p], and Bp ∈ [Bp, B̄p] for each p ∈ S. For given constants T f , λ and vectors
δ � ε � 0, if there exist constants ξ1, ξ2, μp(μp ≥ 1) and positive vectors vp, p ∈ S,
such that the following conditions hold:

Ap + BpK1p and Āp + B̄pK1p are Metzler matrices, K1p � 0. (35)

ĀT
pvp + f p � λpvp (36)
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JTp vp � μpvq (37)

ξ1ε ≺ vp ≺ ξ2δ (38)
λ(αT f − α + 1)

Γ (α + 1)
< ln

ξ1

ξ2
(39)

where f p = K1p B̄pvp, then under the control law u(t) = K1px(t), the resulting
closed-loop system (34) is finite-time stable with the MDADT scheme (12).

Proof From (35), we have Ap + BpK1p � Ap + BpK1p � Ā p + B̄pK1p, it means
that Ap +GpK1p are also Metzler matrices for each p ∈ S. Hence, the system (34) is
positive by Lemma 3. Replacing Ā p in (8) with Ā p + B̄pK1p, letting f p = KT

1p B̄
T
pvp,

μ(μ ≥ 1) satisfies (8), similar to the proof process of Theorem 1, we easily obtain that
the resulting closed-loop system (34) is finite-time stable with the MDADT scheme
(12).

The proof is completed. ��
Remark 5 In Theorem 3, the gain matrix K1p � 0, p ∈ S is used. Naturally, when
K1p � 0, we only replace (35) by the following condition

Ap + B̄pK1p and Āp + BpK1p are Metzler matrices, K1p � 0. (40)

Following the proof line of Theorem 3, we can also conclude that the resulting closed-
loop system (34) is finite-time stale with the MDADT scheme (12).

Next, an algorithm is presented to obtain the feedback gain matrices K1p, p ∈ S.

Algorithm 1

Step 1 Input the matrices Ap, Ā p, Bp, B̄p, Jp, constants u p ≥ 1, p ∈ S, and
positive vectors ε and δ.
Step 2Choosing the parameters λp > 0 and solving (36)–(38) via linear program-
ming, positive vectors vp and f p can be obtained.
Step 3 Substituting vp and f p into f p = KT

1p B̄
T
pvp, K1p can be obtained.

Step 4 The gains K1p are substituted into (35) or (40). If the condition (35) or (40)
is satisfied, then K1p are admissible. Otherwise, return to Step 2.

Remark 6 There is not a systemic method to choose the parameters λp; all published
papers are involved in the selection of λp by experience. The solution of Algorithm 1
is an iterative process; for the purpose of adding the feasibility of the Algorithm 1, λp

should be selected small. Otherwise, if λp are selected largely in equation (36), then
it will cause ξ1 � ξ2 in equation (39). Thus, for given constants ε and δ, equation
(38) might have no solution. Therefore, in Step 1, ∀p ∈ S, λp should be small positive
numbers.

Remark 7 The feedback gains matrices K1p can be solved by Algorithm 1, which
guarantees the system state does not exceed the threshold 1 in a given time interval T f

from Definition 4. Then the system state might not converge to zero in a given time
interval. If a smaller threshold is fixed, then the state will become very small.

In the following, we study the FTS problem of system (37) with polytopic uncer-
tainties.
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Theorem 4 Consider the UFOPISS (34) with polytopic uncertainties. Ap ∈
co{Ai

p, i = 1, 2, . . . , n.} and Bp ∈ co{Bi
p, i = 1, 2, . . . , n.}, Ai

p is a Metzler matrix

and Bi
p � 0 for each p ∈ S. For given constants T f , λ and vectors δ � ε � 0, if

there exist constants ξ1, ξ2, μp(μp ≥ 1) and positive vectors vp, p ∈ S, such that the
following conditions hold:

Ap + BpK2p are Metzler matrices, (41)

Ai
p
T
vp + f p � λpvp (42)

JTp vp � μpvq (43)

ξ1ε ≺ vp ≺ ξ2δ (44)
λ(αT f − α + 1)

Γ (α + 1)
< ln

ξ1

ξ2
(45)

where f p = K2p Bi
p
T
vp, Ap � Ai

p � Ā p, Bp � Bi
p � B̄p, then under the control

law u(t) = K2px(t), the resulting closed-loop system (34) is finite-time stable with
the MDADT scheme (12).

Proof From (41) and Lemma 2, the system (34) is positive. From Ap � Ai
p � Ā p,

Bp � Bi
p � B̄p, Ap = ∑n

i=1 γi Ai
p and Bp = ∑n

i=1 γi Bi
p, we have

Ap =
n∑

i=1

γiA
i
p � Ap =

n∑
i=1

γi A
i
p �

n∑
i=1

γi Ā p = Ā p (46)

and

Bp =
n∑

i=1

γiB
i
p � Bp =

n∑
i=1

γi B
i
p �

n∑
i=1

γi B̄p = B̄p (47)

Therefore,

Ap + BpK2p =
n∑

i=1

γi (A
i
p + Bi

pK2p) � Ap + BpK2p

=
n∑

i=1

γi (A
i
p + Bi

pK2p) �
n∑

i=1

γi B̄p = Ā p + B̄pK2p (48)

for each p ∈ S. Obviously, the finite-time stabilization problem about polytopic uncer-
tainties is transformed into the one of interval uncertainties. Following the proof line
of Theorem 3, we can get the same result and the proof is omitted. ��
Remark 8 In order to obtainmore results, the following two aspects will be considered
in our future work. Firstly, some disturbances would be considered to obtain some
more generalized stability conditions, such as the non-Gaussian noise [12,25–27,33].
Secondly, time-delays, which are widespread in various systems [9,23], should also
be discussed to obtain some delay-dependent sufficient conditions.
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4 Example

A fractional electrical circuit model was presented in [22]. Accordingly, a switching-
type positive fractional-order electrical circuit can be described by a fractional-order
positive switched system. When the impulsive effect at switching instant and uncer-
tainties are simultaneously considered, the parameters of the fractional-order positive
impulsive switched circuit are given as

Ā1 =
[−2 0

0 −1

]
,A1 =

[−2.5 0
0 −2

]
, B̄1 =

[
2 0
0 1

]
,B1 =

[
1.2 0
0 0.6

]
,

Ā2=
[−1 0

0 −1

]
,A2=

[−1.5 0
0 −1.6

]
, B̄2=

[
1.1 0
0 0.8

]
,B2 =

[
0.6 0
0 0.6

]
,

J̄1 =
[
1.5 0
0 2

]
, J̄2=

[
2 0
0 2

]
, ε=[

0.05 0.03
]T

, δ=[
0.2 0.3

]T
,

Let α = 0.8, μ1 = 1.1, μ2 = 1.2, λ1 = 0.1, λ2 = 0.12, λ = max{λ1, λ2} = 0.12.
According to Algorithm 1, solving the inequalities in Theorem 3 by linear program-
ming, we have

v1 =
[
0.9120
0.5910

]
, v2 =

[
0.7871
0.5755

]
,

f1 =
[
0.9588
0.5808

]
, f2 =

[
0.8924
0.5904

]
,

ξ1 = 5.6710, ξ2 = 1.0706,

By f p = KT
p B̄

T
pvp, p = 1, 2, we have

K11 =
[
0.4271 0.3042
0.4271 0.3042

]
, K12 =

[
0.4846 0.2968
0.4846 0.2968

]
,

Ā1 + B̄1K11 =
[−1.1458 0.6084

0.4271 −0.6958

]
,A1 + B1K11 =

[−1.9875 0.3650
0.2562 −1.8175

]
,

Ā2 + B̄2K12 =
[−0.4679 0.3265

0.3877 −0.7642

]
,A2 + B2K12 =

[−1.2092 0.1781
0.2908 −1.4219

]
.

It is easy to verify that Ap + BpK1p and Ā p + B̄pK1p are Metzler matrices for
each p ∈ S. Then, according to (12), we can obtain T ∗

α1 = 1.8794, T ∗
α2 = 3.2391.

Choosing Tα1 = 1.9 > T ∗
α1 and Tα2 = 3.3 > T ∗

α2. Under the state feedback controller,
the simulation results are shown in Figs. 1, 2, 3 and 4. The initial conditions of the
system (5) are x(0) = [0.5 0.3]T, which satisfies xT(0)δ ≤ 1. According to the
MDADT scheme, we give the impulsive sequence in Fig. 1. The switching signal σ(t)
with MDADT is depicted in Fig. 2. The state trajectories of the closed-loop system
with MDADT are shown in Fig. 3. Figure 4 plots the evolution of xT(t)ε of system
(5).
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Fig. 1 Impulsive sequence of the system (5)
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Fig. 2 Switching signal of system (5) with MDADT
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Fig. 3 State trajectories of closed-loop system (5)
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Fig. 4 The evolution of xT(t)ε of system (5)

5 Conclusions

This paper has investigated the problem of finite-time stability and stabilization for
UFOPISS with interval and polytopic uncertainties. FTS analysis of UFOPISS is
firstly discussed. By using MDADT approach and constructing multiple linear copos-
itive Lyapunov functions, two state feedback controllers are designed; then a series
of switching signals and some sufficient conditions are obtained to guarantee that
the corresponding closed-loop systems are finite-time stable. Such sufficient condi-
tions can be solved by linear programming. Finally, an example is given to show the
effectiveness of the proposed method.
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