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Abstract A newly introduced charge-controlled memcapacitor-based hyperchaotic
oscillator with coexisting chaotic attractors is investigated. Dynamic analysis of the
oscillator shows that it has infinite number of equilibrium points and shows multista-
bility. Its multistability analysis in the parameter space shows the existence of chaotic
and hyperchaotic attractors. Fractional-order analysis of the hyperchaotic oscillator
shows that the hyperchaos remains in the fractional order too. Field programmable
gate arrays are used to realize the proposed oscillator.
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1 Introduction

The fourth circuit element popularly known as memristors was first postulated by
Chua [15]. Until 2008 when researchers of HP laboratories fabricated a solid-state
implementation of memristor, there were not many works on memristor realization
[67]. Then, many other memristor models have been introduced [5,8,10,16]. Mem-
ristors are considered to be highly nonlinear with nonvolatile characteristics and can
be implemented with nanoscale technologies [5,8,10,16]. To design memristor oscil-
lators, a new kind of nonlinear circuits with oscillatory memories and periodically
forced flux controlled memductance models are investigated [32,47].

Memristor-based chaotic oscillators are widely investigated in the recent years.
Circuits with two HP memristors in antiparallel have been demonstrated showing a
variety of chaotic attractors for different values of components [11]. A current feed-
back op-amp-based memristor oscillators has been analyzed, and simulation results
have been investigated [54]. A simple autonomous memristor-based oscillator with
external sinusoidal excitation has been used to generate chaotic oscillations. A discrete
model for this HP memristor has been derived and implemented using DSP chips [76]
implementing memristor. Recently, a new hyperchaotic system with two memristors
has been investigated and its application to image encryption has been analyzed.

Practical implementation of memristor-based chaotic circuits with off-the-shelf
components is desired for real-time applications [46]. Memristor-based chaotic circuit
for pseudorandom number generation has been analyzed with applications to cryp-
tography [18]. Memristor-based chaotic circuits for text and image cryptography have
been investigated, and the correlation analysis shows the effectiveness of the proposed
cryptographic scheme over other encryption algorithms [82]. Memcapacitor-based
chaotic circuits with a HP memristor have been proposed and implemented in DSP
for further applications [77].

Recently, many researchers have discussed about fractional-order calculus and
its applications [3,22,38]. Fractional-order nonlinear systems with different control
approaches have been investigated in [2,9,84]. Fractional-order memristor-based no
equilibrium chaotic and hyperchaotic systems have been proposed [55–58]. A novel
fractional-order no equilibrium chaotic system has been investigated in [43], and a
fractional-order hyperchaotic systemwithout equilibrium points has been investigated
in [12]. Memristor-based fractional-order system with a capacitor and an inductor has
been discussed [21]. Numerical analysis and methods for simulating fractional-order
nonlinear system have been proposed in [49], and MATLAB solutions for fractional-
order chaotic systems have been discussed in [74].

Implementation of chaotic and hyperchaotic systems using field programmable gate
arrays (FPGA) have been widely investigated [23,72,79]. Chaotic random number
generators have been implemented in FPGA for applications in image cryptogra-
phy [71]. A FPGA-implemented Duffing oscillator-based signal detector has been
proposed [59]. Digital implementations of chaotic multiscroll attractors have been
extensively investigated [72,73]. Memristor-based chaotic system and its FPGA cir-
cuit have been discussed with their qualitative analysis [81]. A FPGA implementation
of fractional-order chaotic system using approximation method has been investigated
recently for the first time [55–58].
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Fig. 1 Memcapacitor-based
hyperchaotic oscillator

In this paper, we investigate the dynamical properties of a memcapacitor chaotic
oscillator [51] and derive and analyze its fractional-order model. The entire paper is
organized into eight sections with Sect. 1 giving the introduction and Sect. 7 the con-
clusion part. In the second section, we derive the dynamical dimensionless model of
the memcapacitor oscillator. In the Sect. 3, we discuss the various dynamical proper-
ties of the oscillator like dissipativity, stability of equilibrium, Lyapunov exponents,
bifurcation and bicoherence. In Sect. 4, we derive the dimensionless fractional-order
model of the proposed memcapacitor oscillator and Sect. 5 deals with its dynamical
analysis. In Sect. 6, we implement the fractional-order memcapacitor oscillator in field
programmable gate arrays (FPGA).

2 Problem Formulation

Several memcapacitor models, including piecewise linear, quadric and cubic function
models, memristor-based memcapacitor models have been discussed in several litera-
tures [26,48,75,83]. Some special phenomena such as hidden attractors [19,20,24,36,
40] and coexistence attractors [7,17,44,62] have been found in memcapacitor-based
chaotic oscillators.

In this paper, we investigate the memcapacitor-based hyperchaotic oscillator dis-
cussed in [78] as shown in Fig. 1. The multistability of the proposed oscillator is
discussed with the parameter space of the system rather than the initial conditions as
discussed in [78].

In this circuit, R1, R2 are the resistances, L1, L2 are the inductances, and G is
the conductance. Cm is the memcapacitor as discussed in [77]. The current flowing
through the circuit is i1, i2. Applying Kirchhoff’s current law to the circuit shown in
Fig. 1, the change in flux is defined as

dqCm

dt
= i1 + i2 (1)

where qCm is the charge through the memcapacitor. The current through the inductor
L1 is derived as,

di1
dt

= 1

L1

[−VCm − i1R1 + (i1 + i2) R0
]

(2)
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and the current through the inductor L2 is defined as,

di2
dt

= 1

L2

[−VCm − i2R2 + (i1 + i2) R0
]

(3)

The relationship between the voltage across the memcapacitor vCM(t) and the charge
qCm (t) of the memcapacitor is defined as,

vCM(t) = (α + βσ 2)qCm (t) (4)

where α + βσ 2 is the inverse memcapacitance and σ is the time integral of charge
qCm (t) given by σ = ∫ t

t0
qCm (t). Using Eqs. (2), (3), and (4), a fourth-order Memca-

pacitor system is derived as below,

dqCm
dt = i1 + i2

di1
dt = 1

L1

[−(α + βσ 2)qCm (t) − i1R1 + (i1 + i2) R0
]

di2
dt = 1

L2

[−(α + βσ 2)qCm (t) − i2R2 + (i1 + i2) R0
]

dσ
dt = qCm (t)

(5)

where qCm (t) is the charge through thememcapacitor, i1 and i2 are the circuit currents,
vCm

is the memcapacitor voltage, and σ is the integral parameter of the memcapacitor
charge.

To derive a generalized 4D model, let us define x = qCm (t) , y = i1, z = i2, w =
σ and the parameters as a = α

L1
, b = β

L1
, c = (R0−R1)

L1
, d = R0

L1
, f = R0

L2
, e =

(R0−R2)
L1

,m = α
L2

, n = β
L2
.

By applying the assumptions in the derived Eq. (5), we arrive at the 4D dimension-
less mathematical model of the memcapacitor system as,

dx
dt = y + z
dy
dt = cy + dz − ax − bxw2

dz
dt = f y + ez − mx − nxw2

dw
dt = x

(6)

The parameters of the above equation for which the system exhibits hyperchaotic
oscillations are, a = 5.8, b = 2, c = 2.6, d = 0.1, e = −3.4, f = 0.2,m =
2.8, n = 6.8. The initial conditions are chosen as (0.001, 0.001, 0.01, 0.01). Figure 2
shows the 2D projections of the strange attractor of system (6).

3 Dynamic Analysis of Hyperchaotic Memcapacitor Oscillator (HMCO)

The dynamic properties of the HMCO system such as dissipativity, equilibrium points,
eigenvalues, Lyapunov exponents and Kaplan–Yorke dimension are derived and dis-
cussed in this section.
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Fig. 2 2D projections of the strange attractor of system (6)

3.1 Dissipativity

In vector notation, the 4-D system (6) can be expressed as

Ẋ = f (X) =

⎡

⎢
⎢
⎣

f1(x, y, z, w)

f2(x, y, z, w)

f3(x, y, z, w)

f4(x, y, z, w)

⎤

⎥
⎥
⎦ (7)

where
⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y, z, w) = y + z
f2(x, y, z, w) = cy + dz − ax − bxw2

f3(x, y, z, w) = f y + ez − mx − nxw2

f4(x, y, z, w) = x

(8)

Let � be any region in R4 with a smooth boundary and also, �(t) = �t (�) , where
�t is the flow of the vector field f. Furthermore, let V (t) denote the hyper volume of
�(t).

By Liouville’s theorem, we have

V̇ =
∫

�(t)
(∇ · f )dxdydzdw (9)
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The divergence of the vector field f is easily calculated as

∇ · f = ∂ f1
∂x

+ ∂ f2
∂y

+ ∂ f3
∂z

+ ∂ f4
∂w

= c + e = −0.8 ≤ 0 (10)

Substituting (10) into (9), we obtain the first-order differential equation

V̇ (t) = −0.8V (t) (11)

Integrating (11), we obtain the unique solution as

V (t) = exp(−0.8t)V (0) for all t ≥ 0 (12)

It follows that V (t) → 0 exponentially as t → ∞. This shows that the HMCO system
(6) is dissipative.

3.2 Equilibrium Points

By equating Ẋ = 0, theHMCO system (6) shows three equations y+z = 0, cy+dz =
0 and f y + ez = 0. As c, d, f, e are all positive the first possible solution for the
equations are y = −ρ1, z = ρ1 for c = d, f = e and the corresponding equilibrium
set is [0,−ρ1, ρ1, ρ2] and the second possible solution is y = z = 0 for c �= d, f �= e
and the corresponding equilibrium set is [0, 0, 0, ρ3] where ρ1, ρ2, ρ3 are arbitrary
constants. Thus, the HMCO system has infinite number of equilibrium points located
on a line (similar to the systems proposed in [4,29,30,33,51,52]) with two possible
equilibrium sets.

The Jacobian matrix of the HMCO system (6) for c = d, f = e or c �= d, f �= e
is found as

J (X) =

⎡

⎢⎢
⎣

0 1 1 0
−a − bρ2

2,3 c d 0
−m − nρ2

2,3 f e 0
1 0 0 0

⎤

⎥⎥
⎦ (13)

The constants ρ2, ρ3 have same effect on the system. The characteristic equation of
the system is derived as,

λ4 − (c + e)λ3 +
(
a + m + ce − d f
+bρ2

2,3 + nρ2
2,3

)
λ2 +

⎛

⎝
a f − ae − cm + dm
+dnρ2

2,3 − beρ2
2,3

+b fρ2
2,3 − cnρ2

2,3

⎞

⎠ λ (14)
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As per Routh–Hurwitz criterion, all the principal minors need to be positive in order
to having stable equilibrium. The principal minors are,


1 = δ1 > 0,
2 =
∣∣
∣∣
δ1 δ0
δ3 δ2

∣∣
∣∣ > 0,
3 =>

∣∣∣
∣∣∣

δ1 δ0 0
δ3 δ2 δ1
0 δ4 δ3

∣∣∣
∣∣∣
> 0,


4 =

∣∣∣∣
∣∣∣∣

δ1 δ0 0 0
δ3 δ2 δ1 δ0
0 δ4 δ3 δ2
0 0 0 δ4

∣∣∣∣
∣∣∣∣

> 0

where

δ0 = 1, δ1 = −(c + e), δ2 = a + m + ce − d f + bρ2
2,3 + nρ2

2,3
δ3 = a f − ae − cm + dm + dnρ2

2,3 − beρ2
2,3 + b fρ2

2,3 − cnρ2
2,3, δ4 = 0

For the parameter values of a = 5.8, b = 2, c = 2.6, d = 0.1, e = −3.4, f =
0.2,m = 2.8, n = 6.8, the equilibrium is unstable and the system shows chaotic
oscillations when the arbitrary constant ρ2,3 lies between the range [−1.5, 1.5] as
discussed in [78].

3.3 Lyapunov Exponents and Kaplan–Yorke Dimension

Lyapunov exponents of a nonlinear system define the convergence and divergence
of the states. Although there are different methods and important issues about this
quantity [6,34,35,37,66], in this work we have used the famous method proposed
in [80]. Lyapunov exponents (LEs) are necessary and more convenient for detecting
hyperchaos in fractional-order hyperchaotic system. A definition of LEs for fractional
differential systems was given in [41] based on frequency-domain approximations,
but the limitations of frequency-domain approximations are highlighted in [70]. Time
series-based LEs calculation methods like Wolf algorithm [80], Jacobian method [25]
and neural network algorithm [45] are popularly known ways of calculating Lyapunov
exponents for integer and fractional-order systems. To calculate the LEs of the HMCO
system, we use the Jacobian method.

The Lyapunov exponents of the HMCO system are numerically found as

L1 = 0.2991, L2 = 0.07634, L3 = 0, L4 = −1.0741 (15)

Since there are two positive Lyapunov exponents in (15), it is clear that the HMCO
system (6) is hyperchaotic (Fig. 3).

We note that the sum of the Lyapunov exponents of the HMCO system (6) is
negative. In fact,

L1 + L2 + L3 + L4 = −0.6987 < 0 (16)
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Fig. 3 Lyapunov exponents of the HMCO system for a = 5.8, b = 2, c = 2.6, d = 0.1, e = −3.4, f =
0.2,m = 2.8, n = 6.8 and initial conditions (0.001, 0.001, 0.01, 0.01)

This shows that the HMCO system (6) is dissipative.
Also, the Kaplan–Yorke dimension of the HMCO system (6) is derived as

DKY = 3 + L1 + L2 + L3

|L4| = 3.3495, (17)

which is fractional.

3.4 Bifurcation and Multistability in the HMCO System

Multistability possesses a threat for engineering systems because of its unpre-
dicted behavior [17]. Many chaotic systems have shown multistability and coexisting
attractors [28,64,65,69]. Multistability analysis of symmetric Rossler system with
amplitude controls provides good idea about multistability generates from the sym-
metrization [42].Multistability in hidden attractor systems and control ofmultistability
through the scheme of linear augmentation that can drive multistability to mono sta-
bility has been investigated [61]. Multistability in large system of the coupled pendula
is investigated in [31]. The occurrence of multiheading chimera states of the coupled
pendula which can create different types of synchronous states has been also discussed
[31].
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The HMCO system shows multistability as can be seen from Fig. 4 which shows
the evidence of discontinuous bifurcations. The bifurcation diagram is obtained by
plotting local maxima of the coordinate y in terms of the parameter d that is increased
(or decreased) in tiny steps. The final state at each iteration of the parameter serves as
the initial state for the next iteration. This strategy, known as forward and backward
continuation, represents a simple way to localize the window in which the system
develops multistability [63]. The existence of multistability can be confirmed by com-
paring the forward (dark blue color) and backward (red color) bifurcation diagrams
as shown in Fig. 4a. Figure 4b shows the coexisting multiple attractors of the HMCO
system for d = 0.5 and various initial conditions.

3.5 Bicoherence

Higher-order spectra have been used to study the nonlinear interactions between fre-
quency modes [39,53]. Let x(t) be a stationary random process defined as,

x(t) =
N∑

n=1

Ane
jωn t + A∗

ne
− jωn t (18)

where ω is the angular frequency, n is the frequency modal index, and An are the
complex Fourier coefficients. The power spectrum can be defined as,

P(ωk) = E[Aωk A
∗
ωk

] (19)

and discrete bispectrum can be defined as,

B(ωk, ω j ) = E[Aωk Aω j A
∗
ωk+ω j

] (20)

If the modes are independent, then the average triple products of Fourier components
are zero resulting in a zero bispectrum [39]. The study of bicoherence is to give an
indication of the relative degree of phase coupling between triads of frequency com-
ponents. The motivation to study the bicoherence is twofold. First, the bicoherence
can be used to extract information due to deviations from Gaussianity and suppress
additive (colored) Gaussian noise. Second, the bicoherence can be used to detect and
characterize asymmetric nonlinearity in signals via quadratic phase coupling or iden-
tify systems with quadratic nonlinearity. The bicoherence is the third-order spectrum.
Whereas the power spectrum is a second-order statistics, formed from X ′ ( f )∗ X ( f ),
where X ( f ) is the Fourier transform of x (t), the bispectrum is a third-order statistics
formed from X

(
f j
)∗ X ( fk)∗ X ′ ( f j + fk

)
. The bispectrum is therefore a function of

a pair of frequencies
(
f j , fk

)
. It is also a complex-valued function. The (normalized)

square amplitude is called the bicoherence (by analogy with the coherence from the
cross-spectrum).The bispectrum is calculated by dividing the time series into M seg-
ments of length N_seg, calculating their Fourier transforms and bi-periodogram, then
averaging over the ensemble. Although the bicoherence is a function of two frequen-
cies, the default output of this function is a one dimensional output, the bicoherence
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Fig. 4 a Bifurcation of HMCO system for parameter d (forward continuation in dark blue color and
backward continuation in red color). b Coexisting attractors of the HMCO system for d = 0.5 at initial
conditions [1, 1, 0.1, 1] (red plot), [1, 1, 1, 1] (green plot), [0.8, 0.01, 0.01, 0.01] (blue plot) (Color figure
online)

refined as a function of only the sum of the two frequencies. The auto-bispectrum of
a chaotic system is given by Pezeshki [50]. He derived the auto-bispectrum with the
Fourier coefficients.

B(ω1, ω2) = E[A(ω1)A(ω2)A
∗(ω1 + ω2)] (21)

whereωn is the radian frequency and A is the Fourier coefficients of the time series. The
normalized magnitude spectrum of the bispectrum known as the squared bicoherence
is given by
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b(ω1, ω2) = |B(ω1, ω2)|2 /P(ω1)P(ω2)P(ω1 + ω2) (22)

where P(ω1) and P(ω2) are the power spectrums at f1 and f2.
Figure 5 shows the bicoherence contours of the FOHMCO system for state x and

all states together, respectively. Shades in yellow represent the multifrequency com-
ponents contributing to the power spectrum. From Fig. 5, the cross-bicoherence is
significantly nonzero, and non-constant, indicating a nonlinear relationship between
the states.As can be seen fromFig. 5a, the spectral power is very lowas compared to the
spectral power of all states together (Fig. 5b) indicating the existence ofmultifrequency
nodes. Also Fig. 5b shows the nonlinear coupling (straight lines connecting multiple
frequency terms) between the states. The yellow shades/lines and non-sharpness of
the peaks, as well as the presence of structure around the origin in figures (cross-
bicoherence), indicates that the nonlinearity between the states x, y, z, w is not of the
quadratic nonlinearity and hencemay be because of nonlinearity of higher dimensions.
Themost two dominant frequencies ( f1, f2) are taken for deriving the contour of bico-
herence. The sampling frequency ( fs) is taken as the reference frequency. Direct FFT
is used to derive the power spectrum for individual frequencies, and Hankel operator
is used as the frequency mask. Hanning window is used as the FIR filter to separate
the frequencies [60].

4 Fractional-Order HMCO System (FOHMCO)

In this section, we derive the fractional-order model of the hyperchaotic memcapacitor
oscillator (FOHMCO). There are three commonly used definition of the fractional-
order differential operator, viz. Grunwald–Letnikov, Riemann–Liouville and Caputo
[3,22,38].

We use the Grunwald–Letnikov (GL) definition, which is defined as

aD
q
t f (t) = lim

h→0

⎧
⎪⎪⎨

⎪⎪⎩

1

hq

[
t−q
h

]

∑

j=0

(−1) j
(
q
j

)
f (t − jh)

⎫
⎪⎪⎬

⎪⎪⎭

= lim
h→0

{
1

hq



q
h f (t)

}
(23)

where a and t are limits of the fractional-order equation, 
q
h f (t) is generalized dif-

ference, h is the step size, and q is the fractional-order of the differential equation.
For numerical calculations, the above equation is modified as

(t−L)D
q
t f (t) = lim

h→0

⎧
⎨

⎩
h−q

N (t)∑

j=0

b j ( f (t − jh)

⎫
⎬

⎭
(24)

Theoretically fractional-order differential equations use infinitememory. Hence, when
we want to numerically calculate or simulate the fractional-order equations we have to
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Fig. 5 a Bicoherence plot of HMCO system for state x with the initial conditions as [0.001, 0.001, 0.001,
0.001] and sampling frequency of 1.5KHz. b Bicoherence plot of HMCO system for all states with the
initial conditions as [0.001, 0.001, 0.001, 0.001] and sampling frequency of 1.5KHz
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use finite memory principal, where L is thememory length and h is the time sampling.

N (t) = min

{[
t

h

]
,

[
L

h

]}
(25)

The binomial coefficients required for the numerical simulation are calculated as,

b j =
(
1 − a + q

j

)
b j−1 (26)

Using (23)–(26), the FOHMCO system is derived as,

dqx x
dtqx = y + z
dqy y
dtqy = cy + dz − ax − bxw2

dqz z
dtqz = f y + ez − mx − nxw2

dqw w
dtqw = x

(27)

where qx , qy, qz, qw are the fractional orders of the FOHMCO system. Figure 6 shows
the 2D phase portraits of the FOHMCO system with the same parameter and initial
conditions as discussed in Sect. 2.

5 Dynamic Analysis of the FOHMCO Chaotic Systems

5.1 Bifurcation with Fractional Order

Most of the dynamic properties of the HMCO chaotic systems like the Lyapunov
exponents and bifurcation with parameters are preserved in the FOHMCO system
[55,58] if qi > 0.992 where i = x, y, z, w. As can be seen from Fig. 7a, bifurcation
of the FOHMCO system for change in fractional order shows that the systems chaotic
oscillations remains if qi > 0.992. Based on our calculations, the system shows
hyperchaotic behavior for 0.993 ≤ q ≤ 0.998 and positive Lyapunov exponents
(L1 = 0.3166, L2 = 0.08217) of the FOHMCO system appears when q = 0.998
against its largest integer-order Lyapunov exponents (L1 = 0.2991, L2 = 0.07634).
Figure 7b–g shows the 2D phase portraits in Y–Z plane for various fractional orders.

5.2 Stability Analysis

Commensurate Order: For commensurate FOHMCO system of order q, the system is
stable and exhibits chaotic oscillations if |arg(eig(JE))| = |arg(λi )| >

qπ
2 where JE is

the Jacobian matrix at the equilibrium E and λi are the eigenvalues of the FOHMCO
system where i = 1, 2, 3, 4. As seen from the FOHMCO system, the eigenvalues
should remain in the unstable region and the necessary condition for the FOHMCO

system to be stable is q > 2
π
tan−1

( |Imλ|
Reλ

)
. TheHOCMsystem shows two equilibrium
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Fig. 6 2D phase portraits of the FOHMCO system for the fractional order q = 0.998

sets y = −ρ1, z = ρ1 for c = d, f = e and the corresponding equilibrium set is
[0,−ρ1, ρ1, ρ2] and the second possible solution is y = z = 0 for c �= d, f �= e
and the corresponding equilibrium set is [0, 0, 0, ρ3]where ρ1, ρ2, ρ3 are the arbitrary
constants. For the parameter values discussed in section 2, the FOHOCMsystem shows
stable chaotic oscillations if the arbitrary constant ρ2,3 lies in the range [−1.5, 1.5].
The characteristic equation of the FOHOCM system for commensurate order is

λ396 + 4λ298 + (−c − e)λ297 + 6λ200 + (−3c − 3e)λ199

+
(
a + m + ce − d f + bp232 − nρ2

2,3

)
λ198 + 4λ102

+(−3c − 3e)λ101 +
(
2a + 2m + 2ce − 2d f + 2bρ2

2,3 + 2nρ2
2,3

)
λ100

+
(
a f − ae − cm + dm + dnρ2

2,3

−beρ2
2,3 + b fρ2

2,3 − cnρ2
2,3

)
λ99 + λ4 + (−c − e)λ3

+
(
a + m + ce − d f + bρ2

2,3 + nρ2
2,3

)
λ2 + (a f − ae

−cm + dm + dnρ2
2,3 − beρ2

2,3 + b fρ2
2,3 − cnρ2

2,3

)
λ
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Fig. 7 a Fractional-order bifurcation plots and b–g 2D phase portrait (X–Y plane) of FOHMCO system for
various fractional orders (b q = 0.999, c q = 0.998, d q = 0.997, e q = 0.995, f q = 0.993, g q = 0.99)

Incommensurate Order: The necessary condition for the FOHMCO system to exhibit
chaotic oscillations in the incommensurate case is, π

2M − mini (|arg(λi)|) > 0 where
M the LCM of the fractional orders. If qx = 0.99, qy = 0.99, qz = 0.98, qw = 0.98,
then M = 100. The characteristic equation of the system evaluated at the equilibrium
is, det(diag[λMqx , λMqy , λMqz , λMqw ] − JE) = 0 and by substituting the values of M
and the fractional orders,det(diag[λ99, λ99, λ98, λ98]− JE) = 0 and the characteristic
equation is,

λ394 + 2λ297 + (2 − e)λ296 − cλ295 + λ200

+ (4 − e)λ199 + (1 − 2e − 2c)λ198 +
(
nρ2

2,3 − c + m + ce − d f
)

λ197

+
(
bρ2

2,3 + a
)

λ196 + 2λ102 + (2 − 2e − c)λ101

+
(
nρ2

2,3 − 2c − e + m + ce − d f
)

λ100

+
(
2a + m + ce − d f + 2bρ2

2,3 + nρ2
2,3

)
λ99
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+
(
a f − ae − cm + dm + dnρ2

2,3 − beρ2
2,3 + b fρ2

2,3 − cnρ2
2,3

)
λ98

+λ4 + (−c − e)λ3 +
(
a + m + ce − d f + bρ2

2,3 + nρ2
2,3

)
λ2

+
(
a f − ae − cm + dm + dnρ2

2,3 − beρ2
2,3 + b fρ2

2,3 − cnρ2
2,3

)
λ

For the values of parameters mentioned in Sect. 2 and the value of ρ2,3 = 1, the
approximated solution of the characteristic equation is λ394 = 0.977 and whose argu-
ment is zero and which is the minimum argument and hence the stability necessary
condition becomes, π

20 −0 > 0 which solves for 0.0785 > 0 and hence the FOHMCO
system is stable and chaos exists in the incommensurate system.

6 FPGA Implementation of the FOHMCO Systems

In this section, we discuss about the implementation of the proposed FOHMCO sys-
tems in FPGA [59,73,81] using the Xilinx (Vivado) SystemGenerator. The three main
approaches derived to solve fractional-order chaotic systems are frequency-domain
method [14], Adomian decomposition method (ADM) [1] and Adams–Bashforth–
Moulton (ABM) algorithm [68]. The frequency-domain method is not always reliable
in detecting chaos behavior in nonlinear systems [70]. On the other hand, ABM and
ADM are more accurate and convenient to analyze dynamical behaviors of a nonlin-
ear system. Compared with the ABM, ADM yields more accurate results and needs
less computing resources as well as memory resources [60]. Hence, the proposed
FOHMCO system is implemented in FPGA by applying ADM scheme. The chal-
lenge of implementing the systems in FPGA is designing the fractional-order integrator
which is not a readily available block in the System Generator [56–58]. As because
the ADM algorithm converges fast [13], the first 6 terms are used to get the solution of
FOHMCO system as in real cases, it is impossible to find the accurate value of x when
t takes larger values [27]. Hence, we have to design a time discretization method. That
is to say, for a time interval of ti (initial time) to t f (final time), we divide the interval
into (tn, tn+1) and we get the value of x(n + 1) at time tn+1 by applying x(n) at time
tn using the relation x (n + 1) = F (x (n)) [27].

We use the ADM method [1,27] to discretize the fractional-order HMCO system
for implementing in FPGA. The fractional-order discrete form of the dimensionless
state equations for the FOHMCO system can be given as,

xn+1 =
6∑

j=0
A j
1

h jq

�( jq+1)

yn+1 =
6∑

j=0
A j
2

h jq

�( jq+1)

zn+1 =
6∑

j=0
A j
3

h jq

�( jq+1)

wn+1 =
6∑

j=0
A j
4

h jq

�( jq+1)

(28)
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where A j
i are the Adomian polynomials with i = 1, 2, 3, 4 and A0

1 = xn, A0
2 =

yn, A0
3 = zn, A0

4 = wn

The Adomian first polynomial is derived as,

A1
1 = A0

2 + A0
3

A1
2 = cA0

2 + d A0
3 − aA0

1 − bA0
1

(
A0
4

)2

A1
3 = f A0

2 + eA0
3 − mA0

1 − nA0
1

(
A0
4

)2

A1
4 = A0

1

(29)

The Adomian second polynomial is derived as,

A2
1 = A1

2 + A1
3

A2
2 = cA1

2 + d A1
3 − aA1

1 − b
[
A1
1

(
A0
4

)2 + A0
1

(
A1
4

)2]

A2
3 = f A1

2 + eA1
3 − mA1

1 − n
[
A1
1

(
A0
4

)2 + A0
1

(
A1
4

)2]

A2
4 = A1

1

(30)

The Adomian third polynomial is derived as,

A3
1 = A2

2 + A2
3

A3
2 = cA2

2 + d A2
3 − aA2

1 − b

×
[
A2
1

(
A0
4

)2 + A0
1

(
A2
4

)2 + �(2q + 1)

�2(q + 1)

[
A1
2

(
A1
4

)2]]

A3
3 = f A2

2 + eA2
3 − mA2

1 − n

×
[
A2
1

(
A0
4

)2 + A0
1

(
A2
4

)2 + �(2q + 1)

�2(q + 1)

[
A1
2

(
A1
4

)2]]

A3
4 = A2

1 (31)

The Adomian fourth polynomial is derived as,

A4
1 = A3

2 + A3
3

A4
2 = cA3

2 + d A3
3 − aA3

1 − b

×
[
A3
1

(
A0
4

)2 + A0
1

(
A3
4

)2

+ �(3q+1)
�(q+1)�(2q+1)

[
A2
1

(
A1
4

)2 + A1
1

(
A2
4

)2]
]

A4
3 = f A3

2 + eA3
3 − mA3

1 − n

×
[
A3
1

(
A0
4

)2 + A0
1

(
A3
4

)2

+ �(3q+1)
�(q+1)�(2q+1)

[
A2
1

(
A1
4

)2 + A1
1

(
A2
4

)2]
]

A4
4 = A3

1 (32)
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The Adomian fifth polynomial is derived as,

A5
1 = A4

2 + A4
3

A5
2 = cA4

2 + d A4
3 − aA4

1 − b

×
[
A4
1

(
A0
4

)2 + A0
1

(
A4
4

)2

+ �(4q+1)
�(q+1)�(3q+1)

[
A3
1

(
A1
4

)2 + A1
1

(
A3
4

)2]
]

A5
3 = f A4

2 + eA4
3 − mA4

1 − n

×
[
A4
1

(
A0
4

)2 + A0
1

(
A4
4

)2

+ �(4q+1)
�(q+1)�(3q+1)

[
A3
1

(
A1
4

)2 + A1
1

(
A3
4

)2]
]

A5
4 = A4

1 (33)

The Adomian sixth polynomial is derived as,

A6
1 = A5

2 + A5
3

A6
2 = cA5

2 + d A5
3 − aA5

1 − b

×
[
A5
1

(
A0
4

)2 + A0
1

(
A5
4

)2

+ �(5q+1)
�(q+1)�(4q+1)

[
A4
1

(
A1
4

)2 + A1
1

(
A4
4

)2]
]

A6
3 = f A5

2 + eA5
3 − mA4

1 − n

×
[
A5
1

(
A0
4

)2 + A0
1

(
A5
4

)2

+ �(5q+1)
�(q+1)�(4q+1)

[
A4
1

(
A1
4

)2 + A1
1

(
A4
4

)2]
]

A6
4 = A5

1 (34)

where h = tn+1 − tn and �(•) is the gamma function. The fractional-order discretized
system (28) is then implemented in FPGA and the necessary Adomian polynomials
are calculated using (29)–(34). For implementing in FPGA, the value of h is taken as
0.001s and the initial conditions are fed into the forward register with fractional order
taken as q = 0.998 for FOHMCO system. Figure 8 shows the RTL schematics of the
FOHMCO system implemented in Kintex 7. Figure 9a shows the power consumed by
FOHMCO system for order q = 0.998, and Fig. 9b shows the power consumed for
various fractional orders and it can be seen that maximum power is consumed when
the FOHMCO system exhibits the largest Lyapunov exponents. Table 1 shows the
resources consumed with the consumed clock frequencies, and Fig. 10 shows the 2D
phase portraits of the FPGA-implemented FOHMCO system.

7 Conclusion

A newly proposed memcapacitor hyperchaotic oscillator with infinite number of
equilibrium points was investigated. Multistability observed and coexisting chaotic
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Fig. 8 RTL schematics of the FOHMCO system implemented in Kintex 7 (Device = 7k160t Package =
fbg484 S). The sampling time of the system is kept at 0.01 s to minimize the time slack errors. The entire
system is configured for a 32-bit operation

Fig. 9 a Power consumed byFOHMCOsystem for q = 0.998.bPower consumed byFOHMCOsystem for
various fractional orders. It can be seen that maximum power of 0.204W is consumed for order q = 0.998
when the FOHMCO system shows positive largest Lyapunov exponent

Table 1 Resource consumption of FPGA-implemented FOHMCO system

Resource Utilization Available (MHZ) Utilization % Clock frequency

Available Used (MHZ)

LUT 1763 101400 1.74 500 260

FF 256 202800 0.13 500 207

DSP 16 600 2.67 250 104

IO 129 285 45.26 300 115

BUFG 1 32 3.13 300 87

oscillators were found. Dynamical analysis showed the existence of chaotic and hyper-
chaotic oscillators for various parameter values. The fractional-order model of the
proposed hyperchaotic oscillator was derived and analyzed. Finally, the fractional-
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Fig. 10 2D phase portraits of the FPGA-implemented FOHMCO system. The initial conditions and param-
eter values are taken as in Sect. 2, and the order of the system is q = 0.998

order model was implemented by FPGA and resource and power consumption details
for various fractional orders were presented.
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