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Abstract In this paper, we have performed denoising when the pixel values of images
are corrupted by Gaussian and Poisson noises. This paper introduces a new class
exponential distribution which lies between Poisson and Gamma distributions. The
proposed method combines the ion for denoising the pixels and later a minimization

B Amita Nandal
amita_nandal@yahoo.com

Arvind Dhaka
arvind.neomatrix@gmail.com

Hamurabi Gamboa-Rosales
hamurabigr@uaz.edu.mx

Ninoslav Marina
nonislav.marina@gmail.com

Jorge I. Galvan-Tejada
gatejo@uaz.edu.mx

Carlos E. Galvan-Tejada
ericgalvan@uaz.edu.mx

Arturo Moreno-Baez
morenob20@uaz.edu.mx

Jose M. Celaya-Padilla
jose.celaya@uaz.edu.mx

Huizilopoztli Luna-Garcia
hlugar@uaz.edu.mx

1 Universty of Information Science and Technology, Ohrid, Macedonia

2 National Institute of Technology, Hamirpur, India

3 Faculty of Electrical Engineering, Autonomous University of Zacatecas, Zacatecas, Mexico

4 CONACYT - Autonomous University of Zacatecas, Zacatecas, Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-018-0746-3&domain=pdf


3904 Circuits Syst Signal Process (2018) 37:3903–3926

using log-likelihood estimation is performed. The characteristic equation is based on
various image parameters like mean, variance, mean deviation, distortion index, shape
and scale parameters forminimizing the noise and formaximizing image edge strength
to enhance overall visual quality of the image. By utilizing the exponential distribution,
we can adaptively control the distortion in the image by minimizing Gaussian and
Poisson noises in accordance with the image feature. The simulation results indicate
that the proposed algorithm is very efficient to strengthen edge information and remove
noise. To provide a probabilisticmodel we have used statistical approximation ofmean
and variances. Later, we have evaluated sensitivity and variability effect as well on the
image restoration. Experiments were conducted on different test images, which were
corrupted by different noise levels in order to assess the performance of the proposed
algorithm in comparison with standard and other related denoising methods.

Keywords Exponential distribution · Gamma-distributed noise · Image denoising ·
Log-likelihood estimation · Poisson-distributed noise · Sensitivity · Statistical
estimation and variability

1 Introduction

The ever-increasing demand of pixel sensors is an evident of the importance of digital
imaging in various applications [20,37]. Generally, the pixel sensor measurements
follow Poisson distribution. There are various methods that are based on shrinking the
pixel sensor size, increasing the image resolution at the cost of the need for denoising
the Poisson-corrupted images [9,23,27,28]. The presence of the noise in any imagery
degrades the spatial and contrast resolution. The noise distribution can vary from
Gaussian, Gamma, Poisson, or it can follow some compound distribution as well.
The signal-to-noise ratio scales linearly with the Poisson intensity which is a main
challenge in digital imaging [37]. Moreover, the approximation of Poisson-induced
noise in images follows different models which makes image denoising algorithms to
be designed for Gaussian noise. However, each resolution cell of the noise-affected
image has multiple numbers of scatterers that return randomly distributed signals and
cause poor visual interpretation [13]. In this paper, we have used exponential distribu-
tion [15,19] approach to model the log-likelihood estimator [8,22] for denoising with
the advantages of approximate mean deviation, better sensitivity, better variability,
and perfect reconstruction with minimized distortion index.

In all applications, the images are ultimately viewedbyhumanbeings, and therefore,
every denoising algorithmmust quantify visual image quality through subjective eval-
uation. Generally, subjective evaluation is too time-consuming and expensive process
[16]. The simplest and most widely used quality metrics are peak signal-to-noise ratio
(PSNR) and mean-squared error (MSE), computed by averaging the squared intensity
differences of noise-induced and reference image pixels. Another important metric
discussed in this paper is structural similarity (SSIM) that compares local patterns of
pixel intensities that have been normalized for exposure and contrast. These parame-
ters are mathematically convenient in the context of optimization [10,11,41,42,45].
We present experimental results from a set of three images and have compared the
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results among various denoising methods. Since we have considered the Poisson- and
Gamma-related noise which is comparable to Bayesian-based estimation methods
available in the literature [3,14,17,26,32,38,47,49].

In this paper, the closed-form expressions to estimate the distortion parameter-based
sensitivity and variability are derived for an uncorrupted image by minimizing the
distortion. The parameters involved in the proposedmethod have been estimated using
statistical approach with log-likelihood estimation. The uncorrupted image has been
maximized for noise-free image pixels in accordance with log-likelihood estimator
by employing an exponential distribution for the vectors of image with and without
noise effect. This paper proposes an adaptive estimation method based on the variable
exponent which gives a good estimate for Poisson- and Gamma-affected images. We
have used the shape, scale, contrast, exposure, distortion, and edge strength parameters
in the proposed method. The proposed method restores an image successfully by
controlling the small features effectively. To assess the performance of the proposed
method based denosing, we have used log-likelihood estimation. We have assessed
the performance of proposed method before applying log-likelihood which is termed
as proposed method before log-likelihood (PBL) and proposed method after applying
log-likelihood estimation which is termed as proposed method after log-likelihood
(PL).

The organisation of the paper is as follows: Sect. 2 describes the literature review.
The proposed methodology is explained in Sect. 3. The performance measures are
described in Sect. 4. The experimental results of the proposed method are discussed
in Sect. 5. Finally, Sect. 5 concludes the paper.

2 Literature Review

In the literature, various noise reduction techniques are discussed such as resolution
enhancement approach, averaging approach, and post-processing approach using fil-
ters and sliding window to estimate the statistical information of all pixels using the
local mean and local variance [12,31,50]. Multiscale processing is the most com-
monly used approach in Poisson image denoising models [5]. Latest developments in
this area include biased mean estimators and unbiased estimate of risk which recovers
noise-free wavelet coefficients [4]. It has been shown that effective signal reconstruc-
tion can be achieved by employing shrinkage factor based on Bayesian formalism
than by using the thresholding techniques [4,36]. In [36], parameters of the mixed
exponential distribution are estimated using fractional moments. We have used expo-
nential distribution with log-likelihood approximation in the proposed method. The
irregularities in Poisson data can be treated in various ways. For Poisson noise and
multiplicative Gamma noise, the Bayesian maximum a posterior (MAP) likelihood
estimation is presented in the literature [18,24,33,35,44,48]. These methods follow
simple model for image restoration in the presence of Poisson and multiplicative
noises. But these existing methods for image restorations are designed specifically
for a given type of noise, while our model can handle image restoration with mixed
and unknown distribution of noises. We have compared our proposed approach with
the methods presented in [24,35]. In [24] noise of varying scales is being removed,
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while preserving low-contrast features in regions of low intensity which is termed
as contrast-based denoising (CBD). In [35] a variational restoration model (VRM)
for removing multiplicative Gamma noise is proposed using Douglas–Rachford split-
ting techniques. But, uniform regularization strength must be chosen to either remove
high-intensity noise or to retain low-intensity features; both cannot be done using this
approach. These models are not adaptive for different noise distributions, which is the
advantage of our proposed method. This paper presents a novel exponential distribu-
tion using log-likelihood estimator for image denoising. A new family of exponential
distribution lies between Gamma and Poisson distribution and is designed to fit the
observed likelihood approximation. In our proposed method, we have used sensitiv-
ity and variation indices to offer a robust approach for exploiting the correlation and
variance in any imagery for better visual quality. We have compared the test results of
different image quality assessment against three sets of images with 128 × 128 pixels
and 512 × 512 pixels.

3 Proposed Method

Statistical modeling is very important aspect in fields of scientific study and oth-
ers. There are various statistical models with different type of response variables
based on likelihood paradigm. Some very important generalized linearized models
include Gaussian, Gamma, Binomial, Poisson. All these models belong to the expo-
nential dispersionmodels (EDM) [2,46].We have used an intermediatemodel between
Gaussian and Poisson distributions to evaluate first two moments, i.e., mean and
variance. The variance function describes the relationship between mean and vari-
ance of response variable. The block diagram for the proposed algorithm is shown
in Fig. 1. Consider random variable Y with mean μ and variance φμp such that,
φ > 0, p ∈ (−∞, 0] ∪ [1,∞) which describes Y = EDMp (μ, φ). The mean is
E (Y ) = μ and variance is written as Var (Y ) = φV (μ) = φμp. EDMp (μ, φ) is
an exponential dispersion model (EDM) of two variables μ and φ. For p = 0 the
EDM is Gaussian, for p = 1, φ = 1 the EDM is Poisson, for p = 2, p = 3 the EDM
is Gamma and inverse Gaussian and for 1 < p < 2 the EDM becomes compound
Poisson distribution. The probability density function (PDF) of EDM is evaluated
using numerical methods available in literature [2]. We assume that the pixel space
in the image is denoted by (i, j), where we considered i, j = 1, 2 . . . n and n = 128
or 512. Assume that Wi j is a vector to be considered for all noise-free pixel values.
Ni j is a vector that include all pixels with noise

(
Xi j

)
and without noise

(
Wi j

)
such

that Ni j = Wi j + Xi j . The noise density is represented as σX which is considered
as 10, 20, 30, 40 and 50 in this paper. It is assumed that all the pixels are indepen-
dent and their PDFs are Poisson-distributed. Xi j is independent with Poisson- and
Gamma-distributed noise with mean τi j . According to [46], Ni j follows an exponen-
tial compound Poisson model. The distribution of Ni j can also be re-parameterized in
such a way that it takes the form of the exponential family such that scale parameter
(p) is a function of edge strength sharpness parameter (v) as

p = v + 2

v + 1
, p ∈ (1, 2) , v > 0. (1)
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Fig. 1 Block diagram of the proposed algorithm

Overall mean
(
μi j

)
is multiplicative in nature such that μi j = λi jτi j . λi j is the

mean of noise-free pixels. Distortion index is defined as,

φi j = λ
1−p
i j τ

2−p
i j

(2 − p)
. (2)

Here the probability of pixels affected by noise is zero. The probability density
function [46] is written as

P(Ni j = 0) = exp
(−Wi jλi j

) = exp

(
Wi j

φi j

(−kp
(
φi j

)))
. (3)

For the probability that pixels affected by noise is greater than zero, the probability
density function [46] is

f
(
λi j , τi j , v

) = C

(
Wi j

φi j
; p

)
exp

(
Wi j

φi j

(
Ni j (θ) − kp (θ)

))
. (4)

C
(
Wi j
φi j

; p
)
is a constant which is a function of noise-free pixels and scale parameter.

It is evaluated using Gamma function [46]. Here θ is the deviation in the mean,
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θ =
{

μ1−p

1−p , p �= 1
logμ, p = 1

. The exposure and contrast operator (k) in form of a cumulating

generating function [2] is written as k = 1
2−p ((1 − p) θ)

2−p
1−p . k can be represented in

terms of μ as

k =
{

μ2−p

2−p , p �= 2
logμ, p = 2

. (5)

C
(
Wi j
φi j

; p
)
is to be evaluated numerically which is a constant which has been analyzed

for two cases in this paper. It is defined with the help of gamma distribution as

C

(
Wi j

φi j
; p

)
=

∑n

i, j=1

1

i ! j !� (
vWi j

)

⎛

⎜
⎝

W v
i j

(
Wi j
φi j

)v+1

(p − 1)v (2 − p)

⎞

⎟
⎠ . (6)

Here � (.) is Gamma function. Ni j has mean μi j , φi j is the dispersion parameter.
k is the exposure and contrast operator with p as scale parameter. p → 1 for over
dispersed Poisson distribution and p → 2 for Gamma distribution. Our model is a
bridge between Poisson and Gamma models, i.e., P ∈ (1, 2). We will now calculate
the constant function for these two cases.

Case 1 When 1 < p < 2 then constant function C
(
Wi j
φi j

; P
)
in Eq. (4) becomes

C

(
Wi j

φi j
; p

)
= W−α

i j (p − 1)α

φ
(1−α)
i j (2 − p)α i ! j !� (−α)

. (7a)

Here is shape parameter [2,46] such that α = (2−p)
(1−p) . By substituting Eq. (7) in (4), we

get density function as

f
(
λi j , τi j , v

) = W−α
i j (p − 1)α

φ
(1−α)
i j (2 − p)α i ! j !� (−α)

. exp

(
Wi j

φi j

(
Ni j (θ) − kp (θ)

))
.

(7b)

Case 2 When p > 2 then constant function C
(
Wi j
φi j

; p
)
in Eq. (4) becomes

C

(
Wi j

φi j
; p

)
= 1

π
(
Wi j

)α (
f
(
λi j , τi j , v

)) . (8)

After substituting probability function in terms of Gamma function and simplifying
above equation, we get
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C

(
Wi j

φi j
; p

)
= � (1 + α) φ(α−1) (p − 1)α

(
Wi j

)α
.� (1 + α) (p − 2)α yα

. (−1)α sin (−πα) . (9a)

By substituting Eq. (9) in (4), we get density function as

f
(
λi j , τi j , v

)

= � (1 + α) φ(α−1) (p − 1)α
(
Wi j

)α
.� (1 + α) (p − 2)α yα

. (−1)α sin (−πα)

. exp

(
Wi j

φi j

(
Ni j (θ) − kp (θ)

))
. (9b)

Equations (7b) and (9b) are the equations for the probability density functions for
the proposed method evaluated using exponential dispersion family of distributions.
ThesePDFs are observedw.r.t. compoundPoissonmodel andGammamodel to analyze
sensitivity and variability using gradient approach as discussed in subsequent section.

3.1 Sensitivity and Variability Analysis

Now we estimate sensitivity and variability as a function of (φ, p) . We have used
quasi-score function [21] and Pearson estimating function [1] with distortion and scale
parameters. As mentioned that scale parameter provides edge strength information.
Therefore, scale parameter will be useful in restoring edge information. The image
sensitivity function is quasi-score function [21] of (φ, p) which is written as

ψ (φ, p) = ∇μi jC
−1 (

Ni j − μi j
)
. (10)

The sensitivity matrix (S) of ψ is a n × n matrix which is written as S = E (∇ψ) .

The variability matrix (V ) of ψ is a n × n matrix which is written as V = Var (ψ).
Using Pearson function [1], we can write ψ (φ, p) as

ψ (φ, p) = NT
i j Wi j − tr

(
Wi jC

−1
)

. (11)

We evaluate sensitivity and variability matrix by finding derivatives of ψ w.r.t. φ

and p. The (n × n) sensitivity matrix w.r.t. φ and p is given by

S (φ) = E

(
δψ (φ, p)

δφ

)
, (12a)

S (p) = E

(
δψ (φ, p)

δp

)
. (12b)

Here δC
δφ

= diag (μp) and δC
δp = diag (φlog (μ) μp). We can show using results about

characteristic function of linear and quadratic forms of non-normal variables [21] such
that the entries in variability matrix is given by

V (φ) = 2tr
(
Ni j

(
Wi jC

)) +
∑

k
k

(
Ni j

)φ (
Wi j

)φ
, (13a)
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V (p) = 2tr
(
Ni j

(
Wi jC

)) +
∑

k
k

(
Ni j

)p (
Wi j

)p
. (13b)

To take into account the correlationmatrix between vectorφ and p, we need to com-
pute cross-sensitivity and cross-variability matrix [40]. The entries of cross-sensitivity
matrix (CS) between φ and p are given by

CS (φ, p) = −tr

(
C−1 δC

δφ
.C−1 δC

δp

)
. (14)

Finally, we the cross-variability matrix (CV) between φ and p is given by

CV (φ, p) = 2tr
(
Ni j

(
Wi jC

)) +
∑n

i, j=1
k

(
Ni j

)φ (
Wi j

)p
. (15)

The sensitivity and variability analyses are an accurate way to predict the visual
quality of image and image is more pleasant when cross-sensitivity (Eq. 14) and
cross-variability (Eq. 15) correlation approaches to 1.0. We have also observed effect
its effect on sensitivity and variability on the images under consideration. The sensitiv-
ity value is high when the noise effect is reduced and the variability value is more when
noise effect is more. From Eq. (12a, 12b), it is observed that sensitivity and variability
follow gradient approach w.r.t. distortion and scale parameter. Also, it is mentioned
that scale parameter affects the edge strength. The values obtained for sensitivity and
variability at different noise densities, i.e., σ = 10, 20, 30, 40 and 50. The average
of three images is summarized in Tables 1 and 2, respectively, for 1 < p < 2 and
p > 2. The overall determinant of matrix S (φ) represents sensitivity w.r.t. distortion
and the overall determinant of matrix S (p) represents sensitivity w.r.t. edge strength.
So, the sensitivity value should be high. The overall determinant of matrices V (φ)

represents variability w.r.t. distortion, and the overall determinant of matrix V (p) rep-
resents variability w.r.t. edge strength. So, the variability value should be low. Another
important observation here is the correlation sensitivity (CS (φ, p)) and correlation
variability (CV (φ, p)) which should be close to 1 for better visual quality.

3.2 The Likelihood Function and Optimization of Distortion Parameter

The probability function f
(
λi j , τi j , v

)
is an exponential probability density function.

The log-likelihood function [29,30] for an image size n × n is given by

l
(
Ni j , φi j , p

) =
∑n

i, j=1
log f

(
λi j , τi j , v

)
. (16)

We can maximize this equation w.r.t. φi j . There are various methods [1,2,21] for
maximization process. By substituting f

(
λi j , τi j , v

)
from Eq. (4), we get

l
(
Ni j , φi j , p

) =
∑n

i, j=1
log

(
C

(
Wi j

φi j
, p

))
+ Wi j

φi j

(

Ni j
μ
1−p
i j

1 − p
− μ

2−p
i j

2 − p

)

. (17)
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Here the distortion index is written as

φi j =
−∑n

i, j=1 Wi j

(
Ni j

μ
1−p
i j

1−p − μ
2−p
i j

2−p

)

(1 − v)
∑

i, j Ni j
. (18)

It can be estimated by maximum likelihood estimator by setting minimum and
maximum values for φi j . This is achieved by substituting the derivative of Eq. (17)
equal to zero. By adjusting the number of parameters, we get the distortion index as:

φi j = φ =
∑

i, j

2

N − Q

(

Ni j

(
N 1−p
i j − μ

1−p
i j

1 − p
− N 2−p

i j − μ
2−p
i j

2 − p

))

. (19)

N denotes total number of pixels. Q is the number of pixels used in estimating the
distortion. Variance parameters have an impact on the mean parameter and vice-versa.
p, φ and Wi j have impact on variance of the model and less on mean. When we use
the likelihood principle for estimating φ, we minimize the vector with pixels affected
by noise. We will calculate the derivatives of Wi j w.r.t. φ. Later, we have optimized
using log-likelihood criterion. By differentiating f

(
λi j , τi j , v

)
w.r.t. φ, we get

δ log f
(
λi j , τi j , v

)

δφ
=

⎧
⎨

⎩

μ2−p

φ2(2−p)
, y = 0

Ni jμ
1−p

φ2
i j (p−1)

+ μ2−p

φ2
i j (2−p)

+ δNi j
Ni j δφ

, y > 0
. (20)

Case 1 When 1 < p < 2 then differentiating Wi j w.r.t. φ, we get

δWi j

δφ
=

∑n

i, j=1
C

(
Wi j

φi j
; p

)
Wi j , (21a)

Using log-likelihood estimation,

δlog
(
Wi j

)

δφ
≈ φ (1 − α) − log (2π) − 1

2
log (−α) . (21b)

Now in order to maximize Wi j , the derivative is set equal to zero. To do this Wi j is
written in form of a gamma function as

log
(
Wi j

) = φ log

(
N−α
i j (p − 1)α

φ1−α (2 − p)

)

− log� (1 + φ) − log� (−αφ) . (22)

Now replace the gamma function by Stirling approximation [1] and approximating
(1 − αφ) and (−αφ) gives
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log
(
Wi j

) ≈ φ

{

log

(
N−α
i j (p − 1)α

φ1−α (2 − p)

)

+ (1 − α) + α log (−α) − (1 − α) logφ

}

− log (2π) − 1

2
log (−α) − logφ. (23)

α < 0 for 1 < p < 2, so logarithms have positive arguments. Differentiating Eq. (23)
w.r.t. φ,

δ log
(
Wi j

)

δφ
≈ log

(
N−α
i j (p − 1)α

φ1−α (2 − p)

)

− 1

φ
− logφ + α log (−αφ) . (24)

δ log(Wi j)
δφ

= 0 at φopt = N2−p
i j

(2−p)φ . This approximation is good for maximum value of
Wi j which is found as by substituting φopt in maximum likelihood equation as

max(logWi j ) = φopt (α − 1) − log (2π) − log
(
φopt

) − 1

2
log (−α) . (25)

Case 2 When p > 2 then differentiating Wi j w.r.t. φ we get

δWi j

δφ
=

∑n

i, j=1
C

(
Wi j

φi j
; p

)
Wi j , (26a)

Approximating k ≈ μ2−p

φ(p−2) and using log-likelihood estimation, we get

δ log
(
Wi j

)

δφ
≈ (1 − α) k + 1

2
log (α) + log (k) . (26b)

Now in order to maximize Wi j the derivative is set equal to zero. To do this Wi j is
written in form of a gamma function as

Wi j =

(
(p−1)αφα−1

Nα
i j (p−2)

)k

� (1 + αk)

� (1 + k)
. (27)

By Stirling approximation [1],

log
(
Wi j

) ≈ k

[

log

(
(p − 1)α φα−1

Nα
i j (p − 2)

)

+ (1 − α)

− log (k) + α log (αk)

]

+ 1

2
log (α) . (28)
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δ log(Wi j)
δφ

= 0 at φopt = N p−2
i j

(p−2)φ . This approximation is good for maximum value of
Wi j which is found by substituting φopt in maximum likelihood equation as

max(logWi j ) = k
[
φopt (1 − α) − log (k) − log

(
φoptk

)] + 1

2
log (α) . (29)

Thus, the final output image
(
Ni jfinal

)
is restored from the vector of the maximized

values from the noise-free image where distortion index φ is minimized.

4 Performance Measures

The proposed method was tested on three image sets each with resolution of 128 ×
128 pixels and 512 × 512 pixels. For each image, noisy observation is generated
by adding the Gaussian- and Gamma-distributed noise with original image having
standard deviation of 10, 20, 30, 40, and 50 dB. All the simulations have been carried
out on MATLAB R2013a on a 2.67GHz i5 processor. Mean square error (MSE), peak
signal-to-noise ratio (PSNR), mean absolute error (MAE), structural similarity index
metric (SSIM), image quality index (QI), and time taken during simulation are used
to benchmark denoising performance.

Mean square error is computed here as parametric estimation error. Parametric error
reflects the uncertainty in reliability of estimates. One good estimate is established in
[25,46] of exponential compound Poisson model as,

MSE[Ni j ] =
∑

i j
φWi jμ

1
i j +

∑
(Wi jμi j )

2Var[Xi jβ]
+

∑

i j∈∀(i1, j1 �=i2, j2)
(Wi1μi1)(Wi2μi2) · · · (Wi jμi j )

·
∑

i j∈∀(i1, j1 �=i2, j2)
Cov(Xi1β, Xi jβ)Cov(X1 jβ, Xi jβ). (30)

Cov
(
Xi1β, Xi jβ

)
is the corresponding covariance matrix elements.

PSNR andmean absolute error (MAE) are used tomeasure the quality of restoration
results. Mathematically PSNR is given by

PSNR = 10log

(
2552n2

∣∣Ni j − Ni jfinal

∣∣2

)

dB. (31)

Here, Ni j is the original image and Ni jfinal is the final restored output denoised image.
Mean absolute error is written as,

MAE =
∣∣Ni j − Ni jfinal

∣∣

n2
. (32)

PSNR can tell how well the reconstruction data match the true data and the data which
is not required to restore image. PSNR can measure the intensity difference between
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Table 3 Calculated values KW
w.r.t. number of pixels

Image set 1 Image set 2 Image set 3

T = 100 0.578 0.612 0.595

T = 300 0.672 0.702 0.611

T = 500 0.718 0.713 0.705

two images. Therefore, it may not be reliably used to describe visual perception of
image. So, PSNR is accurate measure for restoration of edges. We have evaluated
another important visual quality assessment performance measure which is SSIM.
Mathematically,

SSIM = 1

n

∑n

i, j=1

(
2μNi jfinal

μNi j + c1
) (

2σNi jfinal
+ c2

)

(
μ2
Ni jfinal

+ μ2
Ni j

+ c1
) (

σ 2
Ni jfinal

+ σ 2
Ni j

) . (33)

μNi jfinal
, μNi j are the mean associated with output image and noise-induced original

image, respectively. σ 2
Ni jfinal

andσ 2
Ni j

are the variance associated with output image and
noise-induced original image, respectively. The noise density for noisy pixels is given
by σX such that

σX = 1

n − 1

∑n

i, j=1
(Ni j − μW )

(
Ni j − μi jfinal

)
. (34)

The values of constants are chosen as c1 = 0.01 and c2 = 0.03 [25]. The large
value of SSIM depicts better performance.

Image quality index (QI) is another parameter for visual quality assessment. Math-
ematically,

QI = 4σNi j σNi jfinal
μNi j μNi jfinal(

σ 2
Ni j

+ σ 2
Ni jfinal

) (
μ2
Ni j

+ μ2
Ni jfinal

) . (35)

The value of image quality index should be between 0 and 1. The best value is 1.
This parameter includes the effect due to loss of correlation, luminance, and contrast
distortion. For accuracy assessment we have used the way to measure accuracy by
using statistical technique [34]. In order to access the overall accuracy, Cohen [39]
definedmost widely used statistics for the estimation of the effect of change agreement

calledKappa Statistic. The overall accuracy is given as Oacc =
n∑

i, j=1

Ni j
T . Here, T is the

number of pixels considered. The value of T can be considered as any value between
1, 2 . . . 512. In our experiments the value of T is taken for 100, 300 and 500. The

Kappa factor for image free pixels is KW = Oacc−pW
1−pW

. Here, pW =
∑n

i, j=1 W
2
i j

n is the
statistic of pixels without noise. The ideal value of Kappa factor should be 1. The
values for KW are given in Table 3.
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4.1 Computational Complexity

We have evaluated the computational complexity [6,7,43] for proposed method and
compared it with the methods available in literature. The computational complexity
of CBD method [24] has three parts. First part calculates pixelated Poisson noise
with complexity of O (n2n). The second part computes the prior distribution with
complexity O

(
22n (n)O(n)

)
. The third part consists of the computational load related

to minimization using Euler Lagrange equation and its computational complexity
is O

(
2n2

)
. Therefore, the overall complexity becomes O (n2n) + O

(
22n (n)O(n)

) +
O

(
2n2

)
. The computational complexity ofVRMmethod [35] is also divided into three

parts. The first part includes calculation of discrete denoising model using gradient
approach with computational complexity of nO (n). The second part calculates conju-
gate function using variational method with computational load of O

(
n2 log n

)
. The

third part calculates the minimization function using Douglas–Rachford splitting with
computational complexity of nO (2n). Thus, the overall complexity can be written as
nO (n)+O

(
n2 log n

)+nO (2n). The proposedmethodwithout likelihood estimation
has computational complexity O

(
n2 log n

) + nO (n). The first part computes PDF
using EDMand the second part is for computations related to sensitivity and variability
using gradient approach. The log-likelihood evaluation has additional computational
complexity nO (log (1 + 2n)). Therefore, proposed method with likelihood estima-
tion has computational complexity of O

(
n2 log n

)+nO (n)+nO (log (1 + 2n)). We
have tabulated the computational time in seconds in experimental results as well. It is
observed that though the computational time using proposed method is comparable to
the state of art methods under comparison and the visual quality of image is better as
illustrated from different performance metrics.

5 Results and Discussion

In the our experiments, we evaluated the effect of the proposed method on denois-
ing performance. In these experiments, three images contaminated by Poisson and
Gamma noises at different noise densities 10, 20, 30, 40, and 50 are used. The over-
all performance was quantified on a set of three images. Figures 2, 3, 4, 5, 6, and 7
show the resulting images for each denoising methods for different values of noise
densities. It is observed that the visual quality of the proposed estimator is superior to
other methods. Also, we have observed that proposed method without log-likelihood
estimation provides performances slightly inferior in terms of SNR as compared to
proposed method with log-likelihood estimation. Figures 2, 3 and 4 show the images
with 128×128 pixel space and Figs. 5, 6 and 7 are for the images 512×512 pixel space.
The proposed method exhibit a good performance in restoring geometrical structures
of the images. We have observed that Poisson noise is minimized effectively when
1 < p < 2. For the case when p > 2, the distribution is more close to gamma
distribution so it can be used when Gamma and inverse Gaussian noise are present
in the input image. The proposed algorithm is better both visually and quantitatively
as revealed by performance measures. It has been satisfied that using log-likelihood
estimator the noise can be minimized using the proposed methodology. The presented
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(a) (b) (c) (d) (e)

Fig. 2 Qualitative results for noise density σX = 10 for 128× 128 pixel size. a Noisy image, b CBD [24],
c VRM [35], d PBL, e PL

(a) (b) (c) (d) (e)

Fig. 3 Qualitative results for noise density σX = 30 for 128× 128 pixel size. a Noisy image, b CBD [24],
c VRM [35], d PBL, e PL

(a) (b) (c) (d) (e)

Fig. 4 Qualitative results for noise density σX σX = 50 for 128× 128 pixel size. a Noisy image, b CBD
[24], c VRM [35], d PBL, e PL

(a) (b) (c) (d) (e)

Fig. 5 Qualitative results for noise density σX σX = 10 for 512× 512 pixel size. a Noisy image, b CBD
[24], c VRM [35], d, PBL, e PL

approximation gives better results when the choice of the parameters is appropriate.
Simulation results indicate that proposed method is able to reconstruct edges and
restores the contrast very well. The noise minimized image attains the largest PSNR.
The denoising performance results for MSE are (Eq. 30) given in Tables 4 and 5 for
128× 128 and 512× 512 pixels space, respectively. Various other performance mea-
sures are evaluated in Tables 6, 7, 8 and 9 such as PSNR (Eq. 31), MAE (Eq. 32),
SSIM (Eq. 33), QI (Eq. 35) and computational time in seconds in respect of the com-
putational complexity. The PSNR improvement brought by our approach is quite high
and the visual resolution is quite remarkable. Moreover, the new algorithm with log-
likelihood estimation is better than without log-likelihood estimation. It is observed
that when distortion index and noise density decrease, the image quality improves.
The obtained PSNR results indicate that the proposed method has better performance
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(a) (b) (c) (d) (e)

Fig. 6 Qualitative results for noise density σX = 30 for 512× 512 pixel size. a Noisy image, b CBD [24],
c VRM [35], d PBL, e PL

(a) (b) (c) (d) (e)

Fig. 7 Qualitative results for noise density σX = 50 for 512× 512 pixel size. a Noise image, b CBD [24],
c VRM [35], d PBL, e PL

than others, especially at low SNRs. In our experiment, the same set of images is taken
with different pixel size and noise contaminations. The obtained results for various
performance measures at different noise levels are summarized in Tables 4, 5, 6, 7, 8
and 9. From the obtained results we can conclude that the proposed denoising algo-
rithm outperforms as compared to the other methods for all noise intensity situations.
When looking closer at the results, we observe that using the proposed method PSNR
is improved by 19%, MAE is improved by 32% and SSIM is improved by 10% as
compared to [24,35] for different noise densities. The values of these parameters have
been tabulated for different values for noise density as 10, 20, 30, 40 and 50 for both
cases, i.e., 1 < p < 2 and p > 2. We have shown the results for small (128 × 128)
and big (512 × 512) pixel space images. It is observed that even, for big size images
the proposed method takes almost comparable time as taken for small size images.
The proposed method outperforms other methods by resulting in more pleasant visual
image. It is observed that even at high-intensity noise, all PSNR values and quality
measure image quality index of our method are higher.

Conclusion

In this paper, based on the exponential distribution function, we have proposed an
adaptive image denoising model using log-likelihood approximation. In our method,
we have used the mean, variance, distortion index, scale parameter, sensitivity, and
variability analysis as the variable exponent to analyze and control image quality.
Compared with the other methods, using the proposed method the quality of restored
images is quite well. We proposed the minimization of noise using log-likelihood esti-
mation for multiscale Poisson and Gamma induced noises in image. The denoising
operation is effective to restore the image features and contrast. This paper shows
that an exponential denoiser based on the log-likelihood estimation under suitable
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Table 4 Calculated MSE values for 128 × 128 pixel size using proposed method after log-likelihood
estimation

1 < p < 2, Poisson-distributed noise p > 2, Gamma-distributed noise

φ = 1 φ = 0.1 φ = 0.01 φ = 0.001 φ = 1 φ = 0.1 φ = 0.01 φ = 0.001

Image set 1

σX = 10 20.512 15.012 12.134 11.157 25.323 18.533 14.980 13.774

σX = 20 30.132 26.132 21.143 15.129 37.201 32.262 26.102 18.678

σX = 30 30.153 35.132 30.148 20.152 49.572 43.373 37.220 24.879

σX = 40 30.151 36.183 30.132 20.156 41.915 43.609 37.200 24.884

σX = 50 30.192 36.191 33.152 25.132 41.965 43.878 37.743 25.373

Image set 2

σX = 10 16.615 12.160 9.829 9.037 19.271 14.321 11.731 10.851

σX = 20 24.407 21.167 17.126 12.255 27.929 24.329 19.839 14.426

σX = 30 32.524 28.457 24.420 16.323 36.948 32.429 27.943 18.947

σX = 40 33.622 32.548 24.407 16.326 45.946 36.975 27.929 18.950

σX = 50 33.656 32.598 36.573 18.457 45.983 36.919 28.447 20.429

Image set 3

σX = 10 13.668 10.003 8.085 7.434 15.853 11.781 9.650 8.927

σX = 20 20.078 17.413 14.089 10.081 22.976 20.014 16.320 11.868

σX = 30 26.756 23.410 20.089 13.428 30.395 26.678 22.987 15.587

σX = 40 33.418 26.776 20.078 13.431 37.797 30.417 22.976 15.590

σX = 50 33.445 33.398 21.087 14.410 37.828 33.775 24.096 16.678

Table 5 Calculated MSE values for 512 × 512 pixel size using proposed method after log-likelihood
estimation

1 < p < 2, Poisson-distributed noise p > 2, Gamma-distributed noise

φ = 1 φ = 0.1 φ = 0.01 φ = 0.001 φ = 1 φ = 0.1 φ = 0.01 φ = 0.001

Image set 1

σX = 10 22.369 16.371 13.232 12.167 27.615 20.210 16.336 15.021

σX = 20 32.859 28.497 23.057 16.498 40.568 35.182 28.465 20.369

σX = 30 32.882 38.312 32.877 21.976 54.059 47.299 40.589 27.131

σX = 40 32.880 39.458 32.859 21.980 45.709 47.556 40.567 27.136

σX = 50 32.925 39.467 36.153 27.407 45.763 47.850 41.159 27.670

Image set 2

σX = 10 19.303 14.127 11.419 10.499 22.389 16.638 13.629 12.606

σX = 20 28.356 24.591 19.897 14.238 32.447 28.265 23.049 16.760

σX = 30 37.786 33.061 28.371 18.964 42.925 37.675 32.464 22.012
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Table 5 continued

1 < p < 2, Poisson-distributed noise p > 2, Gamma-distributed noise

φ = 1 φ = 0.1 φ = 0.01 φ = 0.001 φ = 1 φ = 0.1 φ = 0.01 φ = 0.001

σX = 40 39.061 37.814 28.356 18.967 53.379 42.957 32.447 22.016

σX = 50 39.101 37.872 42.490 21.443 53.422 42.892 33.049 23.734

Image Set 3

σX = 10 15.018 10.991 8.884 8.168 17.419 12.945 10.603 9.809

σX = 20 22.061 19.133 15.481 11.077 25.246 21.991 17.932 13.040

σX = 30 29.399 25.722 22.073 14.754 33.397 29.313 25.258 17.127

σX = 40 36.719 29.421 22.061 14.758 41.531 33.422 25.246 17.130

σX = 50 36.749 36.697 23.170 15.833 41.565 37.111 26.476 18.325

Table 6 Performance measures as average of three image sets for 1 < p < 2, φ = 1 and k = 1 with
different noise densities

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

PSNR

CBD [24] 38.532 34.845 32.701 31.182 30.791 42.718 38.631 36.254 34.570 34.136

VRM [35] 40.675 39.873 35.673 35.013 32.093 45.094 44.205 39.549 38.817 35.580

PBL 43.765 42.156 40.162 39.134 39.092 48.520 46.736 44.525 43.386 43.339

PL 47.896 46.982 45.914 44.983 44.883 53.100 52.086 50.902 49.870 49.759

MAE

CBD [24] 4.132 5.321 6.121 7.185 9.413 3.727 4.800 5.521 6.481 8.491

VRM [35] 4.912 5.012 5.927 7.232 8.613 4.431 4.521 5.346 6.523 7.769

PBL 3.012 3.136 4.127 4.912 5.013 2.717 2.829 3.723 4.431 4.522

PL 2.698 2.517 3.131 3.511 4.017 2.434 2.270 2.824 3.167 3.623

SSIM

CBD [24] 96.012 91.927 87.742 83.743 71.932 106.443 101.915 97.275 92.841 79.747

VRM [35] 98.104 92.176 86.762 80.141 73.153 108.763 102.191 96.188 88.848 81.101

PBL 102.863 96.918 90.564 85.132 80.893 114.039 107.448 100.404 94.381 89.682

PL 106.715 101.982 92.893 89.013 86.091 118.309 113.062 102.986 98.684 95.445

QI

CBD [24] 0.932 0.901 0.893 0.852 0.813 0.940 0.909 0.901 0.860 0.821

VRM [35] 0.921 0.912 0.842 0.801 0.792 0.929 0.920 0.850 0.809 0.800

PBL 0.942 0.932 0.901 0.901 0.891 0.950 0.940 0.909 0.909 0.899

PL 0.972 0.963 0.957 0.942 0.931 0.980 0.971 0.965 0.950 0.939
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Table 6 continued

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

Time (s)

CBD [24] 55.262 60.661 70.771 76.912 80.153 49.846 54.716 63.835 69.375 72.298

VRM [35] 56.261 60.173 71.621 78.924 81.153 50.747 54.276 64.602 71.189 73.200

PBL 58.132 62.153 73.158 76.986 82.351 52.435 56.062 65.989 69.441 74.281

PL 59.141 62.197 73.874 77.012 83.132 53.345 56.102 66.634 69.465 74.985

Table 7 Performance measures as average of three image sets for p > 2, φ = 1 and k = 1 with different
noise densities

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

PSNR

CBD [24] 34.533 31.228 29.307 27.946 27.595 37.741 34.129 32.029 30.542 30.159

VRM [35] 36.453 35.735 31.970 31.379 28.762 39.840 39.054 34.940 34.294 31.434

PBL 39.223 37.781 35.994 35.072 35.035 42.866 41.290 39.337 38.330 38.289

PL 42.925 42.106 41.149 40.314 40.225 46.912 46.017 44.971 44.059 43.961

MAE

CBD [24] 3.013 3.880 4.463 5.239 6.864 3.293 4.240 4.878 5.726 7.501

VRM [35] 3.582 3.655 4.322 5.273 6.280 3.914 3.994 4.723 5.763 6.864

PBL 2.196 2.287 3.009 3.582 3.655 2.400 2.499 3.289 3.914 3.995

PL 1.967 1.835 2.283 2.560 2.929 3.150 3.006 2.995 2.798 2.201

SSIM

CBD [24] 85.875 82.221 78.478 74.901 64.337 93.852 89.859 85.768 81.859 70.314

VRM [35] 87.746 82.444 77.601 71.680 65.429 95.897 90.103 84.810 78.338 71.507

PBL 92.002 86.685 81.002 76.144 72.352 100.549 94.738 88.527 83.217 79.073

PL 95.448 91.215 83.085 79.615 77.001 104.315 99.688 90.803 87.011 84.154

QI

CBD [24] 0.920 0.889 0.881 0.840 0.801 0.940 0.909 0.901 0.860 0.821

VRM [35] 0.909 0.900 0.830 0.789 0.780 0.929 0.920 0.850 0.809 0.800

PBL 0.930 0.920 0.889 0.889 0.879 0.950 0.940 0.909 0.909 0.899

PL 0.960 0.951 0.945 0.930 0.919 0.980 0.971 0.965 0.950 0.939

Time (s)

CBD [24] 40.214 44.143 51.500 55.969 58.327 43.950 48.244 56.284 61.168 63.746

VRM [35] 40.941 43.788 52.119 57.433 59.055 44.745 47.856 56.960 62.768 64.541

PBL 42.303 45.229 53.237 56.023 59.927 46.233 49.430 58.183 61.227 65.494

PL 43.037 45.261 53.758 56.042 60.495 47.035 49.465 58.752 61.248 66.115
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Table 8 Performance measures as average of three image sets for 1 < p < 2, φ = 1 and k = 0.5 with
different noise densities

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

PSNR

CBD [24] 31.211 28.224 26.488 25.257 24.941 34.602 31.291 29.366 28.002 27.650

VRM [35] 32.947 32.297 28.895 28.361 25.995 36.526 35.806 32.035 31.442 28.820

PBL 35.450 34.146 32.531 31.699 31.665 39.301 37.856 36.065 35.143 35.105

PL 38.796 38.055 37.190 36.436 36.355 43.011 42.190 41.231 40.395 40.305

MAE

CBD [24] 5.101 6.569 7.557 8.870 11.621 4.601 5.926 6.816 8.001 10.483

VRM [35] 6.064 6.188 7.317 8.928 10.633 5.470 5.581 6.600 8.053 9.591

PBL 3.719 3.872 5.095 6.064 6.189 3.354 3.493 4.596 5.470 5.583

PL 3.331 3.107 3.865 4.335 4.959 3.005 2.802 3.486 3.910 4.473

SSIM

CBD [24] 77.770 74.461 71.071 67.832 58.265 86.219 82.551 78.793 75.201 64.595

VRM [35] 79.464 74.663 70.277 64.914 59.254 88.098 82.775 77.912 71.967 65.692

PBL 83.319 78.504 73.357 68.957 65.523 92.372 87.033 81.327 76.449 72.642

PL 86.439 82.605 75.243 72.101 69.734 95.830 91.580 83.419 79.934 77.310

QI

CBD [24] 0.911 0.880 0.872 0.831 0.792 0.919 0.888 0.880 0.839 0.800

VRM [35] 0.900 0.891 0.821 0.780 0.771 0.908 0.899 0.829 0.788 0.779

PBL 0.921 0.911 0.880 0.880 0.870 0.929 0.919 0.888 0.888 0.878

PL 0.951 0.942 0.936 0.921 0.910 0.959 0.950 0.944 0.929 0.918

Time (s)

CBD [24] 61.402 67.401 78.634 85.458 89.059 55.384 60.796 70.928 77.083 80.331

VRM [35] 62.512 66.859 79.579 87.693 90.170 56.386 60.307 71.780 79.099 81.333

PBL 64.591 69.059 81.287 85.540 91.501 58.261 62.291 73.321 77.157 82.534

PL 65.712 69.108 82.082 85.569 92.369 59.272 62.336 74.038 77.183 83.317

Table 9 Performance measures as average of three image sets for p > 2, φ = 1 and k = 0.5 with different
noise densities

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

PSNR

CBD [24] 27.972 25.295 23.739 22.636 22.352 30.570 27.644 25.943 24.739 24.429

VRM [35] 29.527 28.945 25.896 25.417 23.297 32.270 31.634 28.301 27.778 25.462

PBL 31.771 30.603 29.155 28.408 28.378 34.721 33.445 31.863 31.047 31.014

PL 34.769 34.106 33.331 32.654 32.582 37.999 37.274 36.427 35.688 35.608
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Table 9 continued

128 × 128 pixel size 512 × 512 pixel size

σX = 10 σX = 20 σX = 30 σX = 40 σX = 50 σX = 10 σX = 20 σX = 30 σX = 40 σX = 50

MAE

CBD [24] 4.133 5.322 6.122 7.187 9.416 4.517 5.816 6.691 7.855 10.289

VRM [35] 4.914 5.014 5.929 7.233 8.615 5.369 5.479 6.479 7.905 9.416

PBL 3.012 3.137 4.128 4.914 5.014 3.292 3.428 4.512 5.369 5.480

PL 2.698 2.517 3.132 3.512 4.018 4.321 4.123 4.108 3.838 3.019

SSIM

CBD [24] 69.559 66.599 63.567 60.670 52.113 76.020 72.786 69.472 66.306 56.954

VRM [35] 71.074 66.780 62.857 58.061 52.997 77.677 72.983 68.696 63.454 57.921

PBL 74.522 70.215 65.612 61.677 58.605 81.445 76.738 71.707 67.406 64.049

PL 77.313 73.884 67.299 64.488 62.371 84.495 80.747 73.550 70.479 68.165

QI

CBD [24] 0.897 0.866 0.858 0.817 0.778 0.917 0.886 0.878 0.837 0.798

VRM [35] 0.886 0.877 0.807 0.766 0.757 0.906 0.897 0.827 0.786 0.777

PBL 0.907 0.897 0.866 0.866 0.856 0.927 0.917 0.886 0.886 0.876

PL 0.937 0.928 0.922 0.907 0.896 0.957 0.948 0.942 0.927 0.916

Time (s)

CBD [24] 49.647 54.498 63.580 69.098 72.009 54.259 59.560 69.486 75.516 78.699

VRM [35] 50.544 54.059 64.344 70.905 72.907 55.241 59.081 70.321 77.491 79.680

PBL 52.226 55.838 65.725 69.164 73.984 57.078 61.025 71.831 75.589 80.857

PL 53.132 55.878 66.368 69.188 74.685 58.068 61.068 72.533 75.615 81.623

statistical conditions, is well adapted to characterize images that are effected by
Poisson-distributed noise, Gaussian-distributed noise or any other compound dis-
tributed noise by varying scale parameter. In the presence of noise, the proposed
multi-parameter estimator provides slightly better performance than Bayesian and
variational parameter-based estimators. Experimental results on the images show the
superiority of proposed denoiser compared to other denoising approaches. This sug-
gests that the proposed method is an accurate model as it is able to restore the contrast,
shape, and scale behavior of the of images; this gives the proposed estimator good
denoising properties. The experimental results show that the proposed denoiser out-
performs the other methods very well especially at low SNRs. The proposed algorithm
may be extended to color images and video framework, which may further improve
video denoising.
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