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Abstract An improved blind channel equalization method is proposed based on the
generalized eigenvector algorithm (GEA) in this paper. This new method can blindly
equalize the desired signal in the presence of strong co-channel interference. The
basic idea underlying the improved GEA method is that higher-order cumulants can
be sensitive to frequency offset. By exploiting this property of higher-order statistics,
blind equalizer can be designed to equalize the desired signal with known frequency
offset while suppressing the interference with a different frequency offset. Simulation
results are shown to demonstrate the effectiveness of the proposed method.
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1 Introduction

Channel equalization is an important method that is widely used to tackle the channel
distortion effect faced by communication systems. As compared to the pilot data-based
channel equalization method, blind channel equalization does not require repeated
transmission of training signal. It is thus preferred in many applications where either
data output rate is one main concern, or training signal is not available at all [9]. Blind
channel equalization has been widely studied since 1970s, and many prominent works
have been developed based on either high-order statistics (HOS) or second-order cyclo-
stationary statistics (SOCS) (see, for example, [2,10] and references therein). Among
those methods, one class of blind equalization algorithms is based on the fourth-order
statistics. For example, the constant modulus algorithm has been developed indepen-
dently in [5,11,12] in the 1980s. In general, HOS-based approaches can suffer from
slow rate of convergence, sensitivity to timing jitter, and local minima, while SOCS
can fail in the case of singular channel [6]. To solve these problems, a generalized
eigenvector algorithm (GEA) was proposed that is able to perform almost as well as
the recursive least square (RLS) equalizer [6]. In general, those blind equalization
methods based on fourth-order statistics are not suitable to the applications where
there is strong co-channel interference. That is because the co-channel interference
can impair the computation of high-order statistics of the desired signal and conse-
quently render the blind equalizer fail to extract the desired signal. Some attempts can
be found to extend the single-source blind equalizer to multiple-source blind equal-
izer. However, these methods do not work well when co-channel signals are with
inter-symbol interference [1].

This paper focuses on the problem of blind channel equalization in the presence of
strong co-channel interference. To this end, an improved blind equalization method
is developed based on the conventional GEA algorithm. The improved GEA method
can extract desired signal in the presence of strong co-channel interference. In this
study, we assume that the signal and the co-channel interference have different fre-
quency offsets although they share the same frequency channel. This can be caused
by the fact that the signal and interference are transmitted from different equipments
that have distinct frequency offset with respect to the receiver, for example, in the
context of co-channel signal separation [13]. Then, by exploiting higher-order statis-
tics that is sensitive to frequency offset, new design criterion can be established and
improved blind equalizer can be devised to enhance the desired signal with known
frequency offset while suppressing the interference with a different frequency off-
set. Simulation results are given to demonstrate the effectiveness of the proposed
method.

The rest of the paper is organized as follows. Section 2 will present the signal model
considered in this paper and a brief review of the conventional GEA method. Section
3 will present the new GEAmethod followed by simulation studies in Sect. 4. Finally,
Sect. 5 will conclude this paper.



4152 Circuits Syst Signal Process (2018) 37:4150–4161

Fig. 1 System diagram for
co-channel receiving and
equalization

2 Signal Model and GEA Method

In this paper, we consider the case where a signal is received in the presence of co-
channel interference by a single channel receiver. The discrete time signal model can
be written as below:

v(k) = ds(k) ∗ hs(k)e
jωsk + di (k) ∗ hi (k)e

jωi k + n(k) (1)

where ds(k), hs(k), di (k), hi (k), ωs, ωi are signal waveform, signal channel, inter-
ference waveform, interference channel, signal frequency offset and interference
frequency offset, respectively; ∗ stands for convolution operation; n(k) stands for
white Gaussian noise of zero mean and variance σ 2, which is independent and iden-
tically distributed. The signal, interference and noise are independent to each other.
This signal model is depicted in the block diagram of signal receiving model in Fig.
1. The objective of this paper is to design an improved GEA method that is able to
equalize the signal and suppress the interference at the same time, which is especially
crucial when both the signal and interference have similar channel response [14].

Since the method developed in this paper is based on the GEA algorithm, we briefly
review this algorithm as follows. The implementation of the original GEA method in
the absence of interference is illustrated in the block diagram of equalization model in
Fig. 1. The original GEA method consists of one equalizer and one reference system,
as depicted in Fig. 1, and relies on the use of fourth-order cumulant for the blind
equalization. In particular, it estimates equalization filter coefficients by iteratively
maximizing Cxy

4,2, which is the fourth-order cross-cumulant between the equalizer
output x(k) and the reference system y(k) with two conjugate terms. When only
signal of interest is considered, x(k) and y(k) can be written as

x(k) = xs(k)e
jωsk, y(k) = ys(k)e

jωsk (2)

Then, following the theoretical development on HOS in [7,8], the cumulant Cxy
4,2 can

be defined by:
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Cxy
4,2 = Cum
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The cumulant in (3) can be estimated from the sample estimates of the corresponding
moments, as follows:
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(4)

where L is the total number of samples.
When only one signal is present, the GEA method works well regardless of the

frequency offset. However, this method may break down when there are two co-
channel signals. This is because that the fourth-order cross-cumulants are frequency-
insensitive and consequently both the signal and the interference contribute to the
cumulant computation, which may diverge the convergence of GEA algorithm. To see
this, we may decompose the equalizer output of x(k) and y(k) first, as:

x(k) = xs(k)e
jωsk + xi (k)e

jωi k

y(k) = ys(k)e
jωsk + yi (k)e

jωi k
(5)

Then, applying the additivity property of cumulants, it yields:

Cx,y
4,2 = Cxs ,ys

4,2 + Cxi ,yi
4,2 = Cum

(
xs(k)e

jωs k, x∗
s (k)e

− jωs k, ys(k)e
jωsk, y∗

s (k)e
− jωsk

)

+ Cum
(
xi (k)e

jωi k, x∗
i (k)e− jωi k, yi (k)e

jωi k, y∗
i (k)e− jωi k

)

(6)
where we can see that the equalizer is affected by both signal and interference and
thus the convergence to the signal of interest may not be guaranteed.

3 Improved GEA Method

Considering that interference and signal usually have different frequency offsets in
practice, we in this paper propose an improved GEAmethod by exploiting the higher-
order cumulants that are frequency-sensitive. The basic idea underlying this method is
that some higher-order statistics of signal are sensitive to signal frequency offset, and
by exploiting this property blind channel equalizer can be designed to extract signal
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of interest in the presence of co-channel interference which has different frequency
offset. In general, the improved GEA method follows the same methodology and
implementation structure of the original GEA method. The main difference is that
it adopts different higher-order statistics to exploit the sensitivity of cumulants to
frequency offset. Without loss of generality, we assume the signal of interest is with
zero frequency offset and the interference is with frequency offset of ω. In the case
there is phase noise in the receiver leading to frequency offset drifting, we assume that
in the data block of interest the frequency offset is almost constant and thus it can be
compensated to zero so that the assumption still holds.

3.1 Impact of Frequency Offset on Cumulant

The key idea is that by using odd number of conjugates, the impact of frequency offset
on cumulants can be retained. Let us consider Cxy

4,1 for illustration. First, following
(5), we decompose the equalizer output of x(k) and y(k) as:

x(k) = xs(k) + xi (k)e
jωk, y(k) = ys(k) + yi (k)e

jωk (7)

After that, we apply the additive property of cumulants and arrive at:

Cx,y
4,1 = Cxs ,ys

4,1 + Cxi ,yi
4,1

= Cum(xs(k), x
∗
s (k), ys(k), ys(k))

+ Cum
(
xi (k)e

jωk, x∗
i (k)e− jωk, yi (k)e

jωk, yi (k)e
jωk

) (8)

For the interference term in the summation, we further write it as

Cxi ,yi
4,1 = Cum(xi (k)e

jωk, x∗
i (k)e− jωk, yi (k)e

jωk, yi (k)e
jωk)

= E
[
| xi (k) |2yi (k)2e2 jωk

]
− E

[
| xi (k) |2]E[yi (k)2e2 jωk

]

− 2E
[
xi (k)yi (k)e

2 jωk
]
E

[
x∗
i (k)yi (k)

]
(9)

This cumulant can also be evaluated with the estimates of respective moments
in practice. Meanwhile, from (9), we may observe that when the data length and
the frequency offset are sufficiently large, the terms with frequency offset inside the
expectation operation are almost uniformly distributed over the complex plane so that
the moment estimates when evaluated with sample average tend to zero. This can be
verified by numerical simulation indeed.

In addition, we hereby provide a brief mathematical proof on the aforementioned
claim that sample-averaged cumulantCxi yi

4,1 is zero in the presence of frequency offset.
Considering the case of linear modulation, the cumulant in (9) can be derived from the
time-variant cumulant when it is sampled at symbol rate. The time-variant cumulant
at time k can be written as [3]
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(10)

where Cci
4,1 stands for the cumulant of the symbols ai,m , ge(k) stands for the channel

impulse response function of the equalizer system, and g f (k) stands for the channel
impulse response function of the reference system. Then, the sample-averaged cumu-
lant value should be equal to 0 due to the oscillation effect introduced by frequency
offset:
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(11)

where Poisson summation formula is applied from step 2 to step 3, and g̃(·) stands
for the Fourier transform of g(k). Meanwhile, since the signal of interest is with zero
frequency offset, its time-averaged cumulant remains unchanged. Thus, we can have

Cx,y
4,1 ≈ Cxs ,ys

4,1 (12)

This property lays the foundation for the new GEA method.

3.2 Improved GEA Method

In this way, when a new GEA method is designed with the new cumulants, the effect
of interference can be eliminated. For many modulation types, e.g. QPSK and high-
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order QAM signals, the value of Cxy
4,1 is zero [3]; we thus propose to use higher-

order cumulant in the design of improved GEA method. We take Cxy
6,1, for example,

in the following development and its extension to even higher-order cumulants is
straightforward.

First, we define Cxy
6,1 as

Cxy
6,1 = Cum(x(k), x∗(k), y(k), y(k), y(k), y(k)) (13)

Defining vk = [v(k) . . . v(k − Lc)]T , and e = [e(k) . . . e(k − Lc)]T with Lc being
the equalizer length, substituting x(k) = e(k) ∗ v(k) = eHvk in (13), and applying
the moment to cumulant formula by considering all the partitions [3], we arrive at

Cxy
6,1 = C(eHvk, vHk e, y(k), y(k), y(k), y(k))

= c1 − c21 − 4c22 − 4c23 + 2(3c31 + 12c32)

= eH (R1 − R21 − 4R22 − 4R23 + 2(3R31 + 12R32))e

� eHCyv
6,1e

(14)

where,
c1 = eH E

{
vkvHk y(k)y(k)y(k)y(k)

}
e = eHR1e

c21 = eH E
{
vkvHk

}
E {y(k)y(k)y(k)y(k)} e = eHR21e

c22 = eH E {vk y(k)} E
{
vHk y(k)y(k)y(k)

}
e = eHR22e

c23 = eH E
{
vHk y(k)

}
E {vk y(k)y(k)y(k)} e = eHR23e

c31 = eH E
{
vkvHk

}
E {y(k)y(k)} E {y(k)y(k)} e = eHR31e

c32 = eH E {y(k)y(k)} E {vk y(k)} E
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(15)

To solve the equalizer e, we resort to:

max | eHCxy
6,1e |

s.t. eHRvve = σ 2
(16)

In [6], the solution to this optimization problem is achieved by performing eigenvalue
decomposition first and then selecting the principle eigenvector. However, in this
paper, by examining the property of the matrix Cxy

6,1, one may find that the matrix
is not Hermitian, which may give rise to a computation problem if the eigenvalue
decomposition-based optimization is performed directly on it. Instead, we propose
to apply the singular value decomposition to obtain the principle singular vector to
maximize the objective function, which can be seen as a generalization of the solution
in [6]. Finally, it results in,

eEVA = P
{
R−1

vv C
yv
6,1

}
(17)
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where P{·} means the principle singular vector. From (17) the singular vector cor-
responding to the maximum singular value of the matrix is the solution eEVA of the
current iteration which will be used to initialize the f (k) for the next iteration. The
full implementation of the improved GEA method based on (17) can then directly
follow that of original GEA method. The same equalizer model in Fig. 1 is appli-
cable to improved GEA method as well. Finally, the improved GEA method can be
summarized as follows:

– Step-1 Set the reference system to f 0(k) = δ(k − [Lc/2]) and begin the iteration
with iteration counter i = 0. From v(1), ..., v(l) calculate the matrix Rvv ⇒ R̂vv .

– Step-2 Determine y(k) = v(k) ∗ fi (k) and estimate the matrix Cyv
6,1 ⇒ Ĉyv

6,1.

– Step-3 With R̂vv and Ĉyv
6,1 substituted for Rvv and Cyv

6,1 in Eq. (17), calculate the
eEV A by choosing the singular vector corresponding to the maximum singular
value of the matrix R̂−1

vv Ĉ
yv
6,1.

– Step-4 Load e(i)
EV A(k) in to the reference system, i.e. let f (i+1)(k) = e(i)

EV A(k).
Increment the iteration counter: i → i + 1; if i < I , go to step 2.

Here the parameter l is the number of samples of v(k) used to determine the matri-
ces R̂vv and Ĉyv

6,1, and I denotes number of total iterations to estimate the equalizer
coefficients.

3.3 Remarks on Other Modulation Types

Since cumulant is dependent on the modulation type [3], the improved GEA method
may be tailored to a desired modulation by choosing a proper cumulant. For example,
for BPSK modulation, instead of using sixth-order cumulant, we can use fourth-order
cumulant such as C4,1, where the sensitivity to frequency offset can be achieved using
one conjugate item. As for 8PSK signals, we may use eighth-order cumulant such as
C8,1. As for the general class of QAM signals, sixth-order cumulant can also be used.
When using sixth- or higher-order cumulant, the computation load will be higher than
using fourth-order cumulant.

4 Simulations Studies

In this section, we conduct simulation studies to validate the proposed method with
QPSK modulation. Root-raised cosine filter with coefficient of 0.35 and truncated
length of 5 is taken to generate both signal and interference at symbol rate of 400K
symbols per second. Time offsets are 0 and 0.2 for signal and interference, respectively.
Those simulation setups can be seen in the context of co-channel MPSK signals [13,
14]. For the signal, unless otherwise stated, we set frequency offset to be 0 Hz, and
signal-to-noise ratio (SNR) 15 dB in all the simulations. The SNR in this paper means
the SNR of single signal or interference.

In the first example, we illustrate the effect of frequency offset on the cumulant as
developed from (9) to (11) in section III , which is the basis of the improved GEA
method. Here, we take the interference signal for study.We evaluate theC6,1 with 2000
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Fig. 2 Effect of frequency
offset on cumulant C6,1
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Fig. 3 Equalizer output of
original GEA method (number
of symbols=2000, frequency
offset= [0, 1000Hz],
SNR = [15, 15 dB])

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
GEA method

symbols at 15 dB SNR for a range of frequency offset. The result is shown in Fig.
2, indicating that when the frequency offset is not zero, the cumulant goes to almost
zero. Then, we compare the clustering property of outputs from both the conventional
GEA and the proposed GEA. The frequency offset of the interference is set to 1000
Hz. The SNR of interference is also 15 dB. Data length is 2000 symbols. Figure 3
shows the signal cluster after equalization with the original GEA, and Fig. 4 shows the
signal cluster after equalization with the improved GEA. It can be clearly seen that the
improved GEA method produced better clustering result, i.e. equalization, than the
original GEAmethod. In order to compare the twoGEAmethods in a quantitative way,
we compute the symbol error rate (SER) in different simulation scenarios. Hundred
Monte Carlo trials were conducted to generate the average SER for the following
simulations. First, in Fig. 5, we show the results of SERs of both methods with respect
to the SNR of the interference. Signal SNR is 15 dB, and data length is kept as 2000
symbols. Frequency offset is 1000 Hz for the interference. From this result, we can see
that although both methods prefer low SNR of interference, the proposed method is
more robust to strong interference. Second, in Fig. 6, we study the effect of data length
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Fig. 4 Equalizer output of the
improved GEA method (number
of symbols=2000, frequency
offset= [0, 1000Hz],
SNR = [15, 15 dB])
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Fig. 5 SER of the desired
signal versus SNR of
interference signal (number of
symbols=2000, signal
SNR = 15 dB, frequency
offset= [0, 1000Hz])
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on the SER performance, where SNR of interference is 15 dB, and frequency offset is
1000 Hz for the interference. From this figure, we can see that the new GEA method
enjoys longer data for better convergence. Finally, in Fig. 7 we investigate the SER
performance versus the frequency offset, where the data length is 2000 symbols and
SNR of interference is 15 dB, showing that the proposed new GEA method requires
certain amount of frequency offset in interference towork. In addition, from the results,
we may see that at 0 dB signal-to-interference noise ratio, the improved GEA method
can still achieve roughly 0.1 SER, while the original GEA totally fails. Although this
SER is relatively high, channel coding techniques and nonlinear equalization methods
can be applied to further improve the performance in some practical communication
systems, which is very difficult, if not possible, to be achieved if the conventional GEA
method is used. Furthermore, when the interference power goes lower, the two GEA
methods eventually converge to a similar SER, which means that when the desired
signal has considerably higher SNR than the interference, both methods work with
comparable performance. Moreover, the improved GEA method requires sufficient
frequency offset and/or data length to perform well as shown in Figs. 6 and 7.
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Fig. 6 SER of the desired
signal versus number of symbols
(frequency offset= [0, 1000Hz],
SNR = [15, 15 dB])
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Fig. 7 SER of the desired
signal versus interference
frequency offset (number of
symbols=2000,
SNR = [15, 15 dB])
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5 Conclusions

In this paper, we have proposed an improved GEAmethod for blind channel equaliza-
tion in the presence of strong co-channel interference. This was achieved by exploiting
the fact that higher-order cumulant, when properly chosen, can be dependent on fre-
quency offset. Thus, in the case that signal and interference have different frequency
offsets, the cumulant of signal can be retained while that of interference be suppressed.
Therefore, when designed with such cumulants, the improved GEA method is able to
equalize the signal while suppressing the interference. Simulation results were pre-
sented to illustrate the effectiveness of the proposed method. In practical applications,
when it is not possible to achieve good equalization performance in some extreme
cases like the simulation in this paper, this method can be used as an initialization
method that is applied jointly with the signal cancellation scheme [4] to achieve single
channel source separation.
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