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Abstract The extended factored approach (EFA) is believed to be one of the most
efficient and practical space–time adaptive processing (STAP) algorithms for clut-
ter suppression in an airborne radar system. However, it cannot effectively work in
the airborne radar system with large antenna array for the huge computational cost
and the lack of training sample. To solve these problems, a bi-iterative algorithm
based on the persymmetric covariance matrix estimation is proposed in this paper.
Firstly, the clutter covariance matrix is estimated by using the original data, the con-
structed spatial transformed data, the constructed temporal transformed data and the
constructed spatial–temporal transformed data. Secondly, the spatial weight vector in
EFA is decomposed as the Kronecker products of two short weight vectors. Finally,
the bi-iterative algorithm is exploited to obtain the desired weight vectors. Thus, the
improvingEFAwith small training sample demanding is realized. Experimental results
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demonstrate the effectiveness of the proposed method under small training sample
support.

Keywords Space–time adaptive processing (STAP) · Clutter suppression ·
Bi-iterative · Airborne radar

1 Introduction

Space–time adaptive processing (STAP) has been viewed as an effective tool in an air-
borne surveillance radar since it was first proposed by Brennan et al. [1]. It adaptively
suppresses the clutter received by the airborne radar fromboth the temporal domain and
spatial domain and also detects moving targets that are relatively weak compared with
the surrounding clutter. One of the fundamental problems in STAP is the estimation
of the clutter covariance matrix (CCM). As stated in [8], the sample covariance matrix
(SCM) is a practical estimator to compute CCM.However, in the full-dimension STAP
(f-STAP), SCM requires excessive number of training samples, which is difficult to be
realized in the real airborne radar environment. Moreover, f-STAP needs to conduct
matrix inverse operation in adaptive processing, which is quite computationally inten-
sive and intractable. These two main limitations motivate the development of STAP
algorithms with low computational cost and small training sample demanding. Sub-
optimal dimension/rank-reduced STAP algorithms, which maintain nearly the same
performance as f-STAP and address the above issues, have been studied in various lit-
erature [2–4,6,7,9,12–15,17,18]. Among them, the post-Doppler adaptive processing
method, named extended factored approach (EFA or mDT), which is expected to be
one of the most efficient and practical STAP algorithms, is mainly concerned in this
paper [3,16].

The basic principle of EFA is that it transforms f-STAP of a NK-dimensional adap-
tive filtering problem into K separate PN-dimensional adaptive processing problems,
where N is the number of antennas, K is the number of pulses, and P is an integer
satisfied P >1. As a consequence, the required number of homogeneous training sam-
ples is reduced to 2PN according to the RMB rule [10]. Besides, the computational
cost of EFA is also decreased and the applicability of it is increased in practice. Unfor-
tunately, insufficient homogeneous training sample support is a frequent condition in
the airborne radar system with large-scale antenna array elements, which results in
considerable degeneration of the clutter suppression ability of EFA.

Actually, nowadays the persymmetry property of CCM is usually used as the a priori
knowledge to increase the training sample support for accurate CCM estimation. It
is initially exploited for communications. Tong et al. [12] extended the application
of persymmetry to EFA (Per-EFA) and showed that the required number of training
samples is reduced. Per-EFA is demonstrated to be an effective algorithm in training-
limited scenarios. However, the computational cost of Per-EFA in adaptive processing
increases because of the extra computational cost in CCM estimation. Besides, it still
requires excessive quantity of training samples in the airborne radar system with large
spatial degrees of freedom (DoFs).



4138 Circuits Syst Signal Process (2018) 37:4136–4149

In order to reduce both the computational cost and the training sample requirement
in the post-Doppler adaptive processing, a bi-iterative algorithm based on Per-EFA
is proposed in this paper. Firstly, according to the persymmetric property, CCM is
estimated by using the original data, the constructed spatial transformed data, the con-
structed temporal transformed data and the constructed spatial–temporal transformed
data. Secondly, the spatial weight vector in EFA is decomposed as the Kronecker
products of two short weight vectors. Then the cost function of EFA is transformed
into the cost function with multiple weight vectors. Finally, the bi-iterative algorithm
[11] is exploited to obtain the desired weight vectors.

Notation Throughout this paper, matrix and vector are represented by boldface
uppercase letter and boldface lowercase letter, respectively. Superscripts T , ∗ and H

separately denote transpose, conjugate and conjugate transpose of a matrix or a vector.
⊗ and ◦ denote the Kronecker product operator and Hadamard product operator,
respectively. A c× c identity matrix is represented as Ic. ‖•‖F denotes the F-norm of
a matrix, and [•]−1 means the inverse of a matrix.

2 STAP Fundamentals

In this paper, we assume that the uniform linear antenna array is paralleled to the
ground. The configuration of a traditional airborne phased-array radar system to be
studied is shown in Fig. 1. The airborne radar system moves at a constant speed va
along the positive x-direction with N antenna array elements and processes K pulses
on the repetition of Tr in one coherent processing interval (CPI). Let the crab angle
between the antenna array line and the flight velocity be θc. The azimuth angle and
elevation angle at the i th clutter scatter in the lth range cell are denoted as θi and ϕl ,
respectively.

For a given range cell, the clutter, generated by the terrain scatterings, can be
considered as a collection of independent scatters as [8]

z(l) =
Nc∑

i=1

βiat(θi , ϕl) ⊗ as(θi , ϕl), (1)

where Nc scatters are divided in an iso-range cell, βi is clutter echo’s random complex
amplitude, at(θi , ϕl) and as(θi , ϕl) are temporal steering-vector and spatial steering-
vector, respectively. They can be expressed as

at(θi , ϕl) = [1, exp( j2πωi ), . . . , exp( j2π(K − 1)ωi )]T , (2)

as(θi , ϕl) = [1, exp( j2πυi ), . . . , exp( j2π(N − 1)υi )]T , (3)

where ωi = 2Trva cos(θi + θc) cosϕl/λ is the normalized Doppler frequency, υi =
d cos θi cosϕl/λ is the normalized spatial frequency, λ is the operating wavelength,
and d is the array element spacing. The received clutter signal also contains noise,
namely

x(l) = z(l) + n, (4)
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Fig. 1 The airborne phased-array radar system

where n is the Gaussian noise vector. Let s ∈ CK N×1 denote the normalized target
vector. The objective of f-STAP is to maintain the output energy of the target while
minimizing that of clutter. This implies the following cost function

{
min E

[∣∣wHx(l)
∣∣2

]

s.t. wH s = 1
. (5)

The Lagrange multiplier methodology is adopted to obtain the optimal weight

w = R−1
x s/

(
sHR−1

x s
)

, (6)

where Rx = E[x(l)xH (l)] is the CCM. In general, since the statistics of the range
cell under test is never known, CCM is replaced by the SCM estimator, namely R̃x =
1
L

∑L
l=1 x(l)x

H (l), where L is the number of training samples obtained in adjacent
range cells. RMB rule shows that, in the Gaussian noise environment, if the number
of homogeneous training samples exceeds twice the dimension of CCM, the output
SCNR (signal-to-clutter-plus-noise ratio) loss will be within 3dB. The training sample
requirement of f-STAP is evidently unpractical. Moreover, as the inverse operation of
a K N × K N matrix, the computational cost of f-STAP is unbearable of approximate
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O(K 3N 3). These two major issues prevent f-STAP from being put into effect. Hence,
EFA, one of the most efficient and practical STAP algorithms, is mainly concerned
in this paper. It performs Doppler filtering on data of each array element and then
spatial filtering separately within P (P ≥ 2) Doppler bins. Generally, P is set to
3 in EFA. Therefore, the EFA with three Doppler bins is referred in the following.
Let fk = exp(− j2π(k−1)[0, 1, 2, . . . , K −1]T /K )/sqrt(K ) , k = 1, . . . , K , which
are actually the coefficients of discrete Fourier transform and compose the Doppler
filter group, be the Doppler filter coefficient vector. Then the EFA dimension-reduced
transformation matrix according to the kth Doppler bin can be expressed as

Bk = [fk−1, fk, fk+1]T ⊗ IN . (7)

The dimension-reduced space–time data and target can be achieved as

x̂k(l) = Bkx(l)
ŝk = Bks

. (8)

The cost function in EFA is

{
min E

[∣∣ŵH
k x̂k(l)

∣∣2
]

s.t. ŵH
k ŝk = 1

. (9)

Similarly, the solution to Eq. (9) is obtained by using the Lagrange multiplier method-
ology and the CCM is estimated by

R̂x̂k = 1

L

L∑

l=1

x̂k(l)x̂Hk (l). (10)

Evidently, the dimension of CCM is reduced to 3N . As a consequence, the required
number of training samples and computational cost in adaptive processing are sep-
arately reduced to 6N and O(33N 3). Although EFA reduces the training sample
requirement, its clutter suppression ability can still be heavily degraded in large-scale
antenna array elements system.

3 The Bi-iterative Algorithm Based on Per-EFA

Through the persymmetric property of CCM, Ref. [12] increases the number
of training samples by constructing the spatial transformed data, the tempo-
ral transformed data and spatial–temporal transformed data. Let fk−1, fk , fk+1
be the normalized Doppler frequency of three adjacent Doppler bins, Ut =
diag([e j2π fk−1(N−1), e j2π fk(N−1), e j2π fk+1(N−1)]), Ust = diag([e− j2π fk−1(N−1),

e− j2π fk (N−1), e− j2π fk+1(N−1)]) and Js = fliplr(IN ) with fliplr(•) being the MAT-
LAB operator that flips matrix in left/right direction. Then CCM can be estimated by
using the constructed data as
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Rx̂k =
(
R̂x̂k + BsR̂∗

x̂k
BH
s + BtR̂x̂kB

H
t + BstR̂∗

x̂k
BH
st

)
/4, (11)

where

Bs = Ip ⊗ Js, Bt = Ut ⊗ IN , Bst = Ust ⊗ Js, (12)

inwhichBs is the spatial transformationmatrix that exploits the persymmetric property
ofCCM in the spatial domain,Bt is the temporal transformationmatrix that exploits the
persymmetric property ofCCM in the temporal domain, andBst is the spatial–temporal
transformation matrix that jointly exploits the persymmetric property of CCM in the
spatial and temporal domains.

Then, the proposed bi-iterative adaptive method will be introduced after construct-
ing the CCM estimator by Eq. (11). As a matter of fact, x̂k(l) = [x̂1(l), x̂2(l), . . . ,
x̂PN (l)] can be rearranged as the matrix with the following formula

X̂k(l)=

⎡

⎢⎢⎢⎣

X̂1,1(l), X̂1,2(l), . . . , X̂1,b(l)
X̂2,1(l), X̂2,2(l), . . . , X̂2,b(l)
...

...
...

...

X̂a,1(l), X̂a,2(l), . . . , X̂a,b(l)

⎤

⎥⎥⎥⎦ , (13)

where X̂n,m(l) = x̂(n−1)×b+m(l), n = 1, . . . , a,m = 1, . . . , b and a × b = P × N
with scalars a and b both being integers. The objective function in Eq. (9) can be
transformed into the following formula by using Eq. (13)

E

[∣∣∣ŵH
k x̂k(l)

∣∣∣
2
]

= E

[∥∥∥Ŵ∗
k ◦ X̂k(l)

∥∥∥
2

F

]
= E

⎡

⎣
∣∣∣∣∣

b∑

m=1

a∑

n=1

ŵ∗
n,m X̂n,m(l)

∣∣∣∣∣

2⎤

⎦ . (14)

According to the separation of variables, let weight coefficient ŵn,m = unvm be
expressed as the separable form and be introduced into Eq. (14), and the following
bi-quadratic cost function can be acquired

E

⎡

⎣
∣∣∣∣∣

b∑

m=1

a∑

n=1

ŵ∗
n,m X̂n,m(l)

∣∣∣∣∣

2⎤

⎦ = E

⎡

⎣
∣∣∣∣∣

b∑

m=1

a∑

n=1

u∗
n X̂n,m(l)v∗

m

∣∣∣∣∣

2⎤

⎦

= E

[∣∣∣uH X̂k(l)v∗
∣∣∣
2
]

= E

[∣∣∣(u ⊗ v)H x̂k(l)
∣∣∣
2
]

,

(15)

where u ∈ Ca×1 and v ∈ Cb×1 represent the separable weight vectors. Therefore,

after substituting R̂x̂k by
	

Rx̂k , Eq. (9) can be converted into the following cost function

{
min (u ⊗ v)H

	

Rx̂k (u ⊗ v)
s.t. (u ⊗ v)H ŝk = 1

. (16)



4142 Circuits Syst Signal Process (2018) 37:4136–4149

Equation (16) means to minimize the output energy of the clutter while maintain that
of the target by jointly optimizing the weight vectors u and v. By using the Lagrange
multiplier methodology, Eq. (16) can be transformed into the following unconstrained
one

J (u, v) = (u ⊗ v)H
	

Rx̂k (u ⊗ v) + μ(1 − (u ⊗ v)H ŝk), (17)

whereμ is the Lagrange multiplier. Generally, the solution to Eq. (17) is not easy to be
analytically expressed. Fortunately, the bi-iterative algorithm [11] can be conveniently
applied to numerically solve this cost function. And the procedure of the algorithm is
as follows.

To obtain the numerical solution to Eq. (17), v is initializedwith v(0). Then Eq. (17)
becomes an unconstrained cost function with respect to u andμ after substituting v(0)
into it. Let the gradient of J (u, v(0)) with respect to u and μ be zero, the following
iterative value can be obtained

u(1) = R−1
u su/

(
sHu R−1

u su
)

, (18)

where

Ru = (Ia ⊗ v(0))H
	

Rx̂k (Ia ⊗ v(0)), su = (Ia ⊗ v(0))H ŝk . (19)

Again, with fixing u(1), let the gradient of J (u(1), v) with respect to v and μ be zero,
and the iterative value of v(1) can be achieved by

v(1) = R−1
v sv/

(
sHv R−1

v sv
)

, (20)

where

Rv = (u(1) ⊗ Ib)H
	

Rx̂k (u(1) ⊗ Ib) , sv = (u(1) ⊗ Ib)H ŝk . (21)

By repeating the above iterative procedure, u(2) and v(2), u(3) and v(3), …, can be
obtained in turn. The iterative procedure will be stopped if the termination condition
‖v(t) − v(t − 1)‖ / ‖v(t)‖ < δ is satisfied at the t th iteration, where δ is the threshold
and ‖•‖ is the Euclidean norm of a vector. Finally, ŵk is achieved by the Kronecker
products of two short vectors

ŵk = u(t) ⊗ v(t). (22)

The dimensions of Ru and Rv produced in the iterative procedure are a × a and
b × b, respectively. After weight decomposition, both the required number of train-
ing samples and computational cost in the spatial adaptive processing are reduced.
Furthermore, in order to satisfy the small computational cost and training sample
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requirements, the constraints min |a − b| and a < b are added. Hereafter, for sim-
plicity, the bi-iterative algorithm based on the persymmetry of CCM is denoted as
BiPer-EFA.

It is worth noting that J (u, v) = J (αu, α−1v) is satisfied for any nonzero constant
α. In order to eliminate the scale indeterminacy, ‖v‖ is set to unity in each iteration
procedure.

4 Convergence and Computational Cost Analysis

The convergence of the proposed bi-iterative algorithm is verified in this section.
Firstly, let ‖v‖ = 1, the relation J (u(t), v(t)) = uHRuu ≥ κmin ‖u‖2 can be
acquired and the set

{
u(t)|κmin ‖u(t)‖2 ≤ J (u(t), v(t)) ≤ c

}
is bounded for any con-

stant 0 < c < ∞, where κmin is the smallest eigenvalue of Ru . Therefore the set
{u(t), v(t)|J (u(t), v(t)) ≤ c}, which is bounded for any constant 0 < c < ∞ and
iteration number t , can be inferred. Secondly, the cost function J (u, v) in Eq. (17)
is continuous for its differentiability. Thirdly, J (u(t − 1), v(t − 1)) ≥ J (u(t), v(t))
since

J (u(t − 1), v(t − 1)) ≥ J (u(t − 1), v(t)) = min
v

J (u(t − 1), v)

≥ J (u(t), v(t)) = min
u

J (u, v(t)) (23)

The three points justmentioned above satisfy the definition ofLyapunov function [5,7].
Accordingly, J (u, v) is a Lyapunov function and the convergence of the bi-iterative
algorithm is proved.

Since the computational costs of the Doppler filtering are nearly the same in each
method, we mainly consider the computational cost of CCM estimation and matrix
inversion in the spatial adaptive processing. The multiplication and division number
(MDN) is used as an index of computational cost. First of all, the computational cost
of BiPer-EFA is analyzed in detail. It should be noted that the MDN of reducing the
data dimension and constructing the transformed data is L1

[
3N 2K + 3(3N )2

]
. In the

iteration algorithm, the MDN of CCM estimation and weight vector computation is
12(a+b)NL1 + 2

3 (a
3 +b3)+2(a2 +b2)+a+b. As shown in Fig. 5, the bi-iterative

algorithm can reach the convergence value within 10 steps. Therefore, the total MDN
of BiPer-EFA is

L1
[
3N2K + 3(3N )2

]
+ 10

[
12(a + b)NL1 + 2

3
(a3 + b3) + 2(a2 + b2) + a + b

]
.

(24)

Similarly, the MDNs of EFA and Per-EFA are

L3

[
3N 2K + (3N )2

]
+ 2

3
(3N )3 + 2(3N )2 + 3N , (25)

L2

[
3N 2K + 7(3N )2

]
+ 2

3
(3N )3 + 2(3N )2 + 3N , (26)
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respectively, where L1, L2 and L3 are the required number of training samples in each
method.

5 Simulation Results

The linear array element mounted on the aircraft is composed of 64 antennas with
equally spaced by a distance of d = 0.1 m. The echo amplitude of each clutter source
is a complex Gaussian random variable and has been weighted by the transmit beam
pattern. The other parameters are listed in Table 1. The experimental platform is on
a PC notebook with 2.4 GHz Core i7-5500U processor, 4 GB RAM. The algorithms
are coded as MATLAB programs and are run in MATLAB R2011a.

One important metric to measure the clutter suppression ability of a STAP method
is the SCNR loss, which is defined as the loss between the implemented processor and
the optimal one [8]. According to the parameters given above, the weight vector as
discussed in Eq. (15) is decomposed as the Kronecker products of two short vectors
u ∈ C12×1 and v ∈ C16×1. Figure 2 shows the normalized SCNR loss (normalized
by the maximum SCNR loss among EFA, Per-EFA and BiPer-EFA) curves of EFA,
Per-EFA and BiPer-EFA versus the normalized Doppler frequency with small training
sample support. For the sake of estimated CCMs being invertible, the number of
training samples separately conducted in each method is 30, 50 and 192, which are
marked in the parentheses in Fig. 2. In addition, θc = 0 that represents the sidelooking
scenario and θc = π/6 that represents the nonsidelooking scenario are considered in
plotting the curves of Fig. 2. It is demonstrated that though less training samples are
exploited in BiPer-EFA, it obviously possesses better SCNR loss performance than
those of Per-EFA and EFA in both main clutter region and sidelobe clutter region.
Figure 3 shows the normalized SCNR loss curves of EFA, Per-EFA and BiPer-EFA
versus the normalized Doppler frequency with large training sample support (L =
500) under sidelooking scenario and nonsidelooking scenario. Under this condition,
the SCNR performance of BiPer-EFA is a slightly lower than those of Per-EFA and
EFA. Evidently, when adequate number of training samples can be acquired, EFA
possesses the best SCNR performance.

The SCNR loss curve, varying with the number of training samples, describes the
training sample convergence rate of a STAP method. It also demonstrates the min-

Table 1 Parameters of the
simulation

Parameters Value

Wavelength 0.2 m

Pulse repetition frequency (PRF) 2000 Hz

Number of pulses in a CPI 16

Platform velocity 100 m/s

Platform height 8 km

Azimuth angle of the main beam π/2

Elevation angle of the main beam 0



Circuits Syst Signal Process (2018) 37:4136–4149 4145

Fig. 2 SCNR loss curves with small training sample support. a θc = 0, b θc = π/6

Fig. 3 SCNR loss curves with large training sample support (L = 500). a θc = 0, b θc = π/6

imum number of training samples required in a STAP method. Figure 4 shows the
convergence rates of BiPer-EFA, Per-EFA and EFA with the initial number of training
samples individually being 10, 50 and 192 at normalized Doppler frequency 0.3 and
normalized spatial frequency 0. Evidently, BiPer-EFA enjoys far faster training sample
convergence rate than its counterparts. In other words, BiPer-EFA owns lower training
sample requirement than Per-EFA and EFA. The experimental result of iterative con-
vergences of BiPer-EFA with five different random initializations is shown in Fig. 5.
The optimal value in Fig. 5 means the SCNR loss value obtained by the optimal spatial
weight. The BiPer-EFA with all the five initializations can be convergent within 10
iterations, which demonstrates its fast iterative convergence rate. However, all the five
convergent values are around− 5 dB, which probably means that the bi-iterative algo-
rithm may be attracted by the local minimum. Besides, when the number of training
sample is large enough, the SCNR loss performances of EFA and Per-EFA are superior
to that of BiPer-EFA. The probable reason for this result is that when adequate num-
ber of training samples is available, Per-EFA and EFA can achieve the optimal SCNR
values, while BiPer-EFA can only achieve an inferior SCNR value for the limitation of
its special structure. Through the experimental results shown above, the advantage of
BiPer-EFA over Per-EFA and EFA under small training sample support is exhibited.
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Fig. 4 The comparison of convergence rates versus the number of training samples

Fig. 5 The iterative convergence rate with five different initializations

According to Eqs. (24), (25) and (26), the computational cost comparison is shown
in Fig. 6. Here, L1 = 30, L2 = 100 and L3 = 250 are adopted since each method
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Fig. 6 Computational cost comparison

Table 2 Processing time
comparison under small training
sample support

BiPer-EFA 19.78 s

Per-EFA 23.94 s

EFA 23.21 s

can acquire nearly the same SCNR loss with the chosen number of training samples.
Compared with EFA and Per-EFA, one conclusion is obtained that BiPer-EFA can
achieve the smallest computational cost when N > 10. According to the simulation
result, the computational cost of BiPer-EFA is almost 2 times smaller than that of
Per-EFA and that of EFA when the array element scale approaches large. In addition,
for the additional CCM estimation by Eq. (11), the computational cost of Per-EFA is
a little higher than that of EFA.

The processing times for drawing the curves of each method in Fig. 2 are com-
pared in Table 2. Obviously, in accordance with the aforementioned computational
cost analysis, BiPer-EFA possesses the minimum processing time among all methods.
In Table 3, the processing times for drawing the curves of each method in Fig. 3 are
compared.When L1 = L2 = L3 = 500, BiPer-EFA achieves the maximum computa-
tional cost, while EFA achieves the minimum computational cost. As a consequence,
when adequate number of training samples can be obtained, EFA enjoys better clutter
suppression ability and smaller computational cost.
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Table 3 Processing time
comparison under large training
sample support

BiPer-EFA 36.39 s

Per-EFA 3 5 .28 s

EFA 30.54 s

6 Conclusion

In this paper, an algorithm that decreases the training sample requirement and compu-
tational cost has been proposed. The persymmetry property of CCM is utilized, and
the weight vector of EFA is decomposed. Then, the bi-iterative algorithm is applied
to find the desired weight vectors. Experimental results show that the proposed algo-
rithm has superiority in training sample convergence rate and computational cost in
the airborne radar system with large antenna array.
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