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Abstract In this paper, two residue number system (RNS) to binary converters for the
moduli set {2n, 2n−1−1, 2n−1, 2n+1−1} for (n even) are presented. One of them uses
a two-level conversion, inwhich, in the first level, two pairs ofmoduli are considered to
obtain two intermediate decoded numbers. A second-level converter obtains the final
decoded number corresponding to these two intermediate decoded numbers. Both
levels use mixed radix conversion. The second proposed RNS to binary converter uses
the conventional MRC of the four-moduli set. The proposed converters are compared
with previously reported conversion techniques for this moduli set and converters for
other four, five and eight moduli sets for realizing similar dynamic ranges regarding
hardware requirement and conversion time. The hardware resource requirement (A),
conversion time (T ), AT and AT 2 trade-offs are discussed to bring out the relative
advantages of various converters. The proposed converters have been shown to need
less hardware or less conversion time than the other some of the reported converters
for this moduli set. It has been shown by detailed comparison that converters using
conjugate moduli and vertical extension generally exhibit better performance (lower
hardware /lower conversion time) than those using no vertical extension,while needing
differing word lengths of various moduli. These, however, need slightly complex
multipliers/adders in the (2n + 1) channel. Implementation results on FPGA of the
proposed converters for few dynamic ranges also have been presented.
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1 Introduction

The residue number system (RNS) using three or more moduli of the form 2a, 2b −
1, 2c + 1 has attracted considerable attention [1–33,35–40] . In view of the relative
difficulty of operations using moduli of the form (2c + 1) as compared to moduli of
the form 2a, 2b − 1, designers have considered moduli sets with moduli of the form
2a and 2b − 1 with a and b values as close as possible so that all moduli processors
have about the same word length. The modulo addition, modulo subtraction, modulo
multiplication are known to be easy for such moduli. A b-bit modulo addition (u + v)

mod (2b − 1) where u and v are b-bit numbers can be performed by a b-bit adder
adding u and v with end-around-carry (EAC). A b-bit modulo subtraction, i.e., (u−v)

mod (2b − 1) can be carried out by addition of u with one’s complement of v in a
b-bit adder with EAC. The operation (u × v) mod (2b − 1) can be easily carried out
by rewriting the bits of the partial products in the higher bit positions in lower bit
positions by using the periodic property of such moduli: 2k+bxi mod (2b − 1) = 2k xi
and adding the reduced b-bit partial products using a carry-save adder tree followed
by a b-bit adder with EAC. Scaling xi by 2k mod (2b − 1) can be achieved by left
circular left of xi by k bits.

Only two four-moduli sets M1 {2n, 2n−1 − 1, 2n − 1, 2n+1 − 1} [12,13,33], M2
{2k, 2n−1 − 1, 2n − 1, 2n+1 − 1} [39] with n even, have been described in the lit-
erature which use one modulus of the form 2α and other three moduli of the form
(2β − 1). Esmaeildoust et al. [12] have recently presented two designs of RNS to
binary converters for the moduli set M1. These were realized using two-moduli RNS
{Ma, 2n−1 − 1}, where Ma is the three-moduli set {2n, 2n − 1, 2n+1 − 1} [2]. They
have used mixed radix conversion (MRC) for the two-moduli RNS and employing
three converters proposed for the three-moduli subset Ma [2]; they have described six
RNS to binary converters. Taheri et al. [33] have described a two-stage RNS to binary
converter for this moduli set. In the first stage, the reverse conversion for the moduli
set Mb{2n−1 − 1, 2n − 1, 2n+1 − 1} is carried out using MRC. The second stage uses
MRC for the composite moduli set {Mb, 2n}. However, they avoid the final addition
in the MRC-based converter in the first stage in order to reduce the conversion time.
The moduli set M1{2n, 2n−1 − 1, 2n − 1, 2n+1 − 1} has been suggested by Schini-
anaikis et al. for use in ECC processors with n = 64 [13]. They have used MRC to
obtain mixed radix digits. However, in their application, these MRC digits are used
to perform base extension to another moduli set using Horner’s rule. The last stage
needed in MRC-based RNS to binary conversion was not investigated. In [39], using
modulus 2k in place of 2n in the moduli set M1, the MRC technique has been used
to realize a RNS to binary converter. In this paper, we propose one RNS to binary
converter based on two-level conversion technique and also extend the mixed radix
conversion technique considered in [13] to realize another RNS to binary converter.
In Sect. 2, we present the background material needed for this paper. The detailed
derivation of the two proposed converters together with the architectures needed for
their realization is presented in Sect. 3 in detail. In Sect. 4, the proposed converters are
compared regarding hardware requirement and conversion time with earlier described
designs of converters for this moduli set in [12,33]. The proposed designs are also
compared with converters for other moduli sets using four or more moduli considering
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their design for similar dynamic range. These are M3{2n, 2n − 1, 2n + 1, 2n+1 − 1)
[4,6,15,35] (n even), M4{2n, 2n − 1, 2n + 1, 2n−1 − 1} [6] (n even), M5{2n, 2n −
1, 2n +1, 2n+1 +1} (n odd) [4,5,29], M6 {2n, 2n −1, 2n +1, 2n−1 +1} (n odd) [19],
M7{2n, 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} [8], M8{2n, 2n − 1, 2n + 1, 22n+1 − 1}
[17,30], M9{22n, 2n − 1, 2n + 1, 22n+1 − 1} [30], M10{2n, 2n − 1, 2n + 1, 22n + 1}
[7], M11{22n, 2n − 1, 2n + 1, 22n + 1} [17] and M12{2n−5 − 1, 2n−3 − 1, 2n−3 + 1,
2n−2 + 1, 2n−1 − 1, 2n−1 + 1, 2n, 2n + 1} [26]. Implementation results of the two
proposed converters on FPGA for few n values are also presented. In Sect. 5, we
conclude the paper.

2 Background Material

A residue number system uses l moduli {m1,m2,m3,m4, . . . ,ml} and has a dynamic
range D = m1×m2×m3×· · ·×ml , thus being capable of representing uniquely all the
numbers X between 0 and D-1 using the residues {x1, x2, x3, . . . , xl} where X mod
mi = xi for i= 1, 2,…, l. The process of obtaining the binary number X corresponding
to given residues {x1, x2, x3, . . . , xl} is known as reverse conversion and can be carried
out by several techniques [1,18,28,32] and most popular among these are based on
using Chinese remainder theorem (CRT) [1] and mixed radix conversion (MRC) [1].
In the classical MRC technique, (l-1) sequential steps are required to compute the
various mixed radix digits di for i = 1, 2, . . . , l − 1 defined as

X = x1 + d1m1 + d2 m1 m2 + · · · + dl−1m1m2 m3 . . .ml−1 (1)

In the j th step, the mixed radix digit d j−1 determined in the ( j−1)th step is subtracted
from the residues of othermodulimk where k = j+1, j+2, . . . , l andmultipliedwith

the multiplicative inverses
(

1
m j

)
mk
. Note that w =

(
1
y

)
z
is the multiplicative inverse

of y with respect to modulus z defined such that w×y = 1 mod z.
MRC can be carried out in

⌈
log2 l

⌉
steps also considering several pairs of mod-

uli in each step for an l-moduli RNS. In the first step (considering l = even,
i.e., even number of moduli without loss of generality), the pairs can be chosen as
{m1,m2}, {m3,m4}, . . . , {ml−1,ml}. Mixed radix conversion can be used for each
pair {mg,mg+1} to obtain the intermediate decoded numbers Xg,g+1 as

Xg,g+1 = xg +mg

(
(xg+1 − xg)mg+1

(
1
mg

)

mg+1

)

mg+1

(2)

Each of the next steps considers pairs of residues corresponding to the composite
moduli (e.g., in second step composite moduli are of the form (mg×mg+1)) and
computes the decoded numbers. Evidently, the size of the operands (composite moduli
as well residues corresponding to these moduli) increases progressively from first step
to last step. We consider the application of the classical MRC as well as two-level
MRC techniques in this paper.
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Fig. 1 Two-level mixed radix conversion

3 Proposed RNS to Binary Converters for the Four-Moduli Set

We first denote the moduli asm1 = 2n,m2 = 2n−1 −1,m3 = 2n −1,m4 = 2n+1 −1
with n even and the corresponding residues as x1, x2, x3 and x4, respectively. It can
be easily verified that the moduli are mutually prime. This moduli set has a dynamic
range M = m1 × m2 × m3 × m4 = (24n + 7 × (22n−1 − 23n−1) − 2n). We describe
two RNS to binary converters in the next two subsections.

3.1 Two-Level MRC-Based Converter

We consider the two pairs of moduli {2n, 2n−1 −1} and {2n −1, 2n+1 −1} in the first
level and use MRC on the pairs of respective residues to obtain the two intermediate
numbers X12 and X34. In the second level, we use MRC for the residues (X12, X34)

in the composite two-moduli set {M12, M34} where M12 = m1 ×m2 = 2n(2n−1 − 1)
andM34 = m3×m4 = (2n−1)(2n+1−1) to obtain X (Fig. 1). Note that other pairings
of moduli in the first level are also possible. The resulting composite moduli sets are
{M13, M24} and {M14, M23}. One of themultiplicative inverse needed in the first level
for the pairing {M13, M24} is not simple power of 2 thusmakingmodulomultiplication
with the multiplicative inverse expensive in hardware and time. The multiplicative
inverses needed in the first level are simple for the set {M14, M23} which are 2 and
-2 (see “Appendix”). In the second level, MRC needs multiplicative inverses which
have more number of bits which are 1 in the case of pairing {M13, M24}, thus making
the modulo multiplication operation with the multiplicative inverse complex. The
multiplicative inverses needed in the second level, while using the pairing {M14, M23}
has only (n/2) +1 bits which are “1,” whereas in case of using {M12, M34}, the partial
products are n/2 (see “Appendix”).

3.1.1 Computation of X12

It can be seen that X12 can be obtained from x1 and x2 following ( 2) as

X12 = x1 +m1 (ab)m2
= x1 + 2n (ab)2n−1 −1, (3)
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(a)

(c)

(b)

(d)

Fig. 2 a Block computing X12, b block computing X34, c block for computing T and d block for obtaining
final decoded word X

where a = (x2 − x1)2n−1 −1and b =
(

1
2n

)
2n−1 −1

= 2n−2. Since the word lengths

of x1 and x2 are different, x1 needs to be written as x1 = x122n−1 + x11 where
x11 = x1,n−2x1,n−3 . . . x1,1x1,0 and x12 = 00 . . . 0x1,n−1 are (n − 1)-bit words. One’s
complements x11,1C and x12,1C of these two words x11 and x12 need to be added to x2
mod (2n−1 − 1) for computing a. A (n − 1)-bit carry-save adder (CSA) stage (CSA1)
followed by a (n − 1)-bit carry-propagate adder (CPA) (Adder 1 in Fig. 2a) both with
end-around carry (EAC) will be required. Since (n − 2) bits of the word x12,1C are
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“1,” the hardware requirements of the CSA stage are 1 full-adder (FA) and (n − 2)
EXNOR/OR pairs of gates. Thus, totally, this stage needs n full-adders and (n − 2)
EXNOR/OR pairs. The computation time is (2n−1)DFA where DFA is the delay of a
full-adder since the EAC adder exhibits twice the delay of a (n−1)-bit adder. Next, the
multiplicationmod (2n−1−1) with themultiplicative inverse b = 2n−2 can be realized
by circular left shift of a by (n − 2) bits. The (n − 1)-bit result p = (ab)2n−1 −1can be
concatenated with x1 as n LSBs to yield a (2n − 1)-bit word X12 following (3). The
architecture for computing X12 is presented in Fig. 2a.

3.1.2 Computation of X34

We next consider evaluation of X34. Using MRC for the moduli set {m3,m4}, we
have

X34 = x3 +m3 (cd)m4 = x3 +(2n −1) (cd)2n+1 −1, (4)

where c = (x4 − x3)2n+1 −1. It can be easily verified that the multiplicative inverse of
m3 with respect to m4 is

d =
(

1
m3

)

m4

=
(

1

2n −1

)

2n+1 −1

= (−2)2n+1 −1 . (5)

The computation of c = (x4 − x3)2n+1 −1needs a (n+ 1)-bit CPA (Adder 2 in Fig. 2b)
with EAC adding x4 and one’s complement of x ′

3 where x
′
3 is obtained by prepending

x3 with one zero bit as most significant bit (MSB). The multiplication using the mul-
tiplicative inverse d mod (2n+1 − 1) for obtaining q = (cd)2n+1 −1can be realized by
one-bit circular left shift of c and taking one’s complement. Next computation of X34
from (4) can be carried out by adding the two (2n + 1)-bit words q2n + x3 and two’s
complement of q:

qnqn−1 . . . q2q1q0x3,n−1 . . . x3,1x3,0
11. . .11q ′

nq
′
n−1. . .q

′
1q

′
0

1

(Note that q2n + x3 is obtained by concatenating qas (n + 1) bit MSB word with x3).
Note also that the primes indicate inverted bits. (Since the result is always positive,
the adder can be (2n + 1)-bit; sign bit of the two’s complement word need not be
considered). The addition of these words needs a (2n+2)-bit CPA (Adder 3 in Fig. 2b)
which can be simplified taking into account the fact that n bits in one of the words are
1. The hardware requirements are n full-adders and (n + 1) pairs of exclusive-NOR
(XNOR) and OR gates. Thus, the total hardware requirements for computing X34 is
(2n + 1) full-adders and (n + 1) EXNOR/OR pairs of gates. The computation time is
(4n + 3)DFA.
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3.1.3 Computation of X

The computation of the final result X uses mixed radix conversion corresponding to
the residues (X12, X34) for the moduli set {M12, M34}:

X = X34 + M34 (e f )M12
, (6)

where e = (X12 − X34)M12
and

f =
(

1

M34

)

M12

= 22n−1 − 2n+1 +3

3
= 2n+1

(
2n−2 −1

3

)
+ 1. (7)

Note that
(
2n−2 −1

3

)
= 2n−2 −1

22 −1
= 2n−4 + 2n−6 + · · ·+4+1 for n ≥ 6 and for n = 4,(

2n−2 −1
3

)
= 1. Hence,

(
2n−2 −1

3

)
has (n−2)/2 bits which are “1.” Thus, f has n/2 bits

which are “1” leading to n/2 partial products which are left-shifted versions of e. As

an illustration, for n = 4, 6, 8, 10, we have f =
(

1
M34

)
M12

= 33, 641, 10753, 174081

having 2, 3, 4 and 5 bits which are “1.” The proof for (7) is as follows:
We need to find f such that ( f × M34) = 1 mod M12 or

f × (22n+1 −3 × 2n +1) = 1 mod (22n−1 − 2n) (8a)

which is same as

f × (2n +1) = 1 mod (22n−1 − 2n) (8b)

after mod (22n−1 − 2n) reduction. Multiplying (8b) both sides by (2n − 4), we have

f × (− 2n −4) = (2n −4) mod (22n−1 − 2n). (8c)

Adding (8b) and (8c), we have

f × (−3) = (2n −3) mod (22n−1 − 2n) (8d)

or

f =
(
3 − 2n

3

)
mod (22n−1 − 2n) =

(
22n−1 − 2n+1 +3

3

)
. (8e)

We consider next computation of e. The word lengths of X12 and X34 are 2n − 1
and (2n+1) bits, respectively. Since mod M12 where M12 = (22n−1−2n) operation is
required, we consider the (2n+1)-bit word X34 as X34H22n−1+ X34L , where X34L is
a (2n−1)-bit word x34,2n−2x34,2n−3 . . . x34,0 and X34H is a 2-bit word x34,2nx34,2n−1.
We next note that 22n−1 mod (22n−1 − 2n) = 2n . Thus, we have
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(X34) mod (22n−1 − 2n) = (X34H2
2n−1 + X34L) mod (22n−1 − 2n)

= (X34H2
n + X34L) mod (22n−1 − 2n). (9)

Next, the (n + 2)-bit word X34H2n is prepended with (n − 3) number of “0” bits
to make it a (2n − 1) bit word X ′

34H . Thus, e can be computed as

e = (X12 − X34)M12

= (
X12 + X34L ,1C + X ′

34H,1C + C ′)
M12

, (10)

where 1C indicates one’s complement. Note that a correction term C ′ = 22n−1 − 3×
2n + 2 needs to be added to take care of one’s complementing operation of X34L and
X34H and mod (22n−1 − 2n) reduction in (10):

X34L ,1C + X ′
34H,1C + 22n−1 −3 × 2n +2 = (22n−1 −1 − X34L)

+ (22n−1 −1 − 2n X34H ) + 22n−1 −3 × 2n +2

= (− X34) mod M12 . (11)

Note that X12 + X34L ,1C + X ′
34H,1C +C ′ in (10) can exceed M12 when X12 is max-

imum (= 22n−1 − 2n − 1) and X34 = 0 and can be at most (22n−1 − 2n −
1) + 2(22n−1 − 1) + 22n−1 − 3 × 2n + 2 = 22n+1 − 2n+2 − 1. The terms
X12, X34L ,1C , X ′

34H,1C can be added using a CSA stage (CSA2) needing 2 FA and
(2n − 3) pairs of XNOR/AND gates since (2n − 3) bits are “1” in X34H,1C (Fig. 2c).
Next, C ′ = 22n−1 − 3 × 2n + 2 = 2n(2n−1 − 3) + 2 can be added with the SUM
and CARRY output vectors of this CSA2 in another level of CSA (CSA3) comprising
nHA (where HA stands for half-adder) and (n−1) XNOR/OR pairs since C ′ contains
n bits which are zeros and (n − 1) bits which are “1.” These two CSA levels generate
two carry bits Cx and Cy which are added using a HA to obtain carry Ca and sum
Sabits of weights 22n and 22n−1. These can be reduced mod (22n−1 − 2n) using the
relation (Ca 22n + Sa 22n−1) mod (22n−1 − 2n) = Ca 2n+1 + Sa 2n .

This implies adding Ca and Sa at the (n + 1)th and nth bit positions in another
level of CSA (CSA4) needing (n − 3)HA and 2FA. This is followed by a modulo
(22n−1 − 2n) Adder 1 which needs two cascaded (2n − 1)-bit CPAs. Thus, the CSAs
in Fig. 2c need 4FA+(2n − 3)HA+(3n-4)XNOR/OR pairs of gates and the two CPAs
need (4n-2)FA. The total time needed for computing e is (4n+1)DFA.

The computation of T = (e f )M12
needed in (6) requiresmod (22n−1−2n) reduction

in the n/2 partial products (PPs) Ti which are left-shifted versions of e.Some of these
PPs PPi = e fi 2

i where fi is the i th bit of fwhich is “1,” extend beyond (2n−1) bits
up to (4n-4) bits. Hence, denoting PPi = PPi2 23n−2+PPi1 22n−1+PPi0, we have

(PPi ) mod (22n−1 − 2n) = (PPi2 2
3n−2 +PPi1 2

2n−1 +PPi0) mod (22n−1 − 2n)

= (PPi2 2
n +PPi1 2

n +PPi0) mod (22n−1 − 2n) (12)

since (PPi1 22n−1) mod (22n−1 − 2n) = PPi1 2n and (PPi2 23n−2) mod
(22n−1 − 2n) = (PPi2 2n) mod (22n−1 − 2n). Note that for some partial products with
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length less than 3n-2 bits, PPi2 = 0. Hence, the bits in the bit positions (3n − 3) to
(2n − 1) shall be mapped as bit positions 2n-2 to n bit positions as additional words.
Note that for partial products havingmore than (3n−2) bits, the bits in the bit positions
4n-4 to 3n-2 will also be mapped between 2n-2 to n bit positions. Since the partial
products are of different lengths, some of the repositioned bits can be accommodated
in vacant bit positions. Thus, the number of (2n−1)-bit words to be added is only n.

An example will illustrate this computation. Consider multiplication of e×10753
mod32512 for themoduli set {256,127,255,511}where e ise14e13e12e11e10e9e8e7e6e5
e4e3e2e1e0. (Note that M12 = 32,512, M34 = 130, 305 and f = 10,753 for n = 8). The
modulo (22n−1 − 2n) reduced partial products are as illustrated in Table 1. Note
that only partial products corresponding to “1” in the multiplier 10,753 need to be
considered. The partial product corresponding to the multiplier 29 can be seen to be
folded two times in the second, third and fourth rows shown in bold in Table 1.

It can be seen that only bits beyond nth bit position need to be added using a carry-
save adder tree. The carry bits can be placed in the vacant bit in the n-bit carry vector
due to the mod (22n−1 − 2n) operation. The computation of T needs (n − 2)(n − 1)
full-adders for the CSA tree (CSA5) and two (2n−1) bit CPAs cascaded for realizing
addition mod M12(Mod (22n−1 − 2n) Adder 2) thus needing (4n-2) full-adders.

The computation of (6) next can be carried out as follows:

X = X34 + M34 T = X34 +T (22n+1 − 2n+1 − 2n +1). (13)

Denoting T as the (2n − 1)-bit word t2n−2t2n−3. . .t1t0, the bit matrix corresponding
to (13) is presented in Table 2. In order to take care of the two’s complementing the
two words T × 2n, T × 2n+1, a carry-in of 1 can be added to both the CSA stages.
Note that the four 4n-bit words need to be added using two-level CSA (CSA6 and
CSA7) followed by a 4n-bit CPA (Adder 4) to obtain the final decoded wordX as
shown in Fig. 2d. The CSA needs (3n-3) full-adders and (2n + 2) EXNOR/OR pairs
since many bits are “1,” and the CPA needs 4n full-adders and the computation time
is (4n+2)DFA. The conversion time is the sum of computation times of X34, T and X
since the computation time is more for X34 than X12.

3.2 Mixed Radix Conversion-Based Converter

We consider next RNS to binary converter using mixed radix conversion for the same
moduli set. The MRC technique and its implementation architecture are presented in
Fig. 3a, b. This needs three steps. In the first step, three operations are performed in
parallel each needing one modulo subtraction followed by one modulo multiplication
with a multiplicative inverse following (1). In the second step, two such operations are
performed in parallel, and in third step one such operation is needed. The final stage
uses the mixed radix digits d1, d2 and d3 obtained in these three steps to compute the
most significant 3n bits of X denoted as XH as

XH = d1 + d2(2
n−1 −1) + d3(2

n −1)(2n−1 −1). (14)
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(a)      

(b)      
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x1                    x2                    x3               x4  

-x1                   –x1          –x1  
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-d1         -d1
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- +- +
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0x1 x4
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n 
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MODSUB6 

MODSUB5 MODSUB4 
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CLS by 1 bit and one’s complement
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                                    Bit mapping  

3n r1

X 

n 

                       3n-bit ADDER (Adder 5)  

XH

                       3n-bit CSA  (CSA8)  
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Fig. 3 Converter based on mixed radix conversion a algorithm and b architecture
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The multiplicative inverses needed in the first step are

(
1

m1

)

m2

=
(

1

2n

)

2n−1−1

= 2n−2,

(
1

m1

)

m3

=
(

1

2n

)

2n−1

= 1,

(
1

m1

)

m4

=
(

1

2n

)

2n+1−1

= 2. (15a)

The multiplicative inverses needed in the second step are

(
1
m2

)

m3

=
(

1

2n−1 −1

)

2n −1
= −2,

(
1
m2

)

m4

=
(

1

2n−1 −1

)

2n+1 −1
= 2n+1 −5

3
= γ.

(15b)

The last step needs the multiplicative inverse

(
1
m3

)

m4

=
(

1

2n −1

)

2n+1 −1
= −2. (15c)

Thus, all the multiplicative inverses are simple except γ =
(

1
m2

)
m4

= 2n+1 −5
3 . Note

that γ can be derived as follows: We need to find γ such that

γ ×m2 = 1 mod m4

or

γ × (2n−1 −1) = 1 mod (2n+1 −1) (16a)

Multiplying both sides of (16a) with 4, we have

γ × (2n+1 −4) = 4 mod (2n+1 −1) (16b)

or

γ × (−3) = 4 mod (2n+1 −1). (16c)

Thus, we have

γ =
(−4

3

)
mod (2n+1 −1) =

(
2n+1 −5

3

)
mod (2n+1 −1). (16d)

Note that
(
(x2 − x1)2n−1 −1 2

n−2
)
2n−1 −1is realized by the MODSUB1 block fol-

lowed by left circular shift of (n − 2) bits (Fig. 3b) to obtain d1. This block is same
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as that shown in Fig. 2a. The computation of (x3 − x1)2n −1 needs addition of x3 with
one’s complement of x1in a n-bit CPA with EAC (MODSUB2 in Fig. 3b) to yield
directly a1 since multiplication by the multiplicative inverse 1 does need any addi-
tional computation. Next, (x4 − x1)2n+1 −1needs addition of, one’s complement of, x1
prepended with one zero bit, with x4 in a (n + 1)-bit CPA with EAC (MODSUB3).
The multiplication of this result with the multiplicative inverse 2 mod (2n+1 − 1) is
realized by left circular shift (CLS) of the output of MODSUB3 by one bit to obtain
a2.

The computation of (a1 − d1)2n −1 can be carried out by adding a1 with one’s
complement of d1 prepended with a zero bit, in a n-bit CPA with EAC (MODSUB4).
The multiplication with multiplicative inverse −2mod(2n − 1) is realized by one-bit
left circular shift (CLS) followed by one’s complementing (inversion of all bits) for
obtaining d2. Similarly, (a2 − d1)2n+1 −1 needs addition of a2 with one’s complement
of d1 prepended with two zero bits, in a (n + 1)-bit CPA with EAC (MODSUB5).
Note that the output of MODSUB5 block needs to be multiplied with γ (see (15b))
and reduced mod (2n+1 − 1) in the block MODMUL.

The multiplicative inverse γ can be expressed as

γ =
(

1

2n−1 −1

)

2n+1 −1
= 2n+1 −5

3

= 2n+1 −5

22 −1
= 2n−1 + 2n−3 + · · · + 23 +1 for n ≥ 4. (17)

It can be seen for n = 4, 6, 8, 10 to be 9, 41, 169, 681. The multiplicative inverse γ

will have n/2 bits which are 1 thus needing only n/2 number of partial products. The
multiplicationwith 2m mod (2n+1−1) can be accomplished by left circular shift (CLS)
of m bits. Thus, the number of partial products obtained are n/2 each having (n + 1)
bits. The addition of these with EAC needs a CSA tree of (n/2)-2 levels followed by
a (n + 1)-bit CPA with EAC. The hardware and time requirements for multiplication
of (a2 − d1)m4

with γ in the MODMUL block in Fig. 3b are (n + 1)
( n
2 − 1

)
FA and

(5n/2)�FA.
The computation of (b1 − d2)2n+1 −1 can be realized using the block shown in

dotted lines in Fig. 2b (with b1 in place of x4 and d2 in place of x3 using MODSUB6).
The multiplication with the multiplicative inverse -2 mod (2n+1 − 1) is carried out
by left circular shift (CLS) by one bit followed by inversion of all the bits (one’s
complementing) to obtain d3.

Denoting d1, d2 and d3 in (14) of bit lengths (n−1), n and (n+1) bits, respectively,
as d1(n−2)d1(n−3) . . . d11d10, d2(n−1)d2(n−2) . . . d21d20 and d3nd3(n−1) . . . d31d30, the
various words that need to be added for the computation of XH following (14) for
n = 8 are presented in the bit matrix in Table 3. Note that all the 1 bits due to one’s
complementing and addition of three “1”s for two’s complementing of three terms
have been combined as a single word h = 23n − 3× 22n + 2n−1 + 1. The bit mapping
block (Fig. 3b) obtains the various 3n-bit words from d1, d2 and d3 which are added
in a CSA (CSA8) needing (4n + 3)FA + (2n − 1) HA followed by a CPA (Adder 5)
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needing 3nFA. The computation time is (3n + 3)�FA. Next, XH is appended with x1
as LSBs to yield the final decoded word.

4 Hardware and Conversion Time Evaluation of Proposed Converters

The hardware requirement and conversion time of the proposed converters for mod-
uli set M1 (n even) using two-level MRC (Converter 1) and MRC (Converter 2) are
presented as entries D1 and D2 in Table 4. The hardware requirements of the three
converters described in [12] for Design I are presented as entries D3–D5 in Table 4 for
comparison. Note that the design D5 uses a ROM, whereas the others use combina-
tional logic. Three other converters described in [12] Design II need (n2-15n)/2 less
number of full-adders than those given in Table 4 in entries D3–D5 and their conver-
sion time is also less by (2n-2+p−q) DFA. The two-stage converter D6 of Taheri et
al. [33] uses first-stage converter of three-moduli set Mb {2n −1, 2n+1 −1, 2n−1 −1}
using MRC and uses a second stage using MRC of the composite moduli set {Mb,
2n}. The design D7 for moduli set M2 [39] using modulus 2k in place of 2n in the
moduli set M1 is based on MRC.

We also consider the five converters D8–D12 for the moduli set M3{2n, 2n −
1, 2n + 1, 2n+1 − 1). The two-stage designs D8 [4] and D9 [15] are based on MRC
of the composite moduli set {Mc, 2n+1 − 1} where Mc is the popular three-moduli
set {2n − 1, 2n + 1, 2n} in the second stage and use the three-moduli RNS to binary
converter of Piestrak and Dhurkadas [10,23] in the first stage. The design D10 [35] has
employed CRT. The designs D11 and D12 [6] also use MRC of the composite moduli
set {Mc, 2n+1 − 1}, but use the three-moduli RNS to binary converter Converter 1
due to Wang et al. [36]. The designs D13 and D14 [6] for the moduli set M4{2n, 2n −
1, 2n + 1, 2n−1 − 1} [6] (n even) also use Wang et al. Converter 1 [36] in the front
end followed by MRC of the composite moduli set {Mc, 2n−1 − 1}. The converter
D15 for moduli set M5 {2n, 2n − 1, 2n + 1, 2n+1 + 1} (n odd) [4] uses MRC for
the composite moduli set {Mc, 2n+1 + 1} and uses the reverse converter of Piestrak
[23] and Dhurkadas [10] in the front end for three-moduli RNS to binary converter.
The design D16 [29] for moduli set M5 uses a two-level converter similar to the
architecture in Fig. 1 and use MRC in both the levels. The design D17 [5] for moduli
set M5 is based on CRT. The converter D18 for the moduli set M6{2n, 2n − 1, 2n +
1, 2n−1 + 1} (n odd) [19] uses MRC on the composite moduli set {Mc, 2n−1 + 1}
and has used the three-moduli RNS to binary converter of Wang, Jullien and Miller
[37] in the first stage. The converters D19 and D20 for moduli set M6 use two-level
reverse converter following Fig. 1. The two-stage converter D21 for the moduli set
M7 {2n, 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} [8] uses MRC on the composite moduli
set {M3, 2n−1 − 1} and uses the four-moduli reverse converter of [6] for the moduli
set M3 in the first stage. The converters D22 [30] and D23 [30] for moduli sets M8
{2n, 2n −1, 2n +1, 22n+1 −1} andM9 {22n, 2n −1, 2n +1, 22n+1 −1}, respectively,
also use same architecture as in Fig. 1 considering two pairs of moduli in first stage.
The design D24 [7] for moduli set M10{2n, 2n − 1, 2n + 1, 22n + 1} is based on New
CRT-I [38]. The converter D25 [17] for moduli set M8{2n, 2n −1, 2n +1, 22n+1 −1}
is based on the architecture of Fig. 1, whereas the converter D26 [17] for moduli set
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M11{22n, 2n − 1, 2n + 1, 22n + 1} uses New CRT-I [38]. The converter D27 [26] for
moduli setM12 {2n−5−1, 2n−3−1, 2n−3+1, 2n−2+1, 2n−1−1, 2n−1+1, 2n, 2n+1}
considers four pairs of moduli in the first level and two pairs of composite moduli in
second level and one pair of composite moduli in the third level. It uses MRC for
each two-moduli reverse converter in first and second levels and uses CRT in the third
level. The hardware requirements in terms of gates as well as conversion time for
all the 27 converters are presented in Table 4. In Table 4, we denote the converters
following the architecture of Fig. 1 as MRC(2-2) and converters using converters for
three-moduli set Ma or Mb or Mc in first stage and MRC in second stage as MRC
(3-1) converter. Note that the three-moduli converters could have been designed by
any technique—MRC, CRT or New CRT-I. The other converters presented in Table 4
have been described as using New CRT-I or MRC (4-1) or MRC or three-stage (MRC,
MRC, CRT) types. The corresponding hardware requirements and conversion times
using the unit-gate model [34] are presented in Table 5. We have considered the gates
needed for full-adder, half-adder, 2:1 MUX, EXOR, AND, OR gates as 7, 4, 3, 2, 1
and 1 and the delays as 4, 2, 2,2,1,1 unit delays �g , respectively. Note that we have
not considered the equivalent gates of the ROM for the converters D5 and D17, but
only number of ROM bits needed are given in brackets.

If we consider converters D8, D9, D11–D15, D18 using Mc, D9 needs lowest AT2.
Among the converters D24 and D26 using New CRT-I, converter D26 has lowest AT2.
For the five-moduli converter D21, we note that AT2 is lower than D1 and D15 for all
dynamic ranges, whereas AT2 is lower than that of converters D3 for DR 16, 48 and
64 bits and lower than that of converter D10 and D16 for DR of 48 bits. Among the
converters D7, D22–D26, converter D26 exhibits lowest AT2 for DR 16, 32 and 64
bits and D23 has lowest for 48-bit DR.

All the moduli sets M1–M12 have different dynamic ranges (DR) varying from
about 4n-1 bits to (8n-15) bits for the chosen n(and k values). The moduli sets M5
and M6 are possible for only odd n, and the moduli sets M1-M4 and M7 are possible
for even nonly. The other moduli sets are possible for even or odd n values. The gate
requirement and conversion times estimated following Table 5 for realizing the four
dynamic ranges 16 bits, 32 bits, 48 bits and 64 bits are presented together with the
needed n and k values in Table 6. The plots showing area in unit gates, conversion
time, AT (area× Time) and A×T2(area × Time2) for four dynamic ranges 16 bits, 32
bits, 48 bits and 64 bits are presented in Fig. 4a–d for appropriate choice of n (and k
wherever applicable).

The converter designs D1, D16, D19, D20, D22, D23 and D25 use MRC (2-2)
two-stage reverse converters following Fig. 1. The converter designs D2–D9, D11–
D15, D18–D20 are also two-stage converters, but in the first stage they employ a
three-moduli reverse converter for the moduli sets Ma or Mb or Mc. The two-stage
reverse converter for five-moduli setM7 converter D21 usesMRC in second stage, and
the converter for four-moduli set M3 is used in first stage. All these use mixed radix
conversion in the second stage. The converter D2 uses conventional MRC needing
three successive steps for finding mixed radix digits and finally computes the decoded
word. The converters D24 and D26 uses NewCRT-I, whereas converters D10 and D17
use CRT.
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Fig. 4 a Area (unit gates) A and b conversion time T , c A×T and d (A×T 2) of various reverse converters
for dynamic ranges 16, 32, 48 and 64 bits

The following conclusions can be arrived at from Table 6 for the four DRs consid-
ered. Among all the reverse converters considered, D26 exhibits lowest area for 16-bit
DR and D25 needs lowest resources for other dynamic ranges. Regarding conversion
time, D23 needs least among all designs. For 64-bit DR, D26 is comparable with D23
regarding conversion time.

Among all the converters for themoduli setM1, converterD2needs lowest hardware
resources, whereas D6 needs the least conversion time. The converter D1 needs low
area than D3, D4, D5 and D6 for all dynamic ranges. The converter D2 needs lower
conversion time than converter D3. The converter D7 using modulus 2k needs lower
area than all converters for the moduli set M1 andmore conversion time than converter
D6 for all DRs and more conversion time than D4 and D5 for DRs of 48 bits and 64
bits.

Among theMRC (2-2) converters following Fig. 1 (D1, D16, D19, D20, D22, D23,
D25), the design D25 needs lowest area, whereas D23 needs least conversion time.
Among all the four-moduli reverse converters using converter for moduli set Mc in the



Circuits Syst Signal Process (2018) 37:3605–3634 3631

Table 7 FPGA implementation
results of converters D1 and D2

Design n values Area (slices) Delay (ns)

D1 n= 4 38 13.773

n= 8 86 17.383

n= 16 195 16.347

D2 n= 4 48 13.403

n= 8 63 16.319

n= 16 124 14.530

front end (D8, D9, D11–D15, D18), the converter D8 needs lowest area and converter
D9 has least conversion time. Among the two converters using New CRT-I, converter
D26 needs less area and conversion time than that of converter D24.

The five-moduli reverse converter D21 needs lower area than converters D1, D3–
D6, D10, D17 for all dynamic ranges and less area than converters D16 and D20 for
dynamic ranges 32, 48 and 64 bits. It also needs less area than converters D15 for
DR of 16, 48 and 64 bits. The converter D21 needs less conversion time than that of
converters D1, D17 for all dynamic ranges and less than that of converter D3 for 16
bits, and converters D15 for DR of 16, 32 and 64 bits.

We also consider the moduli sets for comparison which have widely differing word
lengths (n to (2n + 1) bits) for the moduli. These are D7, D22–D26. Among these,
converter D25 needs lowest area, whereas converter D23 has lowest conversion time.

We next consider comparison using Table 6 and plots in Fig. 4c regarding AT. AT is
lowest for converter D26 considering all converters. Among all the converters D1–D6
for moduli set M1, D6 needs lowest AT for 16-, 32- and 48-bit DR and for 64-bit DR
D2 needs lowest AT. Considering D7 also, the converter D7 needs lowest AT. Among
MRC (2-2) converters D1, D16, D19, D20, D22, D23 and D25, the converter D23 has
lowest AT. If we consider converters D8, D9, D11–D15, D18 using Mc, for DR 16 bits
and 32 bits, D8 needs lowest AT, whereas for 48-bit and 64-bit DR, D9 needs lowest
AT. Among the converters D24 and D26 using New CRT-I, converter D26 has lowest
AT. For the five-moduli converter D21, we note that AT is lower than D1, D3 and D4
for all dynamic ranges, whereas AT is lower than that of converters D10 and D15 for
DRs of 16, 48 and 64 bits and lower than that of converter D16 for DRs of 48 and 64
bits. Among the converters D7, D22–D26, converter D26 exhibits lowest AT for DRs
of 16, 32 and 64 bits and D23 has lowest AT for 48-bit DR.

We next consider comparison of various converters regarding AT2. AT is lowest for
converter D26 considering all converters. Among all the converters D1–D6 for moduli
set M1, D6 needs lowest AT2 and considering D7 also, the converter D7 needs lowest
AT2 for DRs of 16, 32 and 48 bits. AmongMRC (2-2) converters D1, D16, D19, D20,
D22, D23 and D25, the converter D23 has lowest AT2.

4.1 FPGA Implementation Results

The converters D1 and D2 have been realized for n = 4, 8 and 16 on Xilinx Device
Virtex6—xc6vhx380t, Package: ff1923of Speed Grade 3 using Verilog HDL. These
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roughly correspond to dynamic ranges of 16, 32 and 64 bits, respectively. The post-
placement and routing results of area requirement in slices and the conversion time
are presented in Table 7. It can be seen that the converter D2 needs less area than
converter D1 for n = 8 and n = 16, whereas the conversion times comprise of only
combinational logic path delay.

5 Conclusion

In this paper, novel RNS to binary converters for the moduli set {2n, 2n − 1, 2n+1 −
1, 2n−1 − 1} for n even using two-level MRC-based converter are presented. The
proposed converters have been compared with converters proposed earlier for this
moduli set as well as other moduli sets using four, five and eight moduli described
in the literature for similar dynamic range. The proposed converters have been found
to be having advantage ether in hardware requirement or conversion time over some
of the previous reported converters. The advantage of this moduli set is the use of
moduli which are convenient for fast arithmetic operations such as modulo addition,
subtraction and multiplication and binary to RNS conversion.

The comparison among all the converters considered has shown that four-moduli
RNS converters using vertical extension, i.e., one modulus 2x with x larger than the
word length of conjugate moduli {2n − 1, 2n + 1} may lead to lower conversion time
and/or lower hardware resource requirement (converters D22–D26). These can have
the fourth modulus of word length n to (2n + 1) bits. However, it must be noted
that the arithmetic components for the moduli channels like modulo adders, modulo
multipliers in channels of bigger word length using moduli (22n+1 − 1) or (22n + 1)
may limit the overall performance of RNS arithmetic operations, whereas operations
in the 2x moduli channel can be area efficient and time efficient. The computation in
case of moduli of type (2α − 1) and 2x can be advantageous in situations like FIR
filters where repeated MAC operations need to be carried out and in cryptography
applications [13].

Appendix

In this Appendix, we consider the two different pairings of moduli in the two-level
MRC. In the case of the pairing ofModuliM13, M24, the variousmultiplicative inverses
are as follows:

In the first level we have
(

1
2n

)
2n −1

= 1 and
(

1
2n−1 −1

)
2n+1 −1

= 2n+1 −5
3 =

2n−1 + 2n−3 + · · ·+23 +1and in the second level,wehave
(

1
(2n−1 −1)(2n+1 −1)

)
2n(2n −1)

= 22n−1 −7 × 2n−1 +1 = 2n−1(2n −7) + 1. This has been derived using extended
Euclid algorithm. Thus, in the first level, multiplication with one of the multiplica-
tive inverses takes more time than in the case of choice of M12,M34. In the second
level, the multiplicative inverse has (n − 1) number of bits which are “1” and hence
(n−1) partial products are needed to be added. The modulo M13 reduction can follow
a similar method as described in the case of mod M12 reduction.
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In the case of the pairing of Moduli M14, M23, the various multiplicative inverses
are as follows:

In the first level, we have
(

1
2n

)
2n+1 −1

= 2 and
(

1
2n−1 −1

)
2n −1

= −2.

In the second level, we have
(

1
(2n−1 −1)(2n −1)

)
2n(2n+1 −1)

= 22n +19×2n−1 +3
3 =

2n−1(2n−1 + 2n−3 + · · · + 24 +1) + 1. This has been obtained using extended Euclid
algorithm.

The multiplicative inverses in the first level are simple, whereas that in the second
level has (n/2)+1 bits which are “1,” thus leading to (n/2)+1 partial products which
need to be reduced mod M14 following a similar method as described in the case of
mod M12 reduction.
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