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Abstract The Carson and Fry introduced the concept of variable frequency as a gen-
eralization of the constant frequency. The instantaneous frequency (IF) is the time
derivative of the instantaneous phase, and it is well defined only when this deriva-
tive is positive. If this derivative is negative, the IF creates problem because it does
not provide any physical significance. This study proposes a mathematical solution
and eliminates this problem by redefining the IF such that it is valid for all mono-
component, multicomponent signals of nonlinear and nonstationary nature. This is
achieved by using the property of the multivalued inverse tangent function that pro-
vides base to ensure that the instantaneous phase is an increasing function. The efforts
and understanding of all the methods based on the IF would improve significantly
by using this proposed definition of the IF. We also demonstrate that the decompo-
sition of a signal, using zero-phase filtering based on the well-established Fourier
and filter theory, into a set of desired frequency bands with proposed IF produces
accurate time–frequency–energy (TFE) distribution that reveals true nature of signal.
Simulation results demonstrate the efficacy of the proposed IF that makes zero-phase
filter-based decomposition most powerful for the TFE analysis of a signal.
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1 Introduction

The time domain representation and the frequency domain representation are two
classical representations of a signal. In both domains, the time (t) and frequency ( f )
variables are mutually exclusive [4]. The time–frequency distributions (TFDs), on
the other hand, provide localized signal information in time and frequency domain.
The TFD provides insight into the complex structure of a signal consisting of several
components. There exist many types of time–frequency analysis methods such as
short-time Fourier transform (STFT), Gabor transform, wavelet transforms, Wigner–
Ville distribution, and discrete orthonormal Stockwell transform (DOST) [39].

Carson and Fry [5] introduced the concept of variable frequency, required to the
theory of frequency modulation (FM), as a generalization of the definition of constant
frequency. Moreover, the nonstationary nature of the signals and nonlinear systems
require the idea of instantaneous frequency (IF). The IF is the basis of the TFD
or time–frequency–energy (TFE) representation and analysis of a signal. The IF is
a practically important parameter of a signal which can reveal the underlying pro-
cess, and provides explanations for physical phenomenon in many applications such
as vibration, acoustic, speech signal analysis [32], meteorological and atmospheric
applications [17], seismic [32], radar, sonar, solar physics, structural engineering, com-
munications, health monitoring, biomedical and medical applications [7], mechanical
systems analysis [41], TFE representation of cosmological gravity wave [1], financial
market data analysis, imaging processing and classification [9,14].

The IF is the time derivative of the instantaneous phase (IP), and it is well
defined only when this derivative is positive. If this derivative is negative, it cre-
ates problem because it does not provide any physical significance. In order to
avoid this problem, recently many nonlinear and nonstationary signal representation,
decomposition and analysis methods, e.g., empirical mode decomposition (EMD)
algorithms [17,24,25,27–30,40], synchrosqueezed wavelet transforms (SSWT) [8],
variational mode decomposition (VMD) [10], eigenvalue decomposition (EVD) [19],
empirical wavelet transform (EWT) [13], sparse time–frequency representation
(STFR) [16], time-varying vibration decomposition (TVVD) [11], resonance-based
signal decomposition (RSD) [26], Fourier decomposition methods (FDM) [31–36]
based on the Fourier theory, are proposed. Fuzzy-based design and analysis of nonlin-
ear systems are proposed in [20,21]. The Fourier theory is the only tool for spectrum
analysis of a signal, and the FDM [32] has established that it is a superior tool for non-
linear and nonstationary time series analysis. The main objective of all these methods
is to obtain the signal representation such that the IF of a signal under study is always
positive. A signal is defined as a monocomponent if the IF derived from its analytic
representation is positive and well defined for all time. Notice that, traditionally, the IF
is defined only for monocomponent signals [2,3,17]. Thus, the EMD and other related
methods decompose a multicomponent signal into a set of monocomponent signals,
termed as intrinsic mode functions (IMFs), which yield positive IF via the analytic
signal representation using the Hilbert transform (HT).

Unlike these decomposition methods, the IF proposed in this study does not neces-
sitate to decompose a signal into a set of monocomponent or narrow band components,
which satisfy certain properties, to generate the TFE distribution of a signal. That is,
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without any decomposition the TFE distribution of a signal can be obtained by using
the proposed IF. It also provides freedom and potential to decompose a signal into a set
of desired, preferably orthogonal or linearly independent nonorthogonal yet energy
preserving (LINOEP) [27], frequency bands by a zero-phase filtering approach to
obtain TFE distribution of a signal. All these features are obtained by redefining the
IF when it is negative and thus defining the IF for both monocomponent and multi-
component signals. In order to redefine the IF, we use the fact that inverse tangent is a
multivalued (i.e., one-to-many mapping) function. So defined IF of a signal is always
positive and valid for any signal.

There are twomain paradoxes of the IF [6,17,22]: (1) The IF valuesmay be different
from the frequency in the spectrum of a signal, and (2) the spectrum of an analytic
signal vanishes for negative frequencies; however, the IFmay be negative. In this paper,
we investigate and propose solutions to these problems. The first paradox is related to
the uniqueness of the IF which can be eliminated by decomposing a signal into a set
of narrowband components through a zero-phase filtering. The second paradox is the
limitation of the traditional definition of the IF, which is fully eliminated in this study
by redefining the conventional IF such that it is positive for any signal and for all the
time. The main contributions as well as some important observations of this study are
as follows:

1. We use the conventional definition of the IF when it is positive; if it is negative,
then redefine the IF to make it positive such that it is limited to half of the sampling
rate. Thus, the proposed IF is always positive and valid for all monocomponent
as well as multicomponent signals, which can be nonstationary and nonlinear in
nature.

2. Since many decades, there has been a general understanding in the literature,
e.g., [2–4,17,19,23,25,40], that the Fourier theory (due to linearity, periodicity,
and stationarity) is not suitable for nonstationary signal analysis. This proposed
IF provides an elegant way to use the Fourier and filter theory-based zero-phase
filtering for the decomposition of a signal into a set of suitable bands with desired
cutoff frequencies (e.g., divide complete bandwidth of a signal into a set of sub-
bands of equal bandwidth or dyadic sub-bands). In order to validate this, in the
study,we have used only the Fourier and finite impulse response (FIR) filter theory-
based decomposition (except when comparing with EMD, wavelet transform, and
conventional nonzero-phase FIR filtering) to obtain TFE analysis of a signal.

3. We propose two signal decomposition algorithms: first the zero-phase discrete
Fourier transform (DFT) filter bank-based decomposition algorithm, as shown in
Fig. 1, to obtain a set of orthogonal components, and second zero-phase FIR filter-
based decomposition Algorithm 2 to obtain a set of LINOEP components. We
demonstrate that it is more natural to obtain LINOEP components with second
algorithm; moreover, both sets of orthogonal and LINOEP vectors preserve the
energy in decomposition and present similar TFE distribution of a signal.

4. The proposed method, using the Hilbert spectrum, produces average frequencies
in the TFE distribution with good time resolution when the envelope of signal is
smooth. However, if envelope of a signal is fluctuating randomly and rapidly, e.g.,
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Fig. 1 Block diagram of the DFT-based zero-phase filter bank (FDM) to decompose a signal x[n] into a
set {y1[n], y2[n], . . . , yM [n]} of orthogonal desired frequency bands

the Gaussian white noise and Earthquake time series, the TFE plot presents good
time and frequency resolution.

5. We demonstrate that the different decomposition methods are producing the dif-
ferent TFE distributions of a signal. Using the proposed method, when a signal is
decomposed into a large numbers of orthogonal or LINOEP narrow bands, true
frequencies present in the signal are revealed, frequency resolution also increases,
while the time resolution reduces marginally.

Thus, this study presents a newparadigm for nonlinear and nonstationary data analysis.
Moreover, this work independently and uniquely resolves some misconceptions that
have grown with regard to the significance of the Fourier theory and its usefulness in
the representation and analysis of nonstationary signal, and also supports the results
of other related studies [32,33]. This paper is organized as follows: The proposed
methodology is presented in Sect. 2. Simulation results and discussion are presented
in Sect. 3. Section 4 presents conclusion of the work.

2 Methods

The concept of variable frequency with application to the theory of FM is proposed
in [5], and it is postulated that the notion of IF is a generalization of the definition
of constant frequency. A definition of the IF by analyzing an expression for simple
harmonic motion (SHM) is considered in [37] as

xSHM(t) = a cos

[∫ t

0
2π f (t) dt + θ

]
= a cos(ψ(t)), (1)

where the argument of the cosine function is the phase ψ(t) =
[∫ t

0 2π f (t) dt + θ
]
.

This leads to the definition of IF [37]

f (t) = 1

2π

dψ(t)

dt
. (2)
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The concept of IF was enhanced in [12] where a method for generating a unique
complex signal z(t) from a real signal x(t) and its HT x̂(t)was proposed. This method
obtains

z(t) = x(t) + j x̂(t) = a(t)e jφ(t), (3)

where

a(t) =
[
x2(t) + x̂2(t)

]1/2 ≥ 0,

φ(t) = tan−1[x̂(t)/x(t)]

⎫⎬
⎭ (4)

and z(t) is the Gabor’s complex signal (well known as the analytic signal) and x̂(t) is
defined as

x̂(t) = p.v.
∫ ∞

−∞
x(τ )

π(t − τ)
dτ = p.v.

[
x(t) ∗ 1

π t

]
, (5)

where p.v. denotes the Cauchy principal value of the integral [15] and ∗ denotes
convolution operation. The work done in [5,12] was unified in [38] to define the IF of
a signal x(t) = a(t) cos(φ(t)) as

ω(t) = 2π f (t) = d

dt
(arg[z(t)]) , (6)

where z(t) is the analytic signal given by (3) and arg[z(t)] = φ(t) as defined in
(4). The IF defined in (6) provides physical meaning only if it is positive, and it
becomes meaningless when it is negative [2,3,8,10,17,19,25,27,29,31,32,40]. This
is where we improve and provide the solution to make the IF positive for all time
t . From (4) and (6), one can obtain the TFE distribution of a signal x(t) by 3-D
plot of {t, f (t), a2(t)}. However, it can be noted that the frequencies, of signal x(t) =
a(t) cos(φ(t)), obtained byFourier transform andHilbert spectrum (6) are same only if
a(t) is a constant; otherwise,Hilbert spectrumprovides frequencies of signal cos(φ(t))
and not of signal x(t) as it excludes the frequencies of a(t).

Before evaluating the time derivative of phase in (6), phase unwrapping is necessary
to ensure that all appropriate multiples of 2π have been included in phase φ(t). Phase
unwrap operation corrects the radian phase angles by adding multiples of ± 2π when
absolute jumps between consecutive elements of a phase vector are greater than or
equal to the default jump tolerance of π radians [42]. This is being done for phase
delay and IF determination by all the methods available in the literature.

As is well known that the tangent is a surjective (many-to-one mapping) function,
the domain, range, and period of tan(x) are

{
x |x �= π

2 + nπ,∀n ∈ Z
}
, all real numbers

R = (−∞,∞) and π , respectively. The inverse tangent is the multivalued function.
The domain of tan−1(x) is all real numbers, R, and range is

(−π
2 , π

2

)
. If z = x + j y,

then the range of tan−1(y/x) is (−π, π ], and sign of x and y is used to determine the
specific quadrant.

In order to obtain the IF positive for all the time, we consider the discrete-time
signal processing, with sampling frequency Fs, which is the only practical way to
process data by a digital processor. The discrete-time version of Eqs. (3), (4), (5)
and (6) is [3,31]
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z[n] = x[n] + j x̂[n] = a[n]e jφ[n], (7a)

a[n] =
[
x2[n] + x̂2[n]

]1/2 ≥ 0, (7b)

φ[n] = tan−1 (
x̂[n]/x[n]) , (7c)

x̂[n] = x[n] ∗ h[n], (7d)

and ω[n] = φd[n], (7e)

respectively, where the HT kernel [31,32] defined as h[n] =
[
1−cos(πn)

πn

]
is zero for

n even and it is 2
πn for n odd. The differentiation of phase in discrete time, φd[n], can

be approximated by [3] forward finite difference (FFD), φd[n] = (
φ[n + 1] − φ[n]),

or backward finite difference (BFD), φd[n] = (
φ[n] − φ[n − 1]) or central finite

difference (CFD), φd[n] = (
φ[n + 1] − φ[n − 1])/2. It can be noted that the phase

in (7c) is computed by the function, atan2(x̂[n], x[n]), which produces the result in
the range (−π, π ] and also avoids the problems of division by zero. It is pertinent to
notice that the IF defined by (2), (6), and (7e) is valid only for monocomponent signals
because the so defined IF becomes negative in some time instants for multicomponent
signals which does not provide any physical meaning [2,3,17].

By considering the phase unwrapping fact and multivalued nature of the inverse
tangent function, we redefine the IF ω[n], which is defined in (7e) as a discrete-time
version of (6), as

ω[n] =
{

φd[n], if φd[n] ≥ 0,

φd[n] + π, otherwise.
(8)

Definition (8) makes the IF positive (i.e., 0 ≤ ω[n] ≤ π in radians/sample which
corresponds to 0–Fs/2 in Hz) for all time n which is valid for all monocomponent as
well as multicomponent signals. This small and trivial, but extremely important fact
has been illusive for many decades. This IF would not only significantly improve the
computational efforts (e.g., sifting process in EMD algorithms) and understanding of
any method which uses the IF, but also provides an elegant solution in mathematical
terms to use the Fourier and filter theory-based zero-phase filtering for nonstationary
signal decomposition and TFE analysis. The mathematical validity of this solution
can easily be seen by the fact that φ[n] = tan−1

(
x̂[n]/x[n]) and φ[n] + knπ =

tan−1
(
x̂[n]/x[n]) ,∀k, n ∈ Z [due to periodicity of tangent function, i.e., tan(φ[n]) =

tan(φ[n]+knπ)]. In solution (8), we have taken k = 0 if φd[n] ≥ 0; otherwise, k = 1;
thus, we can write

ω[n] = φd[n] + kπ. (9)

Equation (9) is also valid when φ[n] ∈ (−π, π ] is a wrapped phase, and in this case
we select the value of k ∈ Z such that ω[n] ∈ [0, π ]. Thus, the proposed IF ω[n] in (8)
or (9) is estimated by using the multivalued property of the inverse tangent function
which provides basis to ensure that the instantaneous phase function φ[n] defined
in (7c) is an increasing (or a nondecreasing) function, i.e., φ[n + 1] ≥ φ[n],∀n.

A dual to IF (8), the group delay (GD) is defined as the negative frequency deriva-
tive of the phase in the Fourier domain. It measures the relative delay of different
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frequencies from the input to the output in a system. Thus, similar to (8), we can mod-
ify the GD definition to make it always positive and valid for all signals. The proposed
definition of IF can easily be extended for multidimensional signals such as spatial
data (image) and space–time data (3D wave equation).

A MATLAB implementation code of the proposed method is outlined in Algo-
rithm 1. In order to avoid unnecessary variations in the IF, before estimating the IF, the
mean and dominating low frequency component like trend present in the signal can
be removed. These can be easily removed by any zero-phase low-pass filtering opera-
tion [32,35]. Moreover, depending upon the requirements, signal can be decomposed
into a set of desired frequency bands.

In the examples presented in the following section, to decompose a signal x[n] into
a set of desired frequency bands, we have used the signal model

x[n] = c0 +
M∑
i=1

yi [n] = c0 +
M∑
i=1

ci [n], (10)

where c0 is the mean value of signal x[n], and {yi [n]}Mi=1 and {ci [n]}Mi=1 are the M
orthogonal and LINOEP components, respectively.

A simple block diagram of the DFT-based zero-phase filter bank (i.e., Hi [k] ∈ R≥0,
∀i, k) is shown in Fig. 1, which decomposes a signal x[n] into a set of orthogonal
vectors {y1[n], y2[n], . . . , yM [n]}. The frequency response of i th band of the DFT-
based zero-phase filter bank can be defined by setting Hi [k] = 1 at desired frequency
band and zero otherwise, i.e.,

Hi [k] = 1, (Ki−1 + 1) ≤ k ≤ Ki &

(N − Ki ) ≤ k ≤ (N − Ki−1 − 1),

= 0, otherwise

⎫⎪⎬
⎪⎭ (11)

where i = 1, 2, . . . , M ; K0 = 0 and KM = N/2 (or KM = (N − 1)/2 if N is odd).
Using the inverse DFT (IDFT), component yi [n] can be computed as

yi [n] =
N−1∑
k=0

[
Hi [k]X [k] exp( j2πkn/N )

]
, (12)

where X [k] = 1
N

∑N−1
n=0 x[n] exp(− j2πkn/N ) is the DFT of signal x[n] of length

N .
In this work, we propose to use noncausal finite impulse response (FIR) and infinite

impulse response (IIR) filter to decompose a signal into a set of LINOEP vectors
by the FDM algorithm as summarized in Algorithm 2. In this algorithm, for each
iteration, ZPHPFi (ZPLPFi ) is zero-phase high (low)-pass filter (e.g., filtfilt function
of MATLAB) with desired cutoff frequency fci , and value of αi is obtained such that
ci ⊥ c̃i+1. It can be noted that, in general, filter is not ideal (non brick wall frequency
response), and therefore, ci �⊥ cl for i, l = 1, 2, . . . , M − 1 and only cM−1 ⊥ cM . We
use PART A (PART B) of algorithm to obtain {c1, . . . , cM } in order of the highest



3522 Circuits Syst Signal Process (2018) 37:3515–3536

Algorithm 1: A MATLAB implementation code of the proposed method to esti-
mate instantaneous amplitude and IF of a data x sampled with Fs sampling rate.
z=hilbert(x);amp=abs(z);phi=unwrap(angle(z));
diffPhase=diff(phi);index=find(diffPhase<0);
diffPhase(index)=diffPhase(index)+pi;
frequncy=[diffPhase;diffPhase(end)]*(Fs /(2*pi));

Algorithm 2: The FDM algorithm to obtain LINOEP vectors ci from decompo-
sition of a signal x such that x = c0 + ∑M

i=1 ci and ci ⊥ ∑M
l=i+1 cl . Use PART A

(PART B) to obtain {c1, . . . , cM } in order of highest to lowest (lowest to highest)
frequency components.

%PART A
c0 = mean(x);
x1 = x − c0;
for i = 1 to M − 1 do

yi = Z PH PFi (xi , fci );
ri = xi − yi ;

αi = 〈yi ,ri 〉〈ri ,ri 〉 ;
ci = yi − αi ri ;
c̃i+1 = (1 + αi )ri ;
xi+1 = c̃i+1;

cM = c̃M ;

%PART B
c0 = mean(x);
x1 = x − c0;
for i = 1 to M − 1 do

yi = Z PLPFi (xi , fci );
ri = xi − yi ;

αi = 〈ri ,yi 〉〈yi ,yi 〉 ;
ci = (1 + αi )yi ;
c̃i+1 = ri − αiyi ;
xi+1 = c̃i+1;

cM = c̃M ;

to lowest (lowest to highest) frequency components. The FDM with proposed IF can
easily be adapted for multichannel and multidimensional data decomposition into a
set of AM–FM components.

We advocate to use zero-phase filtering (ZPF) because it preserves salient features
such as minima and maxima in the filtered waveform exactly at the position where
those features occur in the unfiltered waveform. It is pertinent to note that the con-
ventional (i.e., non zero-phase) filtering shifts these features in the filtered waveform
and therefore cannot be used to obtain a meaningful TFE distribution, which is clearly
demonstrated in simulation results. The zero-phase filtering of a signal can be obtained
by the DFT, discrete cosine transforms (DCTs) and discrete sine transforms (DSTs),
short-time Fourier transform (STFT), discrete wavelet transform (DWT), noncausal
FIR and IIR filters, or via other decomposition methods like FDM, VMD, EVD, EWT,
SSWT, and EMD algorithms.

A comparison of the proposedmethodwith themost widely used wavelet transform
and EMD algorithm, for data analysis and TFE representation, is shown in Table 1. A
study with first seven attributes (basis, frequency, uncertainty, nonlinear, nonstation-
ary, Harmonics, and theoretical base) corresponding second and third column of this
table is presented in [18,32], and we have used all these attributes along with some
other features to compare proposed method with wavelet transform and EMD–Hilbert
approach.



Circuits Syst Signal Process (2018) 37:3515–3536 3523

Ta
bl
e
1

A
co
m
pa
ri
so
n
am

on
g
w
av
el
et
tr
an
sf
or
m
,E

M
D
–H

ilb
er
t,
an
d
Z
PF

-b
as
ed

ap
pr
oa
ch

(F
D
M
)
w
ith

pr
op
os
ed

IF
fo
r
T
FE

re
pr
es
en
ta
tio

n
an
d
da
ta
an
al
ys
is

A
ttr
ib
ut
es

W
av
el
et
tr
an
sf
or
m

E
M
D
–H

ilb
er
t

Z
PF

-b
as
ed

ap
pr
oa
ch

(F
D
M
)w

ith
pr
o-

po
se
d
IF

B
as
is

A
pr
io
ri

A
da
pt
iv
e

A
da
pt
iv
e

Fr
eq
ue
nc
y

C
on
vo
lu
tio

n:
re
gi
on

al
D
if
fe
re
nt
ia
tio

n:
lo
ca
l

D
if
fe
re
nt
ia
tio

n:
lo
ca
l

U
nc
er
ta
in
ty

Y
es

N
o

N
o

N
on
lin

ea
r

N
o

Y
es

Y
es

N
on
st
at
io
na
ry

Y
es

Y
es

Y
es

H
ar
m
on
ic
s

Y
es

N
o

N
o

T
he
or
et
ic
al
ba
se

C
om

pl
et
e

E
m
pi
ri
ca
l

C
om

pl
et
e

Po
si
tiv

ity
of

IF
E
ns
ur
ed

N
ot

en
su
re
d

E
ns
ur
ed

D
ec
om

po
si
tio

n
in
to

de
si
re
d

fr
eq
ue
nc
y
ba
nd

s
Y
es
,c
om

pu
ta
tio

na
l

co
m
pl
ex
ity

m
ay

be
hi
gh

a
N
o

Y
es
,c
om

pu
ta
tio

na
l

co
m
pl
ex
ity

is
lo
w
an
d
sa
m
e

fo
r
al
lb

an
ds

V
al
id
ity

of
IF

fo
r

m
on

oc
om

po
ne
nt

an
d

m
ul
tic

om
po

ne
nt

V
al
id

fo
r
bo

th
ty
pe
s
of

si
gn

al
s

V
al
id

on
ly

fo
r

m
on

oc
om

po
ne
nt

si
gn

al
s

V
al
id

fo
r
bo

th
ty
pe
s
of

si
gn

al
s

T
im

e–
fr
eq
ue
nc
y
re
so
lu
tio

n
M
ul
tir
es
ol
ut
io
nb

G
oo

d
G
oo

d

a W
av
el
et
tr
an
sf
or
m

ge
ne
ra
lly

de
co
m
po

se
s
a
si
gn

al
in

th
e
dy

ad
ic
fr
eq
ue
nc
y
ba
nd

s,
an
d
th
er
e
m
ay

be
hi
gh

co
m
pu

ta
tio

na
lc
om

pl
ex
ity

fo
r
de
co
m
po

si
tio

n
in
to

no
nd

ya
di
c
ba
nd

s
b
M
ul
tir
es
ol
ut
io
n
an
al
ys
is
by

th
e
w
av
el
et
tr
an
sf
or
m
,i
n
th
e
tim

e–
fr
eq
ue
nc
y
pl
an
e,
pr
ov
id
es
:g

oo
d
fr
eq
ue
nc
y
an
d
po

or
tim

e
re
so
lu
tio

n
at
lo
w
fr
eq
ue
nc
ie
s;
go

od
tim

e
an
d
po

or
fr
eq
ue
nc
y
re
so
lu
tio

n
at
hi
gh

fr
eq
ue
nc
ie
s



3524 Circuits Syst Signal Process (2018) 37:3515–3536

3 Simulation Results and Discussion

In this section, we consider a number of examples, which include both synthetic and
real-life nonstationary data, that are mostly discussed in the literature to validate the
efficacy of method under study. A complete MATLAB code of the proposed method
is publicly available for download at [44].

3.1 Synthetic Nonstationary Data Analysis: IF and TFE Estimation

Example 1 In this example, we consider three nonstationary signals (a) linear chirp
(unit amplitude and [1000–2000] Hz), (b) frequency modulated sinusoid (unit ampli-
tude, carrier fc = 780 Hz and frequency deviation 200 Hz), and (c) mixture of a
linear chirp and frequency modulated signals, i.e., sum of signals of cases (a) and (b).
Figure 2 shows the TFE estimates of these three nonstationary signals [(a), (b) and
(c)] obtained by using the proposed IF without decomposition. We observe that the
frequencies in case (c), as shown in Fig. 2c, are average frequencies of the first two
cases (a) and (b).

Figure 2d shows the IF and phase estimates of nonstationary signal, which is sum
of linear chirp and FM signals, case (c) without decomposition: (1) top figure with
conventional IF (7e) where both the positive and negative estimates of frequencies are
present, and hence, it does not provide any physical meaning, (2) middle figure with
proposed IF (8) that produces only positive and correct values of frequencies; thus, it
easily reveals that the signal under analysis is a superposition of linear chirp and FM
signals, (3) bottom figure shows: (1) phase (blue solid line) in radians corresponding to
conventional IF (top figure) which is not an increasing function of time and (2) phase
(red dashed line) corresponding to proposed IF (middle figure) which is an increasing
function of time. This, clearly, demonstrates that the proposed definition of the IF is
able to obtain correct values of frequencies at all times.

Figure 3 shows the TFE estimates of nonstationary signal, case (c), by this proposed
method with decomposition: (a) into 2 bands of [0–1000, 1000–4000] Hz and (b) into
100 bands of equal bandwidth of 40 Hz (which is Fmax/100 where Fmax is the highest
frequency component present in the signal and it is equal to half of the sampling
frequency, i.e., Fmax = Fs/2). The proposed method is, clearly, able to track TFE
distribution present in all these signals.

Figure 4 shows the TFE estimates of nonstationary signal, case (c), by this proposed
IF: (a) with zero-phase FIR filter-based decomposition into 100 bands and (b) with
conventional (non zero-phase) FIR filter-based decomposition into 100 bands of equal
bandwidth, which is not able to detect and track true frequencies present in the signal.

Example 2 Weobtain anonstationary signal by addingfiveunit amplitude linear chirps
of frequencies [500–1500], [1000–2000], [1500–2500], [2000–3000] and [2500–
3500] Hz. Figure 5 shows the TFE analysis of this nonstationary signal, which is
sum of five linear chirp signals, by this proposed IF: (a) without decomposition that
presents frequencies in the range of [1500–2500] Hz, which are average of frequencies
present in five chirp signals; (b) with DFT-based decomposition into 10 bands; and (c)
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Fig. 2 TFE analysis of nonstationary signals by this proposed method without decomposition: a linear
chirp, b frequency modulated signal, c sum of linear chirp and FM signals. Plot d shows the IF estimates
of nonstationary signal, which is sum of a linear chirp and FM signals, without decomposition: (top figure)
with conventional IF (7e) and (middle figure) with proposed IF (8). Notice the both positive and negative
frequencies with conventional IF, top figure in plot d, which does not provide any physical meaning; only
positive and correct values of frequencies by the proposed IF, middle figure in plot d, which reveals that
the signal under analysis is a superposition of a linear chirp and FM signals. The bottom figure of in plot d
shows: phase in radians corresponding to conventional IF (blue solid line, not an increasing function); and
phase corresponding to proposed IF (red dashed line, an increasing function) (Color figure online)
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Fig. 3 TFE analysis of nonstationary signal, which is sum of linear chirp and FM signals, by this proposed
method with DFT-based decomposition: a into 2 bands of [0–1000, 1000–4000] Hz and b into 100 bands
of equal bandwidth, and in both cases true frequencies present in the signal are revealed
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Fig. 4 TFE analysis of nonstationary signal, which is sum of linear chirp and FM signals, by this proposed
method: a with zero-phase FIR filter-based decomposition into 100 bands which capture true frequencies
of the signal and b with conventional (non zero-phase) FIR filter-based decomposition into 100 bands of
equal bandwidth which is not bale to capture true nature of the signal under analysis

with DFT-based decomposition into 20 bands of equal bandwidth. These two, (b) and
(c), figures clearly reveal the five chirp signals present in the signal under analysis.

The time–frequency and phase representations of signal considered in this example
by the traditional and proposed methods are shown in Fig. 5d: (top figure) traditional
IFwhich generates both positive and negative frequencies, (middle figure) proposed IF
which yields only positive frequencies, (bottomfigure) phase estimateswith traditional
IF (blue solid line) which is not an increasing function and phase estimates with
proposed IF (red dashed line) which is an increasing function of time.

Figure 6 shows the TFE distribution of the nonstationary signal, which is the sum of
five linear chirp signals: (a) by this proposed method with zero-phase FIR filter-based
decomposition into 10 bands, (b) with conventional (non zero-phase) FIR filter-based
decomposition into 10 bands of equal bandwidth, and (c) by the EMD algorithm.
Clearly, the proposed method with zero-phase FIR filter-based decomposition reveals
true frequencies of signal,whereas both the conventional FIRfilter andEMDalgorithm
are not able to detect true frequencies present in the signal.

Example 3 In Fig. 7, we present the TFE analysis of the nonstationary signal, which is
sum of the unit amplitude linear chirp signal [500–1500] Hz ([0–1] second chirp signal
and [1–1.5] second no signal) and its delayed version ([0–0.5] second no signal and
[0.5–1.5] second same chirp signal), by this proposed method. Figure 7a is obtained
without decomposition that has three parts: (1) [0–0.5] s chirp signal frequencies, (2)
[0.5–1] s average of overlapped chirp signals frequencies, and (3) [1–1.5] s chirp signal
frequencies of delayed version. Figure 7b is obtained by DFT-based decomposition of
signal into 10 bands of equal bandwidth, which clearly reveals that the signal under
study is sum of a chirp signal and its delayed version.

Figure 8 shows the TFE distribution of the nonstationary signal (sum of the linear
chirp signal and its delayed version) by this proposed IF: (a) with zero-phase FIR
filter-based decomposition into 10 bands which is able track true frequencies of the
signal, and (b)with conventional FIRfilter-based decomposition into 10 bands of equal
bandwidth, which clearly not able to reveal true frequencies present in the signal.
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Fig. 5 TFE analysis of a nonstationary signal, which is sum of five linear chirp signals, by this proposed
method: a without decomposition, b with DFT-based decomposition into 10 bands, and c with DFT-based
decomposition into 20 bands of equal bandwidth which are clearly able to reveal true nature of the signal
under analysis. Plot d shows the time–frequency estimates by: (top figure) traditional IF which generates
both positive and negative frequencies, (middle figure) proposed IF which yields only positive frequencies,
(bottom figure) phase estimates with traditional IF (blue solid line, not an increasing function), and phase
estimates with proposed IF (red dashed line, an increasing function of time) (Color figure online)

Discussion From Examples (1, 2, and 3), it is clear that the zero-phase DFT or
zero-phase FIR filter-based decomposition is able to track TFE distribution present
in a signal. However, conventional filtering cannot be used to obtain meaningful TFE
distribution of a signal, which is clearly demonstrated in right figures in Figs. 4, 6 and
8.

Example 4 In this example, we consider the IF and TFE estimation of a delta func-
tion. The unit sample sequence (delta function) is defined as x[n] = δ[n − n0] = 1
at n = n0 and zero otherwise. Using the discrete-time Fourier transform (DTFT)
X (ω) = ∑∞

n=−∞ x[n] exp(− jωn), one can obtain the DTFT of unit sample sequence
as X (ω) = exp(− jωn0) ⇒ |X (ω)| = 1. Using the inverse DTFT (IDTFT),
x[n] = 1

2π

∫ π

−π
X (ω) exp( jωn) dω, one can represent the unit sample sequence as

x[n] = 1
2π

∫ π

−π
exp( jω(n − n0)) dω. This representation demonstrates that it is a

superposition of equal amplitude sinusoidal functions of all frequencies [0–π ). The
Nyquist frequency (Fs/2) is the highest frequency that can be present at a given
sampling rate, Fs, in a discrete-time signal. The analytic representation of this sig-
nal is given by [32] z[n] = sin(π(n−n0))+ j[1−cos(π(n−n0))]

π(n−n0)
= a[n] exp( jφ[n]), where



3528 Circuits Syst Signal Process (2018) 37:3515–3536

Time (s)

Fr
eq

ue
nc

y 
(H

z)
Time−Frequency−Energy plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

(a)
Time (s)

Fr
eq

ue
nc

y 
(H

z)

Time−Frequency−Energy plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

(b)

Time (s)

Fr
eq

ue
nc

y 
(H

z)

EMD: Time−Frequncy−Energy estimate of IMFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

(c)

Fig. 6 TFE analysis of a nonstationary signal, which is sum of five linear chirp signals (a) by the proposed
method with zero-phase FIR filter-based decomposition into 10 bands, and b with conventional (non zero-
phase) FIR filter-based decomposition into 10 bands of equal bandwidth, c by the EMD algorithm. Clearly,
only proposed method reveals true frequencies
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Fig. 7 TFE analysis of the nonstationary signal, which is the sum of the linear chirp signal and its delayed
version, by this proposed method: a without decomposition and b with DFT-based decomposition into 10
bands of equal bandwidth which reveals true nature of the signal under analysis

a[n] =
∣∣∣ sin( π

2 (n−n0))
π
2 (n−n0))

∣∣∣, φ[n] = π
2 (n − n0), and real part of z[n] is the original signal

as sin(π(n−n0))
π(n−n0)

= δ[n − n0]. Thus, frequency ω[n] = φ[n + 1] − φ[n] = π
2 , which

corresponds to half of the Nyquist frequency, i.e., Fs/4. Figure 9 shows the TFE esti-
mates of this signal (with n0 = 1999, Fs = 1000 Hz and length N = 4000) using
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Fig. 8 TFE analysis of a nonstationary signal, which is sum of a linear chirp signal and its delayed version,
by this proposed method: a with zero-phase FIR filter-based decomposition into 10 bands and b with
conventional FIR filter-based decomposition into 10 bands of equal bandwidth. Clearly, zero-phase FIR
filter-based TFE analysis reveals true frequencies of the signal under analysis, whereas the conventional
FIR filter-based TFE analysis is not able to catch true nature of signal

the (a) EMD and (b) proposed method without decomposition. We observe that the
frequency present in this TFE plot is the average frequency (because delta function
contains equal amplitude sinusoids of all frequencies 0 to Fs/2). This example also
demonstrates that the TFE plot, obtained by the Hilbert spectrum, is not limited by
uncertainty principle and signal can be highly concentrated in the time–frequency
plane. However, it can be noted that this TFE plot is not providing the true frequencies
of delta function.

Discussion In order to explain a average frequency effect in Figs. 2, 5, 7 and 9, let us
consider a sumof sinusoids of equal amplitudes x(t) = ∑N

k=1 A cos(ω0kt). Its analytic

representation is given by z(t) = ∑N
k=1 A exp( jω0kt) = A sin

(
ω0

N
2 t

)
sin(ω0t/2)

exp
(
jω0

N+1
2 t

)
= a(t) exp( jφ(t)) which implies phase φ(t) = (

ω0
N+1
2 t

)
, and hence, IF f (t) =

1
2π ω0

N+1
2 which is the average of frequencies {ω0, 2ω0, . . . , Nω0}. This is what we

observe in these figures (especially Fig. 9b). Here, it is to be noted that if amplitudes of
constituent sinusoids are not equal, then resultant IF would not be a constant (average)
frequency, but it would be a variable one.

Example 5 In this example, we consider the IF and TFE estimation of the White
Gaussian noise data. Figure 10 shows the TFE analysis of a white Gaussian noise
(with zero mean, unit variance, 10,240 samples and sampling frequency Fs = 100 Hz)
obtained using (a) the EMD and (b) the proposed method without decomposition. It is
clear that the energy in TFE plane is more concentrated at mid frequencies and almost
randomly distributed across all the other frequency ranges by the proposed method.
However, distribution of the energy in TFE plane is less random and concentration is
weak at high frequencies by the EMD algorithm.
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Fig. 9 TFE analysis of unit sample sequence δ[n − n0] (with, n0 = 1999, sampling frequency Fs = 1000
Hz, length N = 4000) by a ensemble EMD (EEMD) and b the proposed method without decomposition.
Proposedmethod produces TFE distributionwhichmatcheswith theoretical result, whereas there is a energy
spreading across a large range of frequencies by the EEMD method
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Fig. 10 TFE analysis of the Gaussian white noise with zero mean and unit variance (with sampling fre-
quency Fs = 1000Hz, length N =10,240) by a theEMDand b the proposedmethodwithout decomposition

3.2 Real-Life Data Analysis: IF and TFE Estimation

In order to evaluate the effectiveness of the proposedmethod for real-life data analysis,
we consider the Earthquake time series and Gravitational wave data in the following
examples.

Example 6 In this example, we consider the IF and TFE estimation of the Elcentro
Earthquake time series. An Earthquake time series is a nonlinear and nonstationary
data. TheElcentro Earthquake data (sampled at Fs = 50Hz) have been taken from [43]
and are shown in Fig. 11a. The critical frequency range that matters in the structural
design is less than 10Hz, and the Fourier-based power spectral density (PSD), as shown
in Fig. 11b, shows that almost all the energy in this Earthquake data is concentrated
within 10 Hz, which is a critical frequency range for structural design. Figure 12 shows
TFE distributions by the (a) continuous wavelet transform (CWT), (b) EMD, (c) FDM,
(d) proposed method without decomposition, (e) proposed method with DFT-based
decomposition into four bands [0–5, 5–10, 10–20, 20–25]Hz, and (f) proposedmethod
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Fig. 11 Elcentro Earthquake May 18, 1940 a North–South Component data and b Fourier-based power
spectral density (PSD)

with DFT-based decomposition into 25 bands of 1 Hz each. These TFE distributions
indicate that the maximum energy concentration in the signal is around 2 s and 1.7
Hz. These TFE distributions provide details of how the different waves arrive from the
epical center to the recording station, e.g., the compression waves of small amplitude,
but higher frequency range of 10–20 Hz, the shear and surface waves of strongest
amplitude and lower frequency range of below 5 Hz which does most of the damage,
and other body shear waves which are present over the full duration of the data span.

Example 7 Finally,we consider the IF estimation andTFE representation of theGravi-
tational wave event GW150914 from a binary black hole merger [1]. The gravitational
wave data used in this example are publicly available at [45]. The signal sweeps
upwards in frequency from 35 to 250 Hz, and amplitude strain increases to a peak
gravitational wave strain of 1.0 × 10−21 [1]. An accurate IF estimation of the grav-
itational wave is important because it is the basis to calculate many parameters such
as separation, velocity, luminosity distance, chirp mass, total mass, primary mass,
secondary mass, and effective spin of binary black hole merger [1]. Figure 13 shows
(a) the gravitational strain data GW150914, (b) the TFE representation of the data by
proposed method which shows the signal frequency is increasing from 35 to 250 Hz,
and (c) the TFE representation of the data by CWT. Thus, the TFE representation by
the proposed method captures the real nature of the gravitational wave event and also
provides better time and frequency resolution than the CWT approach.

These examples clearly demonstrate the ability of the proposed method for TFE
analysis of real-life signals such as seismic and gravitational wave data. This study
is aimed to complement the current nonlinear and nonstationary data, e.g., seismic
and gravitational time series, processing methods with the addition of the Fourier and
zero-phase filter-based methods.

Discussion It is clear from the above examples that different methods are producing
the different TFE distributions of a signal. So, before concluding anything one needs
to be careful while performing the signal analysis. For example, frequencies present
in the Fourier spectrum show that these frequencies are present all the time in a signal
under analysis, which may not be true. Consider another example, as shown in Fig. 9
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Fig. 12 TFE plot of the Elcentro Earthquake data using the: a CWT, b EMD, and c FDM, which has better
time–frequency resolution and precision as compared to CWT and EMD, d proposed method without
decomposition, e proposed method with DFT-based decomposition into four bands [0–5, 5–10, 10–20,
20–25] Hz, and f proposed method with DFT-based decomposition into 25 bands of 1 Hz each

(right), of unit sample sequence which shows that this signal is concentrated in time
(which is true) and also concentrated in frequency (which is not true). If this were true,
then we could transmit delta function in almost zero time with zero bandwidth through
any system or channel. Thus, we conclude that the TFE representation depends on the
number of bands in which data have been divided. In order to further illustrate this
point we divided the same unit sample sequence data, which is used in Fig. 9, by
DFT-based zero-phase filtering into five and ten bands of equal bandwidth to obtain
(a) and (b) plots in Fig. 14, respectively, which reveal many those frequencies of data
which are not present in Fig. 9.
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Fig. 13 Gravitational wave event GW150914: a estimated numerical relativity waveform of data H1
strain [1], b the TFE representation of the data by the proposed IF without decomposition, and c TFE
representation by the CWT
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Fig. 14 TFE analysis of unit sample sequence δ[n−n0] (with, n0 = 1999, sampling frequency Fs = 1000
Hz, length N = 4000) by proposed method with DFT-based decomposition into five (top figure) and ten
(bottom figure) bands of equal bandwidth

From Figs. 2, 5, 7, 9 and 14, it is clear that the proposed method using the Hilbert
spectrum produces average frequencies and good time resolution when the envelope
of signal is smooth. However, if the envelope of a signal is fluctuating randomly or
rapidly, e.g., consider the case of Gaussian white noise and Earthquake time series,
the TFE plot has good time and frequency resolution as shown in Figs. 10 and 12d.
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It is also clear, from Figs. 3, 5, 7 and 14, that as the signal is decomposed into more
number of narrow bands, true frequencies present in the signal under analysis are
revealed, frequency resolution is also increasing while the time resolution is reducing
marginally.

In the above simulation results, the TFE plots, as shown in Figs. 2, 5a, 7a, 9b, 10b,
12d and 13b, are obtained by the proposed IF (8) without decomposing the signals (i.e.,
zero computational complexity of decomposition). Moreover, these results are very
interesting, physically significant as they reveal real nature of signal under analysis,
and cannot be obtained by the traditional IF (7e).

4 Conclusion

The IF is an important parameter for the analysis of nonstationary signals and nonlinear
systems. It is the basis of the TFE analysis of a signal. The IF is the time derivative
of the instantaneous phase and, originally, it is well defined only when this derivative
is positive. That is, the IF is valid only for monocomponent signals. If time derivative
of instantaneous phase is negative, i.e., the IF is negative, then it does not provide any
physical significance. This study proposed a mathematical solution and eliminates
this problem by modifying the present definition of IF. This is achieved by using the
property of the multivalued inverse tangent function that provides base to ensure that
the instantaneous phase is an increasing (or a nondecreasing) function.

There are two fundamental and important conceptual innovations of this work.
First is the extension of the conventional definition of IF by redefining it such that it is
always positive. This proposed IF is valid for all types of signals such as monocom-
ponent and multicomponent, narrowband and wideband, stationary and nonstationary
signals generated by linear and nonlinear systems. The understanding of the TFE rep-
resentation, by all the methods which are using the IF, would improve significantly by
using this definition. Second, we have also demonstrated that the zero-phase filtering-
based decomposition of a signal into a set of desired frequency bands with proposed
IF accurately reveals the TFE distribution, whereas conventional (i.e., nonzero-phase)
filtering-based decomposition cannot be used to obtain correct and meaningful TFE
distribution. The Fourier and filter theory arewell established, fullymatured and devel-
oped; thus, the zero-phase filtering-based decomposition of a signal, i.e., the FDM,
is the most powerful for analysis and TFE representation which presents full control
over the number of bands with desired cutoff frequencies. This kind of control and
features is difficult to achieve or may not be possible by the decomposition methods
such as EMD algorithms, SSWT, VMD, EVD, time-varying vibration decomposition,
resonance-based signal decomposition, EMD based on constrained optimization, and
EWT available in the literature. Simulations and numerical results demonstrated the
superiority, validity, and efficacy of the proposed IF for the TFE analysis of a signal
as compared to other existing methods available in the literature.

In this study, we have considered many simulated signals and two real-life signals
(an earthquake and a gravitational wave recordings generated by real-world phe-
nomena) to demonstrate the efficacy of the proposed method. In order to reveal the
underlying processes and provide explanations of physical phenomenon, the direc-
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tions of future research would be (1) to apply the proposed method to a large class of
nonstationary signals such as vibration, speech and acoustic signals, biomedical elec-
trocardiogram (ECG) and electroencephalogram (EEG) signals, financial time series,
radar, sonar, and communication signals analysis and (2) to use the proposed IF in all
the decomposition methods such as EMD, SSWT, VMD, EVD, and EWT to obtain
TFE distribution of a signal.
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