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Abstract The paper presents an auditory scene analyser that comprises of two joint
simultaneous modules, namely binaural speech segregation and speaker recognition.
The binaural speech segregation is realized by incorporating interaural time and level
differences, interaural phase difference and interaural coherence along with direct-
to-reverberant ratio into deep recurrent neural network. The performance of deep
recurrent network-based speech segregation is validated in terms of source to interfer-
ence ratio, source to distortion ratio and source to artifacts ratio and compared with
existing architectures including deep neural network. It is observed that performance
of conventional deep recurrent neural network can be improved further by involv-
ing discriminative objectives along with soft time–frequency masking as a layer in
the network structure. The system also proposes a spectro-temporal extractor which
is referred as Gabor–Hilbert envelope coefficients (GHEC). The proposed monaural
feature is responsible for extracting discriminative acoustic information from segre-
gated speech sources. The performance of GHEC is validated under various noisy
and reverberant environments and the results are compared with existing monaural
features. The results of binaural speech segregation have shown better signal-to-noise
ratio at an average of 0.7 dB even in the presence of higher reverberation time, 0.89 s
over other baseline algorithms.
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1 Introduction

Human auditory system has the fascinating ability to segregate acoustic signals from
a complex mixture of input speech signals amidst reverberant and noisy environment.
It can also locate and eventually estimate the distance of acoustic signals, even in
the absence of visual information [6,7,34,40,50]. Significant numbers of computa-
tional techniques referred as computational auditory scene analysis (CASA) have been
devised to analyse the complex acousticmixturemainly because of inspiration received
from human auditory system [59]. The speech segregation process involves separa-
tion of an interested single speech source from multiple sound mixtures [59,60]. The
implementation of an automatic speaker recognition system in a real-world application
is considered as a difficult task due to the presence of additive noises as well as room
reverberations. Several spectral subtraction filtering methods have been investigated
for improving the robustness in automatic speaker recognition [59,60]. Currently,
researchers have focused on designing reliable speech processing system by com-
bining speech separation and robust speaker recognition module [60]. The combined
architecture contains speech segregation module followed by robust speaker recog-
nizer. Further, the joint architecture is found to be improving the speech intelligibility
and efficiently degrading the combined effects of reverberation and noise [59,60].

In the literature,most of the speech segregation studies have concentrated onmonau-
ral speech signals and related features [8,51]. Various algorithms, such as spectral
subtraction, inverse and Wiener filtering techniques are suggested for the problems
in the segregation of monaural speech signals [24,48]. Woodruff et al. [54] describe
a robust joint localization as well as segregation of voiced speech sources by means
of combined Pitch and azimuth cues in reverberant environments. Also, Woodruff et
al. [53] propose an azimuth-dependent classifier-based localization method in which
segregation process is carried out by using monaural feature to improve the estimation
of azimuth cues from binaural input. The comparative analyses are largely carried out
by using various classifiers, including support vector machine (SVM) and Gaussian
mixture model (GMM) [12]. Recently, many researchers use neural network-based
classifiers due to its improved robustness and performance. A multi-layer perceptron
(MLP)-based monaural feature evaluation framework is demonstrated in a speech seg-
regation application [20]. Several studies have considered pitch and azimuth cues as
features for the segregation of speech sources. Wrigley et al. [55] propose recurrent
timing neural network-based speech segregation of two acoustic sources in which
pitch and location features are considered. Alinaghi et al. [3] suggest binaural speech
segregation algorithm on the basis of weighted combination of binaural cues, such as
IPD, ILD, IC and the mixing vector models. Weiss et al. [52] have proposed a binaural
source separation technique that combines spatial models with a priori trained source
models and derived the expectation maximization (EM) algorithm for the determina-
tion of maximum likelihood parameters. Abdipour et al. [1] have suggested a novel
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system for the segregation of multiple moving sources from stereo signals, and it is
based on the statistical model where maximum likelihood estimation is realized by
using expectation-maximization (EM) technique.

Many researchers have successfully used direct-to-reverberant ratio (DRR) for the
estimation of distance [30,31]. The direct-to-reverberant ratio depends upon various
factors, including room volume, directivity, source to receiver distance and also rever-
beration time [13,26,30,31,56]. Lu et al. suggest a binaural equalization–cancellation
technique that estimate direct energy ratio by locating acoustic source in a delay-line
structure [30,31]. A direct and reverberant sound spatial correlation matrix model is
suggested for the estimation of absolute distance between acoustic source and micro-
phone array [30,31]. Hioka et al. [13] suggest a spatial correlationmatrixmodel for the
segregation of direct and reverberant components. The estimated DRR from the above
method is restricted to smaller distances but themethod has shown better improvement
in the speech segregation process.

Automatic speaker recognition (ASR) is considered very important, especially in
applications, such as speech and speaker indexing, document content structuring, call
routing, data entry and dictation and speaker attributed speech to text transcription
[5,29]. The performance of an ASR is adversely affected by two forms of reverber-
ation, namely self-masking and overlap-masking [42]. Self-masking occurs due to
early reflections and diffractions, whereas high impact overlap-masking is due from
late reverberation [42]. The binary time–frequency mask is considered as a core of
computational auditory scene analysis which is used to segregate the desired target
from multiple acoustic mixtures [29,47].

ASR is well supported by various techniques, such as Gaussian mixture models,
patternmatching, support vector machine (SVM), hiddenMarkovmodels (HMM) and
neural networks [5,29]. Sadjadi et al. [43] suggest themeanHilbert cepstral coefficients
(MHEC) method as a replacement to traditional Mel-frequency cepstral coefficients
(MFCC) within I -vector-based speaker acoustic model under noisy reverberant envi-
ronments.Recently,Gabor filter banks have been efficiently used to constructmonaural
features for various applications, such as facial emotion recognition, robust speaker
recognition and automatic speech recognition [25,27,45,46]. A joint optimization
of spectro-temporal features (Gabor filters) along with neural net acoustic model is
demonstrated and proposed as an improved ASR [25]. Kanagasundaram et al. [22]
have shown an improvement in the I -vector-based speaker verification by involving
channel compensation method. Further, research findings are also available on the
basis of simultaneous localization and recognition of target speaker to suppress the
combined effects of noise and reverberation [24,34]. May et al. [34] have proposed a
noise robust binaural scene analyser for the localization and also recognition of speak-
ers in the presence of competing sound sources, instantaneously. More specifically,
the effects of reverberation and noises in speaker verification are addressed in recent
research works [2,36–38]. Al-Ali et al. [2] have introduced a forensic speaker veri-
fication system that investigates the combined features of MFCC and DWT–MFCC
of input speech signal under different noisy reverberant conditions. Naik et al. have
proposed a novel method on the basis of evaluation of super-and sub-Gaussian sig-
nals which are computed by using different objective measures of speech qualities to
improve the quality of separated audio sources [37].
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2 Related Works

Recently, deep learning-based binaural speech segregation shows better results than
monaural speech segregation for the applicationswhere reverberations are significantly
considered [19,58]. Zhang et al. [58] have proposed a novel deep learning-based bin-
aural speech segregation by employing a fixed beam-former before extracting spectral
features and have successfully validated in various reverberant environments. Jiang et
al. [19] have proposed a binaural classification by using deep neural network (DNN)
for stereo signals to handle complex auditory scenes, effectively. The DNN-based bin-
aural classification is found to be providing good performance for speech segregation
in a multi-source environment. The performance of automatic speech recognition is
further improved when a combined architecture of deep neural network and recurrent
neural network are used [32,55]. Maas et al. [32] have introduced a noise reduc-
tion technique by applying a deep recurrent auto encoder neural network to ensure
robustness in automatic speech recognition system. Recently, Yu et al. [57] have pro-
posed localization-based stereo speech segregation process in which, the generated
soft time–frequency mask by using deep neural network is compared and proved as a
better model than GMM/EM for the segregation process. Huang et al. have proposed
a solution for monaural speech separation problem by jointly optimizing soft masking
layer with deep recurrent neural network [15,16]. Zhao et al. [60] have introduced a
combined approach that consists of deep neural network-based speech segregation fol-
lowed by robust speaker identification module which is tested under various noisy and
reverberant conditions. It is observed that the combined perceptual architecture helps
to improve the speaker identification performance. Also, issues related to reverbera-
tion time and signal-to-noise ratio are efficiently addressed. Mowlaee et al. [35], have
proposed a joint system by combining speech separation modules and speaker identi-
fication to enhance intelligibility of automatic speaker recognition. Trowitzsch et al.
[49] have suggested a systematic approach to improve the robustness of the classifier
through multi-conditional training and also by super-imposing general environmental
sounds.

The present study proposes twomajor contributions. At first, binaural classification-
based speech segregation is carried out in which a total number of 83-dimensional
features, such as 32-D interaural time difference, 32-D interaural phase difference,
16-D interaural level difference, 2-D interaural coherence and 1-D direct to rever-
berant ratio are considered. The concatenated above discussed resultant features are
incorporated into deep recurrent neural network (DRNN)-based joint discriminative
training classifier for the segregation of speech signals. The present work considers
various performance evaluation metrics, such as source to interference ratio, source
to distortion ratio and source to artifacts ratio for the validation of proposed model.
Eventually, the obtained results are comparedwith the existing architectures, including
deep neural network and observed better performance. Secondly, a spectro-temporal
pattern extractor referred as Gabor–Hilbert envelope coefficients (GHEC) is proposed.
The performance of GHEC is compared with existing monaural features using acous-
tic speaker models, such as GMM–UBM and I -vector. The results found that the joint
architecture consists of binaural speech segregation followed by robust speaker rec-
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Fig. 1 Block diagram representation of binaural speech segregation along with automatic speaker recog-
nition

ognizer that helps to improve the speech intelligibility, even in the presence of both
noise and reverberation.

3 Model Architecture

Figure 1 shows the block diagram representation of proposed joint automatic speech
signal segregation and recognition system.

The following section describes the various functionalities of each component pre-
sented in both binaural signal segregation and recognition modules.

3.1 Binaural Source Segregation Module

The predominant component of binaural speech segregation module is deep recurrent
neural network classifier. The binaural cues, such as interaural time and level dif-
ference (ITD/ILD), interaural phase difference (IPD), and interaural coherence (IC),
are first extracted from binaural auditory frond-end. As an important contribution in
this study, the DRR is also estimated from binaural signals through equalization–
cancellation techniques [31] and combined with binaural cues. It is understood that
these binaural cues are dependent on the various factors, including reverberation time,
quality and energy of acoustic source, noises, obstacles and distance especially in an
enclosed space. The resultant features are then incorporated into DRNN-based joint
discriminative training model in order to generate soft mask.

3.1.1 Binaural Cues Extraction

The basilar membrane in cochlea is found to be responsible to segregate the acoustic
signals on the basis of its frequencies in the human auditory system [34]. Gammatone
filters aremodelled as an inspiration of frequency selectivity and other functional prop-
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erties of human cochlea. The speech signals arrived at two ears are decomposed into
auditory channels (N = 32) by using fourth-order Gammatone filter bank followed
by inner hair cell processing. Further, these phase-compensated filter banks are used
to adjust the binaural features at common time intervals. The centre frequencies of the
filter banks are equally spaced on the Equivalent Rectangular Bandwidth (ERB) scale
between 80 Hz and 5 kHz [53,54].

The output of Gammatone filter bank is processed by computing half-wave rec-
tification and square root compression for the transduction process in the inner hair
cells. The auditory binaural features are processed by using a rectangular window of
20 ms at a sampling frequency of 44.1 KHz with an overlap of 50% between the suc-
cessive frames at frame shift of 10 ms [53,54]. The estimation of interaural time and
level differences are achieved by using normalized cross-correlation analysis in time
domain and by calculating energy per frame, respectively. In general, interaural time
difference (ITD) or interaural phase difference (IPD) deals with discrepancy in arrival
times and phases at each ear at low level frequencies. They are sensitive to source
distance, whereas ILD is considered as more robust at higher frequencies (higher than
1600 Hz) [50]. The estimated peak position for ITD across the time interval I between
two ears is defined as,

τi (t) = arg maxCi (t, γ ) (1)

where t is frame number, γ is time lag and normalized cross-correlation function [34]
of channel Ci is given by,
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where ki and si are the mean values of left and right ear signals, respectively. The
comparison of energy arrived at two ears are used to derive interaural level differences,
especially in a reverberant environment. The ILD estimation [34] across time interval,
I between two ears are given by,

ildi (t) = 20 log10
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(3)

Interaural coherence (IC) [3,50] is considered as amore salient feature for analysing
similarity and strength of correlation between two ear canals.

IC(t) = ∅l,r (ω, t)
√∅l,l(ω, t).∅r,r(ω, t)

(4)

where ∅r,r(ω, t), ∅l,l(ω, t) represent the auto-power spectral densities (APSD) of the
left and right ears, respectively.
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∅l,r (ω, t)represents cross power spectral density (CPSD) of the two time-aligned
input channels.

The IPD model [24,50] provides high temporal resolution of robust binaural infor-
mation. The interaural transfer function (ITF) is computed by using left–right pair of
complex Gammatone filter outputs, such as gl (t) and gr (t) . Computed ITF contains
complex terms along with amplitude and phase information and it is given by,

ITF(t) = gl (t) .gr (t) = Al (t) .Ar (t) .e j (∅l(t)−∅r(t)) (5)

where Al (t) and Ar (t) represent the amplitude information whereas ∅l (t) ,∅r (t) rep-
resent phase informationof ITF for left and right channels, respectively.The temporally
smoothened IPD is obtained by using low-pass filtered ITF [24,50] and it is given as,

IPD(t) = arg([ITF (t)]lp) (6)

3.1.2 Direct-to-Reverberant Ratio (DRR)

The distance estimation of a sound source is closely associated with the energy ratio
betweendirect and reverberant sound signals. It is understood that direct-to-reverberant
ratio is dependent upon two factors, namely acoustic properties of the room and source
to receiver configuration (i.e. distance and orientation). The DRR is considered as one
of the most widely analysed parameters by many researchers for the estimation of
distance between source and destination [30,31]. Further, it is observed that DRR
decreases with increasing distance between source and target and it is also affected by
certain properties of the room, such as the reverberation time and room volume. It is
described in terms of dB and defined as,

DRR = 10 log10

∑Sd
k=0 |h[K ]|2

∑∞
k=Sd+1 |h[K ]|2 (7)

where Sd represents the sample length of the direct sound arrival, and h[k] represents
the room impulse response.

3.1.3 DRNN-Based Joint Discriminative Training Classifier

The level of complexity in recognizing a target speaker in a reverberant environment
depends on two important factors, namely number of target speakers and nature of
noise sources [16,60]. The computational goal of adopting deep learning model in
this study is mainly to separate target speech source from input acoustic mixture. The
concatenated features, such as binaural cues and direct-to-reverberant ratio are given as
input features. The deep recurrent structure is characterized by temporal connections
of recurrent neural network. The deep learning model is successfully processed to
reform the magnitude spectra of output targets and predictions. The optimized deep
learning structure with different layers is shown in Fig. 2.

The network parameters are updated by involving back-propagation through time
(BPTT)method. The limitedmemoryBroyden–Fletcher Goldfarb Shannon (L-BFGS)



3390 Circuits Syst Signal Process (2018) 37:3383–3411

Fig. 2 Deep recurrent neural network structure with different layers

algorithm [15,16] is processed to train themodels at the timeof trainingphase. The esti-
mation of DRNNmodel parameters is carried out by using the error back-propagation
algorithm with stochastic gradient learning in order to achieve state-of-the-art perfor-
mance in neural network structure. The time–frequencymasking function is integrated
as one of the layers in neural network structure that reduced computational complex-
ities. It is assumed an M intermediate layer with recurrent connection is presented at
the kth layer. The hidden activation at this layer [16,55] is calculated on the basis of
current input at time, j by using Eq. (8).

hk
(
xj

) = fh
( (
x j

)
.hkj−1

))

= γk
(
U

k
hkj−1 + Wkγk−1

(
W

k−1(
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(
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(8)

where fh represents a state transition function and x j is given as input to the neural
network at time j . Uk and Wk are the two weight matrices for the kth layer and
recurrent connection at that layer, respectively. γk(.) is the element-wise nonlinear
function in kth layer. The output function is given by,

y = fo
(
hki

)
(9)

where fo represents an output function.
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Fig. 3 Spectrogram of segregated speech sources usingDRNN-based joint discriminate training. aMixture
of two sources; b, c segregated source signals

The soft time–frequencymasking phase is carried out immediately after the training
phase in order to improve intelligence in speech signal. The recent reviews reported
that soft masking can be used to reduce the artifacts and also to improve smoothness
in the predicted results. It is applied on the predicted magnitude spectrogram for the
reconstruction which is followed by inverse short-term Fourier transform.

The soft time–frequency masking, S j ( f ) is given by

S j ( f ) =
∣
∣y1 j ( f )

∣
∣

∣
∣y1 j ( f )

∣
∣ + ∣

∣y2 j ( f )
∣
∣

(10)

where y1 j and y2 j represent the obtained output predictions. The soft masking is
applied to the magnitude spectra, Tj ( f ) of the original mixture signal in order to
obtain segregated spectra, s′

1 and s′
2 which are given by,

s′
1 ( f ) = S j ( f ) Tj ( f )

s′
2 ( f ) = (1 − S j ( f ) )T j ( f ) (11)

The time-domain signal can be obtained by applying the inverse short-time Fourier
transform. Further, the signal-to-interference ratio (SIR) can be improved by applying
discriminative training criterions, such as mean squared error (MSE) and Kullback–
Leibler (KL) divergence [15,16]. DRNN-based speech segregation is an appropriate
technique to facilitate dynamic temporal behaviour. The spectrograms of inputmixture
and segregated speech signals are shown in Fig. 3a–c, respectively.

3.2 Speaker Identification Module

The speaker identification process is initiated by using resultant input signals from the
speech segregation module. The identification module includes three stages, namely
feature extraction, speakermodelling and pattern classification-based decisionmaking
[23]. The present study proposes the Gabor filter banks for the extraction of monau-
ral features. Further, it uses Gaussian mixture model-universal background model
(GMM–UBM) and I -vector methods for the recognition of a speaker [44]. The train-
ing phase confines the distribution of extracted features by involving one ormore types
of statistical models. The unidentified utterances are then classified in the recognition
phase on the basis of its similarities with the corresponding speaker model [23].
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Fig. 4 The structure of proposed envelope coefficients extraction

3.2.1 Energy-Based Voice Activity Detector (VAD)

All speech samples are pre-processed by involving down sampling to 8 kHz, pre-
emphasis and removing silence speech regions [44]. The energy of all input speech
frames are calculated for a given speech utterance and then the empirical threshold is
chosen from frame energies. The accurate discrimination of speech and non-speech
regions is achieved by an energy-based detector that rejects frames if their energy
decreases below a threshold value.

3.2.2 Gabor Hilbert Envelope Coefficients (GHEC)

The present study proposes a Gabor Hilbert Envelope Coefficients (GHEC) method
in which Gabor filters are convolved with Hilbert Envelope and it is illustrated in
Fig. 4. The characteristics of spectral, temporal and spectro-temporal components are
extracted by using set of 41-Gabor filters. The feature extraction process uses local
patches of log-Mel scaled spectrogram of 26-channels. Log-Mel spectrogram consid-
ers the basic qualities of human auditory systemwhich includes resolution across entire
frequencies and logarithmic intensity perception [45]. The extracted feature compo-
nents are dependent upon the output of Gabor filters and its convolution with Hilbert
envelope. The Hilbert envelopes perform the exact envelope of the auditory nerve
response at particular centre frequencies. The output of Hilbert transform, Ht (s, i)
contains both real and transformed part which are used to obtain envelope, He (s, i).

Ht (s, i) = Gc (s, i) + iG ′
c(s, i) (12)

where Gc (s, i) ,G ′
c(s, i) are the real and Hilbert transformed signal, respectively, and

i , is the imaginary unit. The Hilbert envelope [44], He (s, i) is obtained by using Eq.
(13).

He (s, i) = Gc (s, i)2 + G ′
c(s, i)

2 (13)

The Hilbert envelope is smoothened by using low-pass filter with cut-off frequency
of 20 Hz in order to remove redundant undesired higher frequencies. The smoothed
envelope, Hes (s, i)is grouped into 25 ms duration with a skip rate of 10 ms. Further,
discontinuities at the edges of each frame areminimized by using a Hammingwindow.
The sample means are estimated as,
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M (t, i) = 1

N

N−1∑

s=0

w(s)H es (s, i) (14)

where w(s) is a Hamming window. The natural logarithm is applied on the estimated
resultant parameter, M (t, i) which is used here as a channel normalization factor
in order to bring human perception of loudness as well as to compress the dynamic
range [43]. In the final step, discrete cosine transform (DCT) is used to perform two
functions, namely conversion of spectral features into cepstrumand also to de-correlate
various over-lapped feature dimensions [44]. The first and second cepstral derivatives
are calculated and appended to the features in order to capture various 57-dimensional
dynamic patterns.

3.2.3 GMM–UBM Model-Based Speaker Verification and Identification

The speaker recognition is used to identify an individual person by analysing the
spectral contents of his/her speech signal [23,41]. Generally, performance of this
process is degraded when reverberation time increases. The source speech signal
reaches the target after experiencing series of reflections and diffractions in a rever-
berant room environment. The training phase is involved with coefficients and the
trained data is processed by using Gaussian mixture model with universal background
model (GMM–UBM) [23,41]with 57-dimensional GaborHilbert envelope coefficient
(GHEC) features. In the literature, the Mel-frequency Cepstral Coefficients (MFCCs)
aswell asGabor Filter Bank Features (GBFB) [45,46] have been extensively applied in
many speech signal processing applications, including speech, emotion and language
recognition as well as for the speaker recognition. The performance of proposedGabor
Hilbert envelope coefficient (GHEC) is compared with various known existing meth-
ods, includingMel-frequency cepstral coefficient (MFCC) and Gammatone frequency
cepstral coefficients (GFCC). The cepstral mean and variance normalization (CMVN)
are applied on monaural features for adopting feature normalization in order to reduce
the effect of channel influence and to increase the robustness of automatic speaker
recognition systems. The Gaussian mixture model (GMM) [23,41] is considered as
a stochastic model which comprised of weighted sum of M multivariate component
Gaussian densities. For a D-dimensional feature vector, x , theGaussianmixturemodel
is referred by its probability density function and it is given by,

p(x |λ) =
M∑

i=1

wi pi(x) (15)

wherewi and pi (x)denotes themixtureweights and component densities, respectively

pi (x) = 1

(2π)
D
2 | ∑i |

1
2

exp

{

−1

2
(x − μi )

′ ∑−1

i
(x − μi )

}

The uni-modal Gaussian densities depend on the mean D × 1 vector, μi and a D × D
covariance matrix,

∑
i . The parameters of the density model are defined as λ =
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{wi , μi ,
∑

i } and the mixture weights are required to satisfy the constraint
∑M

i=1 wi =
1. In this study, 64 mixture component of universal background model (UBM) is
trainedwith expectation-maximization (EM) algorithm. Themean vectors of universal
background model are adapted by utilizing the relevance factor of 19. The speaker
model is frequently trained by using maximum a Posteriori (MAP) method in order
to promote the consistency. The mean vectors of universal background model (UBM)
are concatenated into super vector for each speaker in the enrolment set and eventually
a target speaker model is constructed [23,41].

In the recognition phase, log-likelihood ratio (LLR) score [23,41] for the given test
feature vectors, X is estimated from two models, namely target (γtar) speaker model
and universal background model (γimpost) and the ratio is derived as,

LLRscore = log
(
X |γ tar

) − log
(
X |γ impost

)
(16)

where γtar is the utterances related to target speaker and γimpost is the utterances that
are not related to target speaker. The speaker verification is carried out to confirm
whether a speech source signal can be accepted or rejected and it is mainly based on
the decision threshold θ ,

LLRscore =
{≥ θ accepted

< θ rejected
(17)

Thenormalization value is resulted fromuniversal backgroundmodel (UBM)which
is done by shifting the log-likelihood scores obtained from various feature vectors.
The score normalization is applied to reduce the score variability across different
speakers and sessions. It improves the accuracy and also provides a common (speaker-
independent) decision threshold value. In addition, the Z -normalization [23,41] is also
carried out for the enhancement and it is given by,

LLRnorm = LLRraw − μ

σ
(18)

whereμ and σ denotes mean and variance of imposter score of a speaker, respectively.

3.2.4 I -Vector-Based Speaker Recognition System

The experiment uses 57-dimensional Gabor Hilbert envelope features with the
appended delta coefficients that are extracted as acoustic features from speechmaterial
for i-vector-based speaker verification methods. The low-dimensional representation
of Gaussian mixture model (GMM) super vectors is referred as I -vector which was
introduced very recently as a major refinement in existing speaker recognition sys-
tem [9,10]. I -vector extraction along with Gaussian probabilistic linear discriminant
analysis (GPLDA) has been experimentally proved as an enhanced and computation-
ally efficient technique in comparison with conventional joint factor analysis (JFA)
and support vector machine (SVM) [21]. In general, channel and session variability
is referred as a mismatch between trained and test utterances which is induced by
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various factors, including noise sources, variations in voice of the speaker and envi-
ronmental conditions. The same can be compensated by involving various methods,
such as within class covariance normalization (WCCN), linear discriminative analy-
sis (LDA) and source-normalized weighted linear discriminant analysis (SN-WLDA)
[22]. The joint factor analysis (JFA) [9,10] is mainly based on decomposition of
speaker-dependent Gaussian mixture super vector, k that consists of separate speaker-
and channel-dependent components, S and C , respectively, and are given as,

k = S + C (19)

where S = m + V y + Dz; C = Ux ; where, m is a session- and speaker-independent
super vector extracted by using universal backgroundmodel (UBM); x, y and z are the
speaker- and session-dependent factors in their respective subspace. V and D specify
the speaker subspace, whereas U represents session subspace.

I -vector model has shown significantly better performance, especially for short
utterances (< 10 s). The total variability space simultaneously represents speaker and
channel variability [21]. The speaker- and channel-dependent Gaussian mixture super
vector in an I -vector-based speaker recognition, k is computed as,

k = m + Tw (20)

wherem is the session- and speaker-independent universal background model (UBM)
super vector, T is a low-rank rectangular matrix representing the primary directions
of variability across all development data and w denotes the independent normal
distributed random vector with parameter N (0, 1).

3.2.4.1 Within-Class Covariance Normalization Along with Linear Discriminant
Analysis Within-class covariance normalization (WCCN) is used to compensate
dimensions of the high within-class variance. The within-class covariance normaliza-
tion (WCCN) additionally removes the dimensions of between-class variance while
reducing the dimensions of within-class variability which is considered as a major
demerit. This can be overcome by combining within-class covariance normalization
(WCCN) along with linear discriminant analysis (LDA). The combined compensa-
tion of WCCN + LDA [21,22] minimizes within-class variance as well as maximizes
between-class variance and it is derived by following Eigen-value decomposition
which is denoted as,

Vbv = λVwv (21)

Linear discriminative analysis (LDA) [21] is computed by the usage of between-
class variance (Vb) and within class variance (Vw), respectively, and it is given as,
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Vb =
S∑

s=1

ns(μs − w)(μs − w)T ,

Vw =
S∑

s=1

ns∑

i=1

(ws
i − μs)(w

s
i − μs)

T , (22)

where S is the total number of speakers, ws
i denotes the i-vector representation of

i session of speaker s and ns is the number of utterances of speakers. The mean I -
vectors, μs for each speaker and w is the global mean across which all speaker are
specified as,

μs = 1

ns

ns∑

i=1

ws
i

w = 1

N

S∑

s=1

ns∑

i=1

ws
i (23)

where N is the total number of sessions. As described, linear discriminative analysis
(LDA) is responsible for producing reduced set of axes A through Eigen-value decom-
position whereas WCCN transformation matrix (B) is derived by using Cholesky
decomposition, BBT = W−1 where W is computed by using,

W = 1

S

S∑

s=1

ns∑

i=1

(AT (ws
i − ws))(A

T (ws
i − ws))

T (24)

The resultant WCCN [LDA] is obtained by computing,

WCCN [LDA] = BT ATW (25)

3.2.4.2 Gaussian Probabilistic Linear Discriminant Analysis (GPLDA) Classifier In
the literature, significant numbers of work have been presented the probabilistic linear
discriminant analysis (PLDA)-based I -vector speaker recognition system by creating
session and speaker variability within I -vector space, effectively. Recently, length-
normalized Gaussian probabilistic linear discriminant analysis (GPLDA) approach
is introduced that converts I -vector feature behaviour from heavy-tailed to Gaus-
sian [21,22]. The Gaussian probabilistic linear discriminant analysis-based I -vector
speaker recognition technique involves extraction of I -vector, session variability com-
pensation, likelihood ratio scoring. The tested results of proposed technique with the
baseline methods for TIMIT dataset [11] are given in Table 1. I -vectors are extracted
for Gabor Hilbert envelope features by using front-end factor analysis. Gaussian
probabilistic linear discriminant analysis (GPLDA) classifier is applied on channel
compensated I -vector features [21,22]. The speaker- and channel-dependent length-
normalized I -vector w can be defined as,
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Table 1 Comparative analysis of joint factor analysis and i-vector-based techniques for different truncation
of testing and training utterance under reverberant condition (RT = 0.38 s) are given below

Utterance size (training–testing) JFA system WCCN + LDA GPLDA

EER% DCF EER% DCF EER% DCF

Full(20 s)–2 s 20.08 0.064 18.53 0.067 19.73 0.068

Full(20 s)–5 s 15.95 0.054 13.70 0.056 14.00 0.060

Full(20 s)–10 s 13.36 0.047 11.43 0.045 11.46 0.049

Full(20 s)–12 s 10.02 0.042 10.54 0.040 9.43 0.043

Full–Full 5.37 0.032 5.56 0.033 5.26 0.034

w = w +U1x1+U 2x2 + γr (26)

where γr is speaker residuals with mean zero, U1 and U2 are the Eigen voice matrix
and Eigen channel matrix, respectively.

The Gaussian probabilistic linear discriminant analysis (GPLDA) scoring [21] is
computed using batch likelihood ratio which provides a ratio between two I -vectors
of target and test speakers. It is calculated as,

ln
P(wtarg,wtest|H1)

P(wtarg|H0)P(wtest|H0)
(27)

where H1 the speakers are same, H0 the speakers are different.
The equal error rate (EER) and detection cost function (DCF) are used as perfor-

mance evaluationmetrics [44]. The EER is obtainedwhere false acceptance rate (FAR)
and false rejection rate (FRR) are found to be equal. The Detection Cost Function is
investigated by using weighted sum of the two error probabilities and it is defined as

DCF = CmissEmissPtarget + CFAEFA(1 − P target) (28)

where Cmiss = 10 and CFA = 1 represents cost factors, Ptarget = 0.01 gives the
probability of target and Emiss, EFA denotes probability of miss and false alarm,
respectively.

From Table 1, it is observed minimum change in the computed detection cost
function for joint factor analysis and I -vector-based techniques. The equal error rate
(EER) by following Within-Class Covariance Normalization (WCCN) along with
LDA is found to be relatively better than other methods. The equal error rate (EER)
of Gaussian probabilistic linear discriminant analysis produces better results than
joint factor analysis. It should be noted that the purpose of involving compensation
techniques is to promote efficiency in speaker discrimination and attenuate channel
effects/variability. It is observed that the equal error rate increases as length of test
utterance decreases.
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4 Results and Discussions

The speech signals are convolved with impulse responses (BRIR) and are obtained
fromAachen ImpulseResponse (AIR) database for different rooms [18] and from [24].
The study also uses impulse responses obtained from the University of Surrey [17,19]
in four different reverberation rooms (A, B,C , and D) for azimuths between− 90◦ and
90◦ spaced by 5◦ at a distance of 1.5 m. The TIMIT database [11] is composed of high-
quality, read speech collected from a total of 630 speakers (comprises of 192 female
and 438 male). Each speaker supplies 10 short utterances, phonetically rich English
language sentences and average quantity of speech available per speaker is 30 s. In this
study, 9 short utterances are used for training and the remaining one utterance is used
as a test sample. Similarly, 530 speakers are used for background model training, and
the rest of 100 speakers are used as test samples. The NOIZEUS dataset [14] contains
various noises which are utilized for the experiments. The binaural signals and deep
learning algorithms are computed by using a workstation (ThinkStation P300) with
an Intel Xeon (E3-1271) 3.6 GHz processor, 32 GB of RAM and dedicated NVIDIA
(Quadro K620) graphics card. The software includes, MATLAB (R2015a) installed
in Windows 7 operating system.

4.1 Module 1: Feature Extraction and Classification-Based Speech Segregation

In this module, the features of binaural and direct-to-reverberant ratio cues are cho-
sen to generate soft time-frequency mask and also to handle issues during binaural
source separation process. The concatenated mixture of these features is given as an
input to the deep recurrent classifier, DRNN. Each layer in the typical deep neural
network is further enhanced with temporal feedback loops in order to make existing
network structure as deep recurrent neural network. In this study, the deep recurrent
structure is implemented as three hidden layers of 1000 hidden units integrated with
joint discriminative training criterion.

It is understood that the number of neural network parameters, such as weights and
bias increase when the number of input feature dimensions increase. These network
parameters are updated through back-propagation through time (BPTT) and the epoch
is adjusted to 500. Each layer in the network is added with temporal context informa-
tion; thus each network in the recurrent structure is updated with new information and
travels up ensuring a hierarchical architecture. Each layer in the hierarchy is charac-
terized by recurrent neural network. The performance analysis metric, mean square
error (MSE) is computed for each feature vector of the network structure in order
to produce better signal-to-noise ratio and also to optimize network parameters. The
limited memory Broyden–Fletcher Goldfarb Shannon (L-BFGS) algorithm [15,16] is
considered during optimization stage to train the networks from random initialization.
Further, long short-term memory (LSTM) optimizer is explored in the recurrent struc-
ture that creates the possibility to store and callback temporal information over time
to handle vanishing gradient problem.

It should be noted that better combination of concatenated features are selected
by estimating output signal-to-noise ratio and HIT-FA (success-false alarm rate) [11].
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The correctly identified speech-dominant time–frequency (T–F) units represent HIT
rate and the wrongly classified noise-dominant T–F units represent false rate (FA).
The binaural cues obtained from binaural auditory front-end are combined along with
direct-to-reverberant ratio. The various combinations of resultant concatenated audi-
tory features are validated by estimating output signal-to-noise ratio as well as HIT-FA
rate. It is presumed that better combination of binaural features can further improve
the performance of deep recurrent neural network-based speech segregation process.

All the segregation-related experiments are carried out by analysing various impulse
responses associated with four different reverberation rooms, i.e. A, B, C and D
[22,34]. The babble noise is considered as a noise source as it is known for its higher
efficiency, especially in speech masking-related applications. The babble noise is
spread across the speech spectrum in azimuth between − 90◦ and 90◦ spaced by
5◦ at a distance of 1.5 m and used to train deep recurrent neural network. An untrained
interference angle of 15◦ is considered for the testing in all the experiments. The results
from classification-based speech segregation analysis are shown in Tables from 2 to 4
which performed under reverberation time (T60) at 0.32 s.

The estimation of signal-to-noise ratio is considered as one of the popular evaluation
metrics that expresses the performance of source segregation system [60] and it is given
by,

SNR = 10 log10

[ ∑
m x2(m)

∑
m

[
x̂(m) − x(m)

]2

]

(29)

where x̂(m) is the estimated target signal, x(m) is the target signal. The estimation of
HIT-FA is not only considered as a best evaluation criteria and also it is widely used
to correlate with human speech intelligibility.

The performance of concatenated binaural cues and direct-to-reverberant ratio in
the segregation process are validated by estimating output signal-to-noise ratio and
the results are shown in Table 2. It is observed that the classifier-based segregation
process produces better results as when the dimensionalities of interaural level dif-
ference increases. The effect of reverberation of rooms and noise play the major role
than the output signal-to-noise ratio in the performance of segregation process. It is
found that the computational complexities further increased when the dimensional-
ity of interaural level difference increases than 16 dimensions. The study observes
lower HIT-FA rate when 16-dimensional interaural level differences are used. A non-
linear behaviour is observed between interaural time difference and better output
signal-to-noise ratio. The better output HIT-FA rate and output signal-to-noise ratio
are observed for the combination of 32-dimensional interaural time and phase differ-
ences and 16-dimensional level differences along with direct-to-reverberant ratio. The
computational time increases when dimensions of interaural level difference increases
above 16-D. It is observed that minimum change in output SNR when the dimension
of interaural coherence is increased and it is chosen as 2-D interaural coherence (IC)
as one of the concatenated features.

Thenext step involves concatenation of total number of 83-dimensional features that
include four binaural and direct-to-reverberant ratio cues. These combined feature cues
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are then incorporated into deep recurrent neural network-based joint discriminative
training model.

The training of deep recurrent neural network is done by using randomly chosen 100
speakers from TIMIT database which has concatenated 9 sentences for each speaker.
Eventually, testing is carried out with an advent of unused 1 sentence. The efficiency of
deep recurrent neural network is evaluated by estimating three performance metrics,
namely source to interference ratio (SIR), source to artifacts ratio (SAR) and source
to distortion ratio (SDR).

Source to distortion ratio (SDR): It is referred as the ratio between target source and
the difference between estimated and target source signals. The higher SDR denotes
the better performance [15], [16], [57].

Source to distortion ratio (SDR) = 10log10
‖Star‖2

‖eintf+enoise+eartif‖2 (30)

where Star denotes target source signal, eintf denotes interferences from other sources,
enoise denotes deformation caused by the noise, eartif denotes artifacts established by
the separation algorithm.

Source to interference ratio (SIR): It carries the information about errors caused
by failures during the interfering signal elimination process [38], [16], [57] and it is
specified as,

Source to interference ratio (SIR) = 10 log10
‖Star‖2
‖eintf‖2 (31)

Source to artifacts ratio (SAR): It informs about errors due to extraneous artifacts that
established at the time of source segregation process [38], [16], [57] and it is defined
as,

Source to artifacts ratio (SAR) = 10 log10
‖Star+eintf+enoise‖2

‖eartif‖2 (32)

In this study, both masking and discriminative training model are convolved with
deep recurrent neural network in order to improve robustness and the results are shown
in Table 3. The analysis is carried out by using 83-dimensional (32D ITD+32D IPD+
16D ILD+2D IC+1D DRR) cues at a reverberation time of 0.32 s in the presence of
babble noise at 20 dB. It is observed that the addition of soft masking within a layered
architecture of network produces better performance and it is evaluated in terms of
SDR, SIR and SAR. The deep recurrent network is also validated with and without
discriminative training model. From the results, it is observed that the model with
discriminative training outperforms other structures. The performance metrics have
observed higher values for all other structures than deep neural network (DNN)model.
The temporal hierarchyof deep recurrent networkplays amajor role in producingbetter
performance. Further, the improved performance is mainly due to back-propagation
of gradients with respect to training objectives that provide optimized structure for the
model. The present study attempts to further improve existing deep recurrent network
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Table 3 Performance of DRNN with and without masking and discriminative training model

Models Male versus female Female versus female

SDR (dB) SIR (dB) SAR (dB) SDR (dB) SIR (dB) SAR (dB)

DRNN with joint masking 8.12 11.04 9.93 5.77 8.02 7.53

DRNN without joint
masking

7.73 9.58 9.02 4.36 6.02 8.03

DRNN with
discriminative training

8.73 12.15 10.32 5.83 8.05 6.16

DRNN without
discriminative training

8.54 11.46 8.57 4.74 8.57 7.34

DRNN with joint
discriminative training

11.07 16.35 13.90 8.04 9.42 8.15

DNN 7.52 8.93 8.72 5.02 7.53 7.02

Table 4 Performance of classification-based source separation for the different input SNR values

Input SNR (dB) HIT (%) FA (%) HIT-FA (%) Output SNR (dB)

− 15 76 0.6 75.4 2.3

− 10 83.2 0.8 82.4 6.0

0 87.7 3 84.7 11.7

10 90.2 5.2 85 13.9

20 92 6 86 16.3

model by integrating both masking as well as discriminative model criterion within
layered structure. The results obtained observe better performance metrics than any
other existing models. Obviously, the addition of soft time–frequency (T–F) mask as
an internal layer along with exploration of mean square error (MSE) is believed as the
main reason for the better results.

The source segregation process is carried out by incorporating the features, total
number of 83-dimensional features (32D ITD + 32D IPD + 16D ILD + 2D IC +
1D DRR) into deep recurrent neural network-based joint discriminative model. The
performance is validated by estimating input signal-to-noise ratio in the presence of
babble noise and the results are shown in Table 4. It is experimentally observed that
the higher-dimensional interaural level difference above 16 dimensions not merely
increases the complexity but also the stability of the system by consuming more
time. Also, output signal-to-noise ratio decreases when dimensionality of interaural
time difference/interaural phase difference decreases from 32 dimensions. For the
obvious reason, the system produces better output signal-to-noise ratio when input
SNR increases.

The source segregation process is performed in four different reverberant rooms in
the presence of babble noise at 0 dB and the results are shown in Table 5. The system
produces better signal-to-noise ratio and HIT-FA rate for the rooms which has lower
reverberant time period. However, the performance of classifier-based source segre-
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Table 5 Performance analysis of binaural-DRR combined source segregation process under babble noise
at 0 dB

Rooms HIT (%) FA (%) HIT-FA (%) Output SNR (dB)

A (0.32 s) 87.5 7.4 80 10.8

B (0.47 s) 76.4 5.1 71.3 7.9

C (0.68 s) 77.9 5.5 72.4 9.3

D (0.89 s) 81.27 11.4 69.87 8.4

gation system is not significantly affected by increasing values of reverberation time
periods. In other words, the system is observed with significantly good performance
metrics for all the rooms with various reverberant time periods even at 0 dB.

4.1.1 Comparison Analysis with Baseline Method

In this study, the developed speech separation framework is compared with results
of [4,33,54]. Woodruff and Wang [54] have proposed binaural detection, localization
and segregation of speech source that mainly depend on pitch and azimuth cues. Also,
the system uses hidden Markov model for the estimation of number of active sources
across time. Mandel et al. [33] have suggested model-based EM source separation
and localization (MESSL) system. Here, a mask is generated and successfully uti-
lized for the separation of a desired sound source from stereo signals. Every source
in a mixture has been illustrated by a probabilistic model of interaural parameters.
Probabilistic model of interaural parameters is evaluated at each spectrogram points,
independently. Alinaghi et al. [4] have investigated the strength and weakness of mix-
ing vector estimation along with other techniques, such as interaural level and phase
differences (ILD and IPD) for the separation of stereo speech signals.

The comparative analysis is carried out by considering various rooms at different
reverberant time periods in the presence of babble noise at− 5 dB. It is understood that
the incorporation of combined binaural cues along with direct to reverberant features
into deep recurrent-based joint discriminative model show a better performance and
validated in terms of output signal-to-noise ratio than Woodruff–Wang and MESSL
models which is shown in Table 6. The results are found to be higher in all four rooms,
invariably. It is observed that the proposed model produces 2.57 times better results
than Woodruff–Wang model in Room A which has reverberation time period of 0.32
s. The proposed system shows improved signal-to-noise ratio (SNR) at an average of
0.58 dB over Woodruff and Wang [54] and Alinaghi et al. [4] models in Room D.

4.2 Module 2: Speaker Identification and Recognition Module

In this study, total of 630 speakers (192 female, 438 male) from TIMIT database are
chosen inwhich 9 short utterances are used for training and the remaining one utterance
is used as a test sample. Nearly, 530 speakers are used for background model training
and the rest of 100 speakers are used as test samples. The performance of proposed
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Table 6 Comparative analysis with baseline methods

Model Output SNR in dB at
Room A (0.32 s)

Output SNR in dB at
Room B (0.47 s)

Output SNR in dB at
Room C (0.68 s)

Output SNR in dB
at Room D (0.89 s)

This work 4.50 2.25 1.27 1.05

Alinaghi et al. [4] 1.93 1.64 1.02 0.68

Woodruff and
Wang [54]

1.75 1.50 0.95 0.65

Mandel et al. [33] 1.52 0.90 0.60 0.55

Gabor Hilbert envelope coefficient (GHEC) is compared with other standard feature
extraction techniques, namely Gammatone Frequency Cepstral Coefficients (GFCC)
[60], Mel-Frequency Cepstral Coefficients (RASTA-MFCC), Mean Hilbert Envelope
Coefficients (MHEC) [43] and Gabor Filter Bank (GBFB) [45,46] at various SNR
values with different noise sources and reverberant room environments. The Gamma-
tone Frequency Cepstral Coefficients (GFCC) feature extraction [59,60] is done by
using a total number of 64 channel Gammatone filter banks with central frequencies
ranges from 50 Hz to 8 KHz. The outputs from rectified filter are decimated into 100
Hz that yields time frames of 10 milli-seconds. The magnitudes of the decimated out-
puts are then compressed by a cubic root operation in order to minimize the loudness.
The resultant matrix represents time–frequency (T–F) decomposition of the input and
referred as GF (Gammatone Frequency) components which are correlated with each
other. The discrete cosine transform (DCT) is applied on GF components to reduce
dimensionality and also to de-correlate the components.

The Mel coefficients are computed by segregating input signal into 20 ms frames
with 10 ms frame shift. Each frame is applied with hamming window and also short-
time Fourier transform is utilized to derive power spectrum. Then, the derived power
spectrum is converted intoMel scale. Finally, 39-dimensional coefficients are obtained
by applying log compression and also discrete cosine transforms (DCT). The discrete
cosine transform is used to perform two functions, such as conversion of spectral
features into cepstrum and also de-correlation of various over-lapped feature dimen-
sions. Appending RASTA filtering after DCT yields 39-dimensional RASTA-MFCC
coefficients. The mean Hilbert envelope coefficients (MHEC) feature extraction [43]
is performed by using 24 channels Gammatone filter banks with centre frequencies
spaced on Equivalent Rectangular Bandwidth (ERB) scale between 300 and 3400 Hz
which are utilized in order to decompose the speech signal into 24 bands.

TheHilbert envelope [43] is computed in addition tomean computation and smooth-
ing. Then, first and second derivatives are computed and appended to the features in
order to construct final 36-dimensional mean Hilbert envelope coefficient (MHEC)
feature patterns. In this study, accuracy measures of different features are tabulated by
using I -vector technique,which is used as an acoustic speakermodel. The performance
overview of various feature extraction techniques under different noisy environments
in the presence of various signal-noise ratio (SNR) values are shown in Table 7.
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Table 7 Accuracy results of speaker recognition system in various noisy conditions

− 5 dBA 0 dBA 5 dBA 10 dBA 20 dBA Clean Average

Babble noise

GHEC (proposed) 27.25 74.63 87.02 90.14 96.78 98.00 78.97

RASTA–MFCC 23.54 66.38 68.54 88.03 94.37 96.20 72.84

GFCC 27.00 70.12 80.32 92.65 95.50 98.16 77.29

MHEC 27.53 75.04 86.53 92.34 96.38 99.00 79.47

GBFB 26.50 65.67 73.43 90.37 97.00 98.32 75.21

Street noise

GHEC (proposed) 33.73 70.52 75.29 86.93 90.10 97.27 75.64

RASTA–MFCC 25.07 60.72 81.75 85.53 87.95 95.76 72.79

GFCC 32.26 64.35 83.03 87.62 89.73 96.72 75.62

MHEC 35.37 71.55 73.47 90.87 92.19 98.57 77.00

GBFB 32.97 63.04 72.08 88.56 87.80 97.60 73.67

Car noise

GHEC (proposed) 40.74 71.03 84.79 88.42 92.44 96.02 78.90

RASTA–MFCC 35.07 67.09 74.45 79.32 81.39 95.13 72.07

GFCC 35.53 68.15 80.03 89.07 92.14 96.13 76.84

MHEC 36.15 70.34 79.35 88.64 91.24 94.47 76.69

GBFB 39.53 69.27 80.35 86.06 92.32 94.06 76.93

Airport noise

GHEC (proposed) 45.26 61.42 73.57 87.90 94.92 97.28 76.72

RASTA–MFCC 36.92 50.12 71.56 80.14 90.33 96.34 70.90

GFCC 42.53 68.52 74.05 82.16 92.15 98.34 76.29

MHEC 45.84 70.46 81.07 84.25 95.56 96.90 79.01

GBFB 41.53 71.56 75.63 85.09 94.12 97.94 77.64

Exhibition noise

GHEC (proposed) 39.27 62.04 70.47 76.46 90.30 95.83 72.39

RASTA–MFCC 27.24 62.43 71.50 72.33 91.17 95.35 70.00

GFCC 27.18 60.15 69.14 74.12 85.46 96.92 68.82

MHEC 30.54 61.36 75.63 80.03 94.76 97.02 73.22

GBFB 25.72 59.62 65.69 73.48 88.15 92.48 67.52

The accuracy of speaker identification (SID) has been evaluated for the various
feature extraction techniques, including the proposed Gabor–Hilbert envelope coeffi-
cients (GHEC) which is computed by convolving the Gabor filtered components with
Hilbert envelope. TheGabor Filter iswell documented for its spectro-temporal patterns
that find similarity with certain brain-cortex neurons. The performance of Gabor–
Hilbert EnvelopeCoefficients (GHEC) is comparedwith otherwell-known techniques,
including RASTA-MFCC, GFCC, MHEC and GBFB and the results are shown in
Table 7. It is observed that the performance of speaker identification by involving
GHEC (57-dimensional features) outperforms RASTA-MFCC (36-dimensional fea-
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Fig. 5 Equal error rate (EER) for different features paradigm in the presence of babble noise at 20 dB
under various reverberant conditions

tures), significantly for all the noise acoustic signals under various SNR values. Also,
it produces comparatively better results than GBFB along with Principal Component
Analysis (PCA) [28] that has totally 39-dimensional features for the various noise sig-
nals especially with the SNR value of− 5 dB. The performance results are found to be
almost similar for Gabor Hilbert envelope coefficients (GHEC), mean Hilbert enve-
lope coefficients (MHEC) and Gammatone frequency cepstral coefficients (GFCC)
for the various noise signals especially with low SNR values.

The computation of Gabor–Hilbert envelope coefficients (GHEC) is based on
spectro-temporal cues extraction and log-Mel spectrograms which is believed as a
major reason for its robustness as well as better performance. Further, 2-D Gabor fil-
ters are high receptive to amplitude and frequency modulation. It should be noted that
mean Hilbert envelope coefficients (MHEC) and Gammatone frequency cepstral coef-
ficients (GFCC) are computed by using 36- and 31-dimensional features, respectively.
The equal error rate (EER) is also estimated in order to validate the performance of
various feature extraction techniques under different reverberant conditions and the
results are shown in Fig. 5. The equal error rate is computed by involving I -vector-
based techniques. It should be noted that both Gabor Hilbert envelope coefficients
(GHEC),meanHilbert envelope coefficients (MHEC) andGammatone frequency cep-
stral coefficients (GFCC) show better performance in higher reverberant conditions
than other methods. It is observed that the performance of cepstral coefficients-based
methods decreases as when reverberation increases. However, it is also observed that
the proposed GHEC monaural feature shows less performance than MHEC in few
cases. The reason is possibly due to its sensitivity towards intrinsic factors, such as
speaking rate, speaking effort, style and pitch information.

In this study, text-independent Gaussian mixture model-universal background
model (GMM–UBM) as well as I -vector-based speaker recognition are validated
in the presence of factory noise. The feature extraction includes both mean Hilbert
envelope coefficients and Gabor Hilbert envelope coefficients techniques. It should
be noted that the GMM–UBM and I -vector-based speaker recognition system utilize
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Fig. 6 Performance measure of GHEC and MHEC during joint approach under different acoustic speaker
models with single noise source (factory)

a total of 64 Gaussian mixture components for training speech samples. From the
results, it is observed that the Gabor Hilbert envelope coefficient (GHEC) shows bet-
ter performance than mean Hilbert envelope coefficients in joint approach for factory
noise at reverberation time of 0.23 s. The above discussed comparison is tested in
different SNR values which are shown in Fig. 6.

The joint approach for simultaneous speech segregation and automatic speaker
recognition described here may be incorporated in real-time self-autonomous robots.
Further, the proposed GHEC monaural feature will be utilized for monaural sound
source separation to segregate discriminate information in a multi-talker environment.

The experiment considers randomly chosen 100 speakers from TIMIT database.
The classification results are evaluated when a mixture of two speakers are given as
input to the proposed system.The performance of joint binaural speech segregation and
automatic speaker recognition is evaluated at different reverberant conditions which
are shown in Fig. 7. The proposed system uses LSTM-DRNN-based binaural speech
segregation techniques that are observed to be a main reason to produce better evalua-
tion metrics, such as SDR, SIR and SAR by achieving an average of 5 dB in roomwith
reverberation time of 0.89 s than other segregation methods, including DNN. Specif-
ically, LSTM-DRNN uses memory blocks to control the information flow at multiple
time scales and it is considered as one of the reasons to yield improved speaker recog-
nition performance even at low signal-to-noise ratio. The proposed binaural speech
segregation technique uses optimized deep recurrent structure that outperforms DNN-
based speech segregation by employing LSTM–DRNN in the architecture when large
numbers of speakers are involved in the training. Spatial cues such as IC, IPD, ILD,
and ITD are incorporated into optimized deep recurrent structure for binaural classi-
fication to enhance robustness in higher reverberation time. The accuracy, sensitivity
and specificity [39] for the proposed system are calculated in terms of confusionmatrix
and the results (in %) are shown in Table 8.
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Fig. 7 Performance measure of joint approach for binaural speech segregation and automatic speaker
identification in the different reverberant environments

Table 8 Classification results
(in %) for the proposed system
in the presence of different
reverberation conditions

Rooms Accuracy Sensitivity Specificity

A (0.32 s) 95.5 96.81 74.13

B (0.47 s) 95.5 96.47 81.25

C (0.68 s) 95.6 94.14 80

D (0.89 s) 91.5 92.13 78.2

5 Conclusions

The developed framework demonstrates a combination of twomodules, namely speech
segregation and speaker recognition.The concatenated acoustic cues, such as interaural
time and level difference, interaural phase difference, interaural coherence, direct-to-
reverberant ratio are successfully incorporated into deep recurrent structure-based joint
discriminative model for the separation of input speech mixture. The experiments are
carried out by considering different dimensions of spatial cues with deep learning
structure. The long short-term memory (LSTM) optimizer is explored to avoid van-
ishing gradient problem by introducing memory blocks in the recurrent architecture.
The proposed model has addressed binaural speech segregation since most real-time
applications find speech and interfering sources are located at different positions. The
system also proposes a monaural feature, referred as Gabor Hilbert envelope coeffi-
cients for speaker recognition system which is found to be robust towards extrinsic
variations and implemented by applying temporal envelope extraction. The Hilbert
envelope is performed to produce slow varying amplitude modulations in narrow fre-
quency bands which contain spectro-temporal acoustic information. The performance
of proposed feature extraction in joint approach is found to be better than other known
existing techniques. The spatial cues used for binaural speech segregation are found
to be robust even in higher reverberation periods than monaural speech segregation.
The proposed deep learning-based binaural speech segregation produced signal-to-
distortion ratio (SDR) at an averageof 5.85dB inhigher reverberation time (0.89 s) over
other accepted conventional models. The proposed monaural feature accuracy is com-
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puted by using different speaker models under various noisy reverberant conditions.
The system can help to recognize speakers in a multi-talker environment even in the
absence of visual information. The developed framework finds several acoustic-related
applications, such as intelligent hearing aid devices, hands-free communication, voice
interactive systems and audio surveillance. The future work considers optimization
of GHEC towards intrinsic variations and also incorporation of combined features of
proposed spectral features along with relevant spatial cues in a binaural classification
framework. The real-time implementation of the developed algorithm in an automated
system has been considered, seriously.
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