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Abstract In this paper, the globally asymptotical stability in the mean square for
a class of high-order bidirectional associative memory neural networks with time-
varying delays and fixed moments of impulsive effect are studied. The proof makes
use of Lyapunov–Krasovskii functionals, and the conditions are expressed in terms
of linear matrix inequalities. A controller has been derived to robustly stabilize this
network. Two illustrative examples are also given at the end of this paper to show the
effectiveness of our results.
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1 Introduction

The stability of dynamical neural networks with time delays which have been
used in many applications such as optimization, control and image processing has
received much attention recently (see, such as [2,3,6,17–22,25–27,43,44]). For
example, the stability of delay Hopfield neural networks [2,3,5,31,33] and Cohen–
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Grossberg neural networks [20,42,45] has been investigated. In special, BAM neural
networks were first proposed by Kosko [29,30], and since then, the BAM neu-
ral system has been extensively studied [9,11,13,27,28,34,35,37,39,41,46]. As a
class of dynamic systems, BAM neural networks are usually featured by either
first-order or high-order forms described in continuous or discrete time. The low-
order BAM systems have been widely studied (such as [34,35]) because of its
potential for signal and image processing, pattern recognition. Recently, the higher-
order BAM systems [12,27,28] display nice properties due to the special structure
of connection weights. The existence of a globally asymptotically stable equi-
librium state has been studied under a variety of assumptions on the activation
functions. Generally, the activation functions have been assumed to be continu-
ously differentiable, monotonic and bounded [2,5,10,13,15,18,20,36,37,39,40]. But
in some applications, one is required to use unbounded and non-monotonic activa-
tion functions [27,41,46]. It has been shown by Crespi [16], Morita [32] that the
capacity of an associative memory network can be significantly improved if the sig-
moidal functions are replaced by non-monotonic activation functions. On the other
hand, the state of electronic networks is often subject to display impulsive effects
[7,22].

To the best of our knowledge, except [27,28] for higher-order BAM neural
networks by using the differential inequality with delay and impulse, the stabil-
ity analysis for impulsive high-order BAM dynamical systems with time-varying
delays has seldom been investigated and remains important and challenging. In
this paper, we shall study another generation of high-order BAM dynamical neu-
ral networks with impulsive by using Lyapunov–Krasovskii functionals, employing
linear matrix inequalities (LMIs) and differential inequalities. The organization
of this paper is as follows. In Sect. 2, problem formulation and preliminar-
ies are given. In Sect. 3, several sufficient criteria will be established for the
equilibrium of the system to be asymptotical stability in the mean square. In
Sect. 4, two examples will be given to demonstrate the effectiveness of our
results.

2 Preliminaries and Lemmas

In this paper, we will consider the following impulsive neural networks
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dxi (t)

dt
= − di xi (t) +

m∑

j=1

ai j f j (y j (t)) +
m∑

j=1

bi j f j (y j (t − τ(t)))

+
m∑

j=1

m∑

l=1

ci jl

∫ t

t−τ

f j (y j (t − s)) fl(yl(s))ds +
m1∑

j=1

ri j u j (t), t �= tk,

dy j (t)

dt
= −d̃ j y j (t) +

n∑

i=1

ã j i gi (xi (t)) +
n∑

i=1

b̃ j i gi (xi (t − σ(t)))

+
n∑

i=1

n∑

l=1

c̃ j il

∫ t

t−σ

gi (xi (t − s))gl(xl(s))ds +
m2∑

i=1

r̃ j i ũi (t), t �= tk,

�xi (t) =
n∑

j=1

(ei j (t) − δi j )x j (t
−) +

n∑

l=1

mil Jl(t
−), t = tk,

�y j (t) =
m∑

i=1

(ẽ j i (t) − δ j i )yi (t
−) +

m∑

l=1

m̃ jl J̃l(t
−), t = tk,

(1)

or, equivalently,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= −Dx(t) + A f (y(t)) + B f (y(t − τ(t))) +

∫ t

t−τ

ϒT
f (s)�1 f (y(s))ds + Ru(t),

t �= tk ,

dy(t)

dt
= −D̃y(t) + Ãg(x(t)) + B̃g(x(t − σ(t))) +

∫ t

t−σ

ϒT
g (s)�2g(x(s))ds + R̃ũ(t),

t �= tk ,

�x(t) = (E(t) − I )x(t−) + MJ (t−), t = tk ,

�y(t) = (Ẽ(t) − Ĩ )y(t−) + M̃ J̃ (t−), t = tk ,

(2)

where t ≥ 0; i = 1, 2, . . . , n; j = 1, 2, . . . ,m; �xi (t) = xi (t)− xi (t−), �y j (t) =
y j (t) − y j (t−), �x(t) = x(t) − x(t−) = (�x1(t), . . . ,�xn(t)), �y(t) = y(t) −
y(t−) = (�y1(t), . . . ,�ym(t)), 0 ≤ t0 < · · · < tk < · · · , lim

k→∞ tk = ∞; xi (t), y j (t)

denote the potential of the cell i and j at time t. x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
Rn, y(t) = (y1(t), y2(t), . . . , ym(t))T ∈ Rm ; f (y(t)) = ( f1(y1(t)), . . . , fm(ym(t)))T

∈ Rm and g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))T ∈ Rn denote the activa-
tion functions of the neuron at time t , u(t) = (u1(t), . . . , um1(t))

T ∈ Rm1 , ũ(t) =
(̃u1(t), ũ2(t), . . . , ũm2(t))

T ∈ Rm2 are continuous control input, I and Ĩ denote
the identity matrix of size n and m, respectively. J (t) = (J1(t), . . . , Jn(t))T ∈
Rn, J̃ (t) = ( J̃1(t), J̃2(t), . . . , J̃m(t))T ∈ Rm are the impulsive control input at
time t , ϒ f (s) = diag( f (y(t − s)), f (y(t − s)), . . . , f (y(t − s)))n×n, ϒg(s) =
diag(g(x(t − s)), g(x(t − s)), . . . , g(x(t − s)))m×m; D = diag(d1, . . . , dn) >

0, D̃ = diag(d̃1, . . . , d̃m) > 0 are positive diagonal matrices, and di , d̃ j represent
the rate of isolation of cells i and j from the other states and inputs, respectively.
This means that cells i and j reset their potential to the other state during the iso-
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lation. A = (ai j )n×m, B = (bi j )n×m, R = (ri j )n×m1, M = (mi j )n×n, E =
(ei j (t))n×n, Ã = (ã j i )m×n, B̃ = (b̃ j i )m×n, R̃ = (̃r ji )m×m2 , M̃ = (m̃ ji )m×m, Ẽ =
(ẽ j i (t))m×m are the feedback matrix and the delayed feedback matrix, respectively.
�1 = [CT

1 ,CT
2 , . . . ,CT

n ]T ,Ci = (ci jl)m×m;�2 = [C̃T
1 , C̃T

2 , . . . , C̃T
m ]T , C̃ j =

(̃c jil)n×n . E(t), Ẽ(t) are matrix functions with time-varying uncertainties, that is,
E(t) = E + �E, Ẽ(t) = Ẽ + �Ẽ , where E, Ẽ are known real constant matrices,
�E,�Ẽ are unknown matrices representing time-varying parameter uncertainties.
We assume that the uncertainties are norm-bounded and can be described as

�E = HF(t)D1, �Ẽ = H̃ F̃(t)D̃1 (3)

where H, H̃ , D1, D̃1 are known real constant matrices with appropriate dimensions,
and the uncertain matrix F(t), which may be time varying, is unknown and satisfies
FT (t)F(t) ≤ I, F̃T (t)F̃(t) ≤ Ĩ for any given t . It is assumed the elements of F(t)
are Lebesgue measurable. When F(t) = 0, F̃(t) = 0, system (2) is referred to as
nominal neural impulsive systems. Time delays τ(t), σ (t) are continuous functions,
which correspond to the finite speed of axonal signal transmission and 0 ≤ τ(t) ≤
τ, 0 ≤ σ(t) ≤ σ and 0 < σ ′(t) ≤ σ1 < 1, 0 < τ(t) ≤ τ1 < 1.

The initial conditions associated with (1) or (2) are of the form

xi (t) = φi (t), t0 − σ ≤ t ≤ t0;
y j (t) = ϕ j (t), t0 − τ ≤ t ≤ t0,

in whichφi (t), ϕ j (t)(i = 1, 2, . . . , n; j = 1, 2, . . . ,m) are continuous functions. The
notations used in this paper are fairly standard. The matrix M > (≥,<,≤) 0 denotes
a symmetric positive definite (positive semidefinite, negative, negative semidefinite)
matrix, respectively. For x ∈ Rn, denote ‖x‖ = √

xT x and |x | = ∑n
i=1 |xi |.

Remark 1 BAM is a type of recurrent neural network. Giving a pattern, it can return
another pattern which is potentially of a different size. It is similar to the Hopfield
network [2,3,5,31,33] in that they are both forms of associative memory. However,
Hopfield networks return patterns of the same size. As for competitive neural networks
[1,4], they can model the dynamics of cortical cognitive maps with unsupervised
synaptic modifications.

Throughout this paper, the activation functions f (·), g(·), J (·), J̃ (·) are assumed
to possess the following properties:

(H1) There exist matrices K ∈ Rm×m,U ∈ Rn×n such that, for all y, z ∈ Rm; x, s ∈
Rn ,

| f (y) − f (z)| ≤ |K (y − z)|; |g(x) − g(s)| ≤ |U (x − s)|.

(H2) f (0) = g(0) = J (0) = J̃ (0) = 0.
(H3) There exist positive numbers Oj , Õ j such that

| f j (x)| ≤ Oj , |gi (x)| ≤ Õi ;
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for all x ∈ R(i = 1, 2, . . . , n; j = 1, 2, ...,m).

Remark 2 Under assumption (H2), we have that the equilibrium point of system (2)
is the trivial solution of system (2). In fact, when the equilibrium point (x∗, y∗) of
system (2) in the engineering background isn’t the trivial solution of system (2), one can
transfer the equilibrium point (x∗, y∗) to (0,0) by the transformation u = x − x∗, v =
y− y∗. Then, by the transformation f̃ (v) = f (v + y∗)− f (y∗), g̃(u) = g(u+ x∗)−
g(x∗), assumption (H2) is always satisfied(see [19,32]), where J (0) = 0, J̃ (0) = 0
mean that the impulsive control inputs at time 0 do not work in the engineering
background.

Let x(t;φ), y(t;ϕ) denote the state trajectory of neural network (1) or (2) from the
initial data x(s) = φ(s) ∈ PC([t0−σ, t0]; Rn), y(s) = ϕ(s) ∈ PC([t0−τ, t0]; Rm),
respectively, where PC([t0 − r, t0]; Rn) denote the set of piecewise right continuous
function φ : [−r, 0] → Rp with the norm defined by ‖φ‖r = sup−r≤θ≤0 ‖φ(θ)‖. It
can be easily seen that system (2) admits a trivial solution x(t; 0) = 0, y(t; 0) = 0
corresponding to the initial data φ = 0, ϕ = 0.

Definition 1 ([46]) For system (1) or (2) and every ξ1 ∈ PC([t0 − σ, t0]; Rn) and
ξ2 ∈ PC([t0−τ, t0]; Rm), the trivial solution (equilibrium point) is robustly, globally,
asymptotically stable in the mean square if the following holds:

lim
t→∞

(
|x(t; ξ1)|2 + |y(t; ξ2)|2

)
= 0.

Lemma 1 For any vectors a, b ∈ Rn, the inequality

2aT b ≤ ρaT a + 1

ρ
bT b

holds for ∀ ρ > 0.

Lemma 2 For any vectors a, b ∈ Rn, the inequality

2aT b ≤ aT X−1a + bT Xb

holds for any matrices X > 0.

Lemma 3 ([9]) Given constant matrices 
1, 
2, 
3 where 
1 = 
T
1 and 0 < 
2 =


T
2 , then


1 + 
T
3 
−1

2 
3 < 0

if and only if

(

1 
T

3

3 −
2

)

< 0 or

(−
2 
3


T
3 
1

)

< 0.
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Lemma 4 ([38]) Let A, D, E, F and P be real matrices of appropriate dimensions
with P > 0 and F satisfying FT F ≤ I. Then, for any scalar ε > 0 satisfying
P−1 − ε−1DDT > 0, we have

(A + DFE)T P(A + DFE) ≤ AT (P−1 − ε−1DDT )−1A + εET E .

3 Impulsively Exponential Stability

Now,we shall present and prove ourmain results. Our results complement and improve
some of the known results found in the literature.

�̃1 = −QD̃ − D̃T Q + Q1 + W1 + WT
1 ,

�̃2 = −(1 − τ1)Q1 − W2 − WT
2 + ρZ2K

T K , �̃3 = −σ P2 + ε1σλ2 I ,
�1 = −PD − DT P + N1 + NT

1 + P1,
�2 = −(1 − σ1)P1 − N2 − NT

2 + ρZ1U
TU, �3 = −τQ2 + ε2τλ1 I .

where λ1 = ρ�T
1 �1

, λ2 = ρ�T
2 �2

.

Theorem 1 Consider system (2)with the impulsive control inputs J (·) = 0, J̃ (·) = 0.
Under assumptions (H1)–(H3), the equilibrium point of system (2) is robustly, glob-
ally, asymptotically stable in the mean square if there exist some scalars εi >

0(i = 1, 2, 3, 4), ρX > 0(X = Q2, P2, X1, X2, Z1, Z2) and matrices Ni (i =
1, 2, 3),Wi (i = 1, 2, 3), X1 > 0, X2 > 0, Z1 > 0, Z2 > 0, P > 0, Q > 0, P1 >

0, Q1 > 0, P2 > 0, Q2 > 0 such that

X < ρX I, (4)

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̃1 −WT
1 + W2 −WT

1 + W3 0 Q Ã (ρX2 + ρQ2)K
T QB̃

√
σαQ

∗ �̃2 −WT
2 − W3 0 0 0 0 0

∗ ∗ −WT
3 − W3 0 0 0 0 0

∗ ∗ ∗ �̃3 0 0 0 0
∗ ∗ ∗ ∗ −X1 0 0 0
∗ ∗ ∗ ∗ ∗ −(ρX2 + ρQ2)I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (5)

�2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1 −NT
1 + N2 −NT

1 + N3 0 PA (ρX1 + ρP2)U
T PB

√
τ α̃P

∗ �2 −NT
2 − N3 0 0 0 0 0

∗ ∗ −NT
3 − N3 0 0 0 0 0

∗ ∗ ∗ �3 0 0 0 0
∗ ∗ ∗ ∗ −X2 0 0 0
∗ ∗ ∗ ∗ ∗ −(ρX1 + ρP2)I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (6)
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⎡

⎢
⎢
⎣

−P ET P ε3DT
1 0

∗ −P 0 PH
∗ ∗ −ε3 I 0
∗ ∗ ∗ −ε3 I

⎤

⎥
⎥
⎦ ≤ 0, (7)

⎡

⎢
⎢
⎣

−Q ẼT Q ε4 D̃T
1∗ −Q 0 QH̃

∗ ∗ −ε4 I 0
∗ ∗ ∗ −ε4 I

⎤

⎥
⎥
⎦ ≤ 0, (8)

[−P PH
∗ −ε3 I

]

< 0, (9)

[−Q QH̃
∗ −ε4 I

]

< 0, (10)

hold.

Proof Let

V (t) = xT (t)Px(t) + yT (t)Qy(t) +
∫ t

t−σ(t)
xT (s)P1x(s)ds

+
∫ t

t−τ(t)
yT (s)Q1y(s)ds +

∫ 0

−τ

∫ t

t+s
f T (y(η))Q2 f (y(η))dηds

+
∫ 0

−σ

∫ t

t+s
gT (x(η))P2g(x(η))dηds.

(I) We consider the case of t �= tk . Calculate the derivative of V (t) along the solutions
of (2), and we obtain

V̇ (t) = 2xT (t)P (−Dx(t) + A f (y(t)) + B f (y(t − τ(t)))

+C
∫ t

t−τ

ϒT
f �1 f (y(s))ds

)

+ 2yT (t)Q
(

− D̃y(t) + Ãg(x(t)) + B̃g(x(t − σ(t)))

+ C̃
∫ t

t−σ

ϒT
g �2g(x(s))ds

)

+ xT (t)P1x(t) − (1 − σ ′(t))xT (t − σ(t))P1x(t − σ(t))

+ yT (t)Q1y(t) − (1 − τ ′(t))yT (t − τ(t))Q1y(t − τ(t))

+ f T (y(t))Q2 f (y(t)) −
∫ t

t−τ

f T (y(s))Q2 f (y(s))ds

+ gT (x(t))P2g(x(t)) −
∫ t

t−σ

gT (x(s))P2g(x(s))ds.
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From Lemmas 1, 2 and 4, we have

2yT (t)Q Ãg(x(t))

≤ yT (t)Q ÃX−1
1 ÃT Qy(t) + gT (x(t))X1g(x(t))

≤ yT (t)Q ÃX−1
1 ÃT Qy(t) + ρX1x

T (t)UTUx(t);
2xT (t)PA f (y(t))

≤ xT (t)PAX−1
2 AT Px(t) + f T (y(t))X2 f (y(t))

≤ xT (t)PAX−1
2 AT Px(t) + ρX2 y

T (t)KT K y(t);
2yT (t)QB̃g(x(t − σ(t)))

≤ yT (t)QB̃Z−1
1 B̃T Qy(t) + gT (x(t − σ(t)))Z1g(x(t − σ(t)))

≤ yT (t)QB̃Z−1
1 B̃T Qy(t) + ρZ1x

T (t − σ(t))UTUx(t − σ(t));
2xT (t)PB f (y(t − τ(t)))

≤ xT (t)PBZ−1
2 BT Px(t) + f T (y(t − τ(t)))Z2 f (y(t − τ(t)))

≤ xT (t)PBZ−1
2 BT Px(t) + ρZ2 y

T (t − τ(t))KT K y(t − τ(t));
2yT (t)Q

∫ t

t−σ

ϒT
g �2g(x(s))ds

≤
∫ t

t−σ

[
ε−1
1 yT (t)QϒT

g ϒgQy(t) + ε1g
T (x(s))�T

2 �2g(x(s))
]
ds.

2xT (t)P
∫ t

t−τ

ϒT
f �1 f (y(s))ds

≤
∫ t

t−τ

[
ε−1
2 xT (t)PϒT

f ϒ f Px(t) + ε2 f
T (y(s))�T

1 �1 f (y(s))
]
ds.

Since ϒT
g ϒg = ‖g(x(t − s)‖2 I and ‖g(x(t − s)‖2 ≤ ∑m

j=1 Oj = α, it follows that

yT (t)QϒT
g ϒgQy(t) ≤ αyT (t)QQy(t).

Since ϒT
f ϒ f = ‖ f (y(t − s)‖2 I and ‖ f (y(t − s)‖2 ≤ ∑n

i=1 Õi = α̃, it follows that

xT (t)PϒT
f ϒ f Px(t) ≤ α̃xT (t)PPx(t).

Noting that x(t) − x(t − σ(t)) − ∫ t
t−σ(t) ẋ(s)ds = 0, y(t) − y(t − τ(t)) −

∫ t
t−τ(t) ẏ(s)ds = 0, then, there exist matrices N1, N2, N3,W1,W2,W3 such that

[

2xT (t)NT
1 + 2xT (t − σ(t))NT

2 + 2

(∫ t

t−σ(t)
ẋ(s)ds

)T

NT
3

]

×
(

x(t) − x(t − σ(t)) −
∫ t

t−σ(t)
ẋ(s)ds

)

= 0,
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[

2yT (t)WT
1 + 2yT (t − τ(t))WT

2 + 2

(∫ t

t−τ(t)
ẏ(s)ds

)T

WT
3

]

×
(

y(t) − y(t − τ(t)) −
∫ t

t−τ(t)
ẏ(s)ds

)

= 0.

Moreover,

f T (y(t))Q2 f (y(t)) ≤ ρQ2 y
T (t)KT K y(t), gT (x(t))P2g(x(t))

≤ ρP2x
T (t)UTUx(t).

Thus,

V̇ (t) ≤ 1

σ

∫ t

t−σ

ξ T1 �1ξ1ds + 1

τ

∫ t

t−τ

ξ T2 �2ξ2ds,

where ξ1 = [yT (t) yT (t − τ(t)) (
∫ t
t−τ(t) ẏ(s)ds)

T gT (x(s))]T , ξ2 = [xT (t) xT (t −
σ(t)) (

∫ t
t−σ(t) ẋ(s)ds)

T f T (y(s))]T , and

�1 =

⎡

⎢
⎢
⎣

�̃1 −WT
1 + W2 −WT

1 + W3 0
∗ �̃2 −WT

2 − W3 0
∗ −WT

3 − W3 0
∗ ∗ ∗ �̃3

⎤

⎥
⎥
⎦ , �2 =

⎡

⎢
⎢
⎣

�1 −NT
1 + N2 −NT

1 + N3 0
∗ �2 −NT

2 − N3 0
∗ −NT

3 − N3 0
∗ ∗ ∗ �3

⎤

⎥
⎥
⎦ .

�̃1 = −QD̃ − D̃T Q + Q1 + W1 + WT
1 + QÃX−1

1 ÃT Q + (ρX2 + ρQ2 )K
T K

+QB̃Z−1
1 B̃T Q + σε−1

1 αQQ,

�̃2 = −(1 − τ1)Q1 − W2 − WT
2 + ρZ2K

T K , �̃3 = −σ P2 + ε1σλ2 I,

�1 = −PD − DT P + N1 + NT
1 + P1 + PAX−1

2 AT P + (ρX1 + ρP2 )U
TU

+PBZ−1
2 BT P + τε−1

2 α̃PP,

�2 = −(1 − σ1)P1 − N2 − NT
2 + ρZ1U

TU, �3 = −τQ2 + ε2τλ1 I.

By Lemma 3, it is obvious from (5) and (6) that �1 < 0,�2 < 0. There must exist
scalars η1 > 0, η2 > 0 such that

�1 +

⎡

⎢
⎢
⎣

η1 I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ < 0; �2 +

⎡

⎢
⎢
⎣

η2 I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ < 0.

So

V̇ (t) ≤ −η1‖x(t)‖2 − η2‖y(t)‖2. (11)
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(II) We consider the case of t = tk . By (4), we have

V (tk) − V (t−k ) = xT (tk)Px(tk) − xT (t−k )Px(t−k ) + yT (tk)Qy(tk) − yT (t−k )Qy(t−k )

+
∫ tk

tk−σ(tk )
xT (s)P1x(s)ds −

∫ t−k

t−k −σ(t−k )

xT (s)P1x(s)ds

+
∫ tk

tk−τ(tk )
yT (s)Q1y(s)ds −

∫ t−k

t−k −τ(t−k )

yT (s)Q1y(s)ds

+ τ

∫ 0

−τ

∫ tk

tk+s
f T (y(tk − η))�T

1 ϒ f (η)Q2ϒ
T
f (η)�1 f (y(tk

− η))dηds

−τ

∫ 0

−τ

∫ t−k

t−k +s
f T (y(t−k − η))�T

1 ϒ f (η)Q2ϒ
T
f (η)�1 f (y(t

−
k

−η))dηds

+ σ

∫ 0

−σ

∫ tk

tk+s
gT (x(tk − η))�T

2 ϒg(η)P2ϒ
T
g (η)�2g(x(tk

− η))dηds

− σ

∫ 0

−σ

∫ t−k

t−k +s
gT (x(t−k − η))�T

2 ϒg(η)P2ϒ
T
g (η)�2g(x(t

−
k

− η))dη

≤ xT (t−k )[(E + HF(tk)D1)
T P(E + HF(tk)D1) − P]x(t−k )

+ yT (t−k )[(Ẽ + H̃ F̃(tk)D̃1)
T Q(Ẽ + H̃ F̃(tk)D̃1) − Q]y(t−k )

≤ xT (t−k )[ET (P−1 − ε−1
3 HHT )−1E + ε3D

T
1 D1 − P]x(t−k )

+ yT (t−k )[ẼT (Q−1 − ε−1
4 H̃ H̃ T )−1 Ẽ + ε4 D̃

T
1 D̃1 − Q]y(t−k )

By (7)–(10) and combining with Schur complements (Lemma 3) yield

ET (P−1 − ε−1
3 HHT )−1E + ε3D

T
1 D1 − P ≤ 0,

ẼT (Q−1 − ε−1
4 H̃ H̃ T )−1 Ẽ + ε4 D̃

T
1 D̃1 − Q ≤ 0;

then, V (tk) − V (t−k ) ≤ 0, that is,

V (tk) ≤ V (t−k ). (12)

This and (I) implie that the equilibrium point of system (2) is robustly, globally,
asymptotically stable in the mean square. The proof is complete.
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Let us now consider to design a state feedback memory control law of the form

u(t) = Kcx(t) + Kc1x(t − σ(t)), ũ(t) = K̃c y(t) + K̃c1y(t − τ(t)),

J (t−k ) = Kdx(t
−
k ),

J̃ (t−k ) = K̃d y(t
−
k ) (13)

to stabilize system (2), where Kc, Kc1 ∈ Rm1×n, K̃c, K̃c1 ∈ Rm2×m , Kd ∈
Rn×n, K̃d ∈ Rm×m are constant gains to be designed.

Substituting (13) into (2) and applying Theorem 1, it is easy to obtain the next
theorem.

Theorem 2 Consider system (2). Under assumptions (H1)–(H3), if there exist scalars
εi > 0(i = 1, 2, 3, 4), ρX > 0(X = Q2, P2, X1, X2, Z1, Z2) and matrices Ni (i =
1, 2, 3),Wi (i = 1, 2, 3),Yc,Yc1,Yd , Ỹc, Ỹc1, Ỹd , X1 > 0, X2 > 0, Z1 > 0, Z2 >

0, P > 0, Q > 0, P1 > 0, Q1 > 0, P2 > 0, Q2 > 0 such that (4), (9), (10) and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̃1 −WT
1 + W2 + R̃Ỹc1 −WT

1 + W3 0 Q Ã (ρX2 + ρQ2 )K
T QB̃

√
σαQ

∗ �̃2 −WT
2 − W3 0 0 0 0 0

∗ ∗ −WT
3 − W3 0 0 0 0 0

∗ ∗ ∗ �̃3 0 0 0 0
∗ ∗ ∗ ∗ −X1 0 0 0
∗ ∗ ∗ ∗ ∗ −(ρX2 + ρQ2 )I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (14)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1 −NT
1 + N2 + RYc1 −NT

1 + N3 0 PA (ρX1 + ρP2 )U
T PB

√
τ α̃P

∗ �2 −NT
2 − N3 0 0 0 0 0

∗ ∗ −NT
3 − N3 0 0 0 0 0

∗ ∗ ∗ �3 0 0 0 0
∗ ∗ ∗ ∗ −X2 0 0 0
∗ ∗ ∗ ∗ ∗ −(ρX1 + ρP2 )I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Z2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (15)

⎡

⎢
⎢
⎣

−P ET P + MTYd ε3DT
1 0

∗ −P 0 PH
∗ ∗ −ε3 I 0
∗ ∗ ∗ −ε3 I

⎤

⎥
⎥
⎦ ≤ 0, (16)

⎡

⎢
⎢
⎣

−Q ẼT Q + M̃T Ỹd ε4 D̃T
1∗ −Q 0 QH̃

∗ ∗ −ε4 I 0
∗ ∗ ∗ −ε4 I

⎤

⎥
⎥
⎦ ≤ 0, (17)

hold. Then, for any bounded time delay τ(t), σ (t), the control law (13) with Kc =
YcP−1, K̃c = ỸcQ−1, Kc1 = Yc1P−1, K̃c1 = Ỹc1Q−1, Kd = Yd P−1 and K̃d =
Ỹd Q−1 robustly stabilizes system (1) or (2) in the mean square for any impulsive time
sequence {tk} where
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Φ̃1 = −QD̃ − D̃Q + R̃Ỹc + Ỹ T
c R̃T + Q1 + W1 + WT

1 ,

�̃2 = −(1 − τ1)Q1 − W2 − WT
2 + μ2K

T K , �̃3 = −τ 2λ21(Q2 − Z2),

Φ1 = −PD − DP + RYc + Y T
c RT + N1 + NT

1 + P1,

�2 = −(1 − σ1)P1 − N2 − NT
2 + μ1U

TU, �3 = −σ 2λ22(P2 − Z1),

λ1 = max
1≤i≤n

{λmax(Ci )}, λ2 = max
1≤i≤n

{λmax(C̃i )}.

Remark 3 Some stability analysis of higher-orderBAMneural networkswith delays is
presented [12,27,28,37]. However, simple and efficient conditions for the design and
robustness analysis of such controllers were missing. The present paper fills this gap
through introducing simple LMIs for robust stability analysis of theBAMsystemswith
multiple delays and justifying that these LMIs are always feasible for small enough
delays. Moreover, all of these criteria in this paper are easy to verify.

Remark 4 In this paper, the methods are by using Lyapunov–Krasovskii function-
als, employing linear matrix inequalities and differential inequalities. In [31,33], the
authors mainly used the differential inequality with delay and impulse, coincidence
degree theory as well as a priori estimates and Lyapunov functional, respectively.
Moreover, the methods derived in this paper can be used to analyze, design and con-
trol some other high-order artificial neural networks.

Remark 5 In this paper, the essential difficulties encountered are how to choose suit-
able Lyapunov–Krasovskii functionals, and how to design a state feedback memory
control law. The first is because that the time-varying delay functions τ(t), σ (t) exist;
the second is because designing the delay feedback impulsive control is a new theory
in the impulsive stabilization. And, they were solved by adding the four terms

∫ t

t−τ(t)
yT (s)Q1y(s)ds,

∫ 0

−σ

∫ t

t+s
gT (x(η))P2g(x(η))dηds,

∫ 0

−τ

∫ t

t+s
f T (y(η))Q2 f (y(η))dηds,

∫ t

t−σ(t)
xT (s)P1x(s)ds

to Lyapunov–Krasovskii functionals and designing a linear delay feedback impulsive
control law (13) (since f, g is global Lipschitz continuous), respectively.

Remark 6 When the system is running with impulses, our results show that impulses
make contribution to the stability of differential systems with time delay even if they
are unstable, which is shown in Figs. 2 and 3.
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4 Numerical Examples

Example 1 Consider system (2) with:

D =
⎡

⎣
2.9 0 0
0 3.2 0
0 0 3

⎤

⎦ ; A =
⎡

⎣
−1 2
2 1
−2 1

⎤

⎦ ; E =
⎡

⎣
0.3 0 0
0 0.3 0
0 0 0.3

⎤

⎦ ;

C1 =
[
0.1210 0.3159
0.3508 0.2028

]

; C2 =
[
0.2731 0.3656
0.2548 0.2324

]

; C3 =
[
0.1049 0.2319
0.2084 0.2393

]

;

B =
⎡

⎣
−1 1
1 1
1 −1

⎤

⎦ ; K =
[
0.09 0
0 0.01

]

;

U =
⎡

⎣
0.3 0 0
0 0.1 0
0 0 0.5

⎤

⎦ ; D1 =
⎡

⎣
1 −1 0
−1 −1 0
0 −2 1

⎤

⎦ ; H =
⎡

⎣
0.02 0 0
0 0.03 0
0 0 0.03

⎤

⎦ ;

D̃ =
[
2.6 0
0 2.9

]

; B̃ =
[
1 0 0.3
−0.6 0 0.3

]

; C̃1 =
⎡

⎣
0.0298 0.1800 0.2218
0.1665 0.3139 0.2933
0.5598 0.1536 0.2398

⎤

⎦ ;

C̃2 =
⎡

⎣
0.3001 0.3232 0.0321
0.3112 0.3515 0.5586
0.3772 0.2107 0.3361

⎤

⎦ ; Ã =
[
1 0 −1
0 0 1.2

]

; Ẽ =
[
0.6 −0.2
0 0.5

]

;

D̃1 =
[
0.6 0.5
−0.6 0.4

]

; H̃ =
[
0.09 0.06
0.06 0.09

]

; σ = τ = 1;
α = α̃ = 1.

Then,

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1210 0.3159
0.3508 0.2028
0.2731 0.3656
0.2548 0.2324
0.1049 0.2319
0.2084 0.2393

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;�2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0298 0.1800 0.2218
0.1665 0.3139 0.2933
0.5598 0.1536 0.2398
0.3001 0.3232 0.0321
0.3112 0.3515 0.5586
0.3772 0.2107 0.3361

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By solvingLMIs (3)–(9) for εi > 0(i = 1, 2, 3, 4), ρX > 0(X = Q2, P2, X1, X2, Z1,

Z2) and matrices X1 > 0, X2 > 0, Z1 > 0, Z2 > 0, P > 0, Q > 0, P1 > 0, Q1 >

0, P2 > 0, Q2 > 0, we obtain

P =
⎡

⎣
0.4654 −0.0064 −0.0340

−0.0064 0.7287 −0.0290
−0.0340 −0.0290 0.4735

⎤

⎦ ; Q =
[
0.7960 0.0238
0.0238 0.7093

]

;

P1 =
⎡

⎣
0.6368 −0.0280 −0.1055

−0.0280 0.7792 0.2243
−0.1055 0.2243 0.5100

⎤

⎦ ; P2 =
[
0.7973 0

0 0.7973

]

;
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Fig. 1 State of system Example 1

Q1 =
[
0.9273 0.2330
0.2330 1.1490

]

; Q2 =
⎡

⎣
1.1561 0 0

0 1.1561 0
0 0 1.1561

⎤

⎦ ;

X1 =
⎡

⎣
0.9090 0 −0.1013

0 0.7952 0
−0.1013 0 1.0165

⎤

⎦ ; X2 =
[

2.0404 −0.0182
−0.0182 1.6456

]

;

Z1 =
⎡

⎣
1.2089 0 0.0262

0 0.9862 0
0.0262 0 1.0117

⎤

⎦ ; Z2 =
[

1.4291 −0.0035
−0.0035 1.6198

]

;

ε1 = 0.6443; ε2 = 1.1712; ε3 = 0.0945; ε4 = 0.4812.

which implies from Theorem 1 that the above delayed stochastic high-order neural
network is robustly, globally, asymptotically stable in the mean square with the impul-
sive control inputs J (·) = 0, J̃ (·) = 0. The time trajectories of Example 1 with initial
conditions

⎧
⎪⎨

⎪⎩

φ1(s) = 2, s ∈ [−5, 0];
φ2(s) = 1.5, s ∈ [−5, 0];
φ3(s) = 0.5, s ∈ [−5, 0];

⎧
⎪⎨

⎪⎩

ϕ1(s) = −0.5, s ∈ [−7, 0];
ϕ2(s) = −1, s ∈ [−7, 0];
ϕ3(s) = −1.5, s ∈ [−7, 0];

and f1(x) = tanh(0.9x), f2(x) = tanh(0.78x), f3(x) = tanh(0.96x); g1(x) =
tanh(0.83x), g2(x) = tanh(0.88x), g3(x) = tanh(0.93x) are shown Fig. 1.

Example 2 Consider impulsive neural networks (2) with:

D =
⎡

⎣
2.9 0 0
0 3.2 0
0 0 3

⎤

⎦ ; A =
⎡

⎣
−1 2
2 1

−2 1

⎤

⎦ ; E =
⎡

⎣
0.3 0 0
0 0.3 0
0 0 0.3

⎤

⎦ ;

C1 =
[
0.1210 0.3159
0.3508 0.2028

]

; C2 =
[
0.2731 0.3656
0.2548 0.2324

]

; C3 =
[
0.1049 0.2319
0.2084 0.2393

]

;
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B =
⎡

⎣
−1 1
1 1
1 −1

⎤

⎦ ; K =
[
0.9 0
0 0.8

]

;

U =
⎡

⎣
0.3 0 0
0 0.1 0
0 0 0.5

⎤

⎦ ; D1 =
⎡

⎣
1 −1 0

−1 −1 0
0 −2 1

⎤

⎦ ;

H =
⎡

⎣
0.02 0 0
0 0.03 0
0 0 0.03

⎤

⎦ ; D̃ =
[
2.9 0
0 2.9

]

;

B̃ =
[

1 0 0.3
−0.6 0 0.3

]

; C̃1 =
⎡

⎣
0.0298 0.1800 0.2218
0.1665 0.3139 0.2933
0.5598 0.1536 0.2398

⎤

⎦ ;

C̃2 =
⎡

⎣
0.3001 0.3232 0.0321
0.3112 0.3515 0.5586
0.3772 0.2107 0.3361

⎤

⎦ ; Ã =
[
1 0 −1
0 0 1.2

]

; Ẽ =
[
0.6 −0.2
0 0.5

]

;

D̃1 =
[

0.6 0.5
−0.6 0.4

]

; H̃ =
[
0.09 0.06
0.06 0.09

]

; M =
⎡

⎣
1 1 1
1 0.2 0.8
0 1 1

⎤

⎦ ;

M̃ =
[
0.6 1
0.7 0.8

]

; R̃ =
[
3.9
3

]

; R =
⎡

⎣
3
3
3.5

⎤

⎦ ; σ = τ = 1;

α = α̃ = 1.

Then,

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1210 0.3159
0.3508 0.2028
0.2731 0.3656
0.2548 0.2324
0.1049 0.2319
0.2084 0.2393

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; �2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0298 0.1800 0.2218
0.1665 0.3139 0.2933
0.5598 0.1536 0.2398
0.3001 0.3232 0.0321
0.3112 0.3515 0.5586
0.3772 0.2107 0.3361

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By solvingLMIs (3)–(9) for εi > 0(i = 1, 2, 3, 4), ρX > 0(X = Q2, P2, X1, X2, Z1,

Z2) and matrices X1 > 0, X2 > 0, Z1 > 0, Z2 > 0, P > 0, Q > 0, P1 > 0, Q1 >

0, P2 > 0, Q2 > 0, we obtain

P =
⎡

⎣
0.2257 −0.0169 −0.0391

−0.0169 0.3624 0.0212
−0.0391 0.0212 0.2539

⎤

⎦ ; Q =
[
0.3316 0.1228
0.1228 0.5125

]

;

P1 =
⎡

⎣
0.3605 −0.0005 −0.0016

−0.0005 0.1667 0.0474
−0.0016 0.0474 0.1246

⎤

⎦ ; P2 =
[
0.3239 0

0 0.3239

]

;
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Q1 =
[
0.5007 0.0097
0.0097 0.2897

]

; Q2 =
⎡

⎣
0.4190 0 0

0 0.4190 0
0 0 0.4190

⎤

⎦ ;

X1 =
⎡

⎣
0.3861 0 −0.0057

0 0.3290 0
−0.0057 0 0.4381

⎤

⎦ ; X2 =
[
0.7768 0.0136
0.0136 0.6089

]

;

Z1 =
⎡

⎣
0.4788 0 −0.0014

0 0.4079 0
−0.0014 0 0.4400

⎤

⎦ ; Z2 =
[

0.6490 −0.0223
−0.0223 0.6819

]

;

ε1 = 0.6443; ε2 = 1.1712; ε3 = 0.0945; ε4 = 0.4812

which implies from Theorem 2 that the above neural network is robustly, globally,
asymptotically stable in themean square by designing a state feedbackmemory control
law and a impulsive feedback control law of the form

u(t) = [0.11510.3782 − 0.9017]x(t) + [9.5251 − 5.65521.9394]x(t − σ(t)),

ũ(t) = [−13.706910.9838]y(t) + [3.2767 − 2.4000]y(t − τ(t)),

J (t−k ) =
⎡

⎣
−0.2118 −0.0994 0.3143
−0.1684 0.2283 −0.4115
0.3271 −0.2291 −0.2115

⎤

⎦ x(t−k ),

J̃ (t−k ) =
[

2.4283 −2.0264
−2.8833 1.7573

]

y(t−k ) (18)

The time trajectories of Example 2 with initial conditions

⎧
⎪⎨

⎪⎩

φ1(s) = 2, s ∈ [−2.5, 0];
φ2(s) = 1.5, s ∈ [−2.5, 0];
φ3(s) = 0.5, s ∈ [−2.5, 0];

⎧
⎪⎨

⎪⎩

ϕ1(s) = −0.5, s ∈ [−3, 0];
ϕ2(s) = −1, s ∈ [−3, 0];
ϕ3(s) = −1.5, s ∈ [−3, 0];

and fi (x) = tanh(x)(i = 1, 2, 3); g j (x) = tanh(x)( j = 1, 2, 3) are shown in Figs. 2
[without impulsive controller (18)] and 3 [with impulsive controller (18)].

5 Conclusion and Future Works

In this article, we have investigated some high-order bidirectional neural networkswith
time-varying delays and impulsive, established a new globally asymptotical stability
and designed a state feedback memory controller to robustly stabilize this network.
Due to the development of the fractional-order calculus and its applications [23,24],
some results on fractional-order neural networks have been obtained [8,14]. To the best
of our knowledge, the model of the high-order fractional-order BAM neural networks
has not been investigated until now. The corresponding results will appear in the near
future.
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Fig. 3 State of system Example 2 with impulsive controller (18)
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