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Abstract This paper is concerned with fault detection and control problem for
continuous-time switched systems with average dwell time. Attention is focused
on designing a fault detection observer and controller such that the impact of the
unknown inputs and the faults on the system is minimized in the sense of H∞ norm.
By employing multiple Lyapunov function and average dwell time techniques, a suffi-
cient condition for the existence of such an observer and controller is exploited in terms
of certain linear matrix inequalities. Finally, two illustrative examples are provided to
show the effectiveness and applicability of the proposed results.

Keywords Switched systems · Fault detection · Control · Average dwell time ·
Multiple Lyapunov function · Linear matrix inequality

1 Introduction

Switched systems are a special class of hybrid systems. They are composed of a finite
number of subsystems with switching rules supervising their interworking. Switched
systems can be used to efficiently model many practical systems what motivates their
study. In fact, practical systems are inherently multimodels needed to describe their
behavior. In particular, chemical processes, transportation systems, industrial process
control, intelligent vehicle, and many other plants meet this description [1,2,10].
Common Lyapunov function [17], multiple Lyapunov function, and average dwell
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time (ADT) techniques have been proposed to study switched systems. Hence, many
problems are treated such as stability analysis, stabilization [5,6], dynamic output
feedback control [7,27], L2 gain and H∞ control [25,26], H∞ filter problem [19],
and estimator design [16].

The fault detection (FD) in dynamic systems has been an active field of research
during the past decades because of an increasing demand for higher safety and reli-
ability standards [2,22]. In particular, the fault detection and fault-tolerant control
problems for switched systems have also attracted considerable attention [10,18,21].
The basic idea of the model-based approaches of FD is to use state observer or filter
to construct a residual signal. On this basis, determine a residual evaluation function
to compare with a predefined threshold. When the function has a value larger than the
threshold, an alarm of faults is generated. On the other hand, it is well known that
control inputs, unavoidable unknown inputs, and faults are coupled in many industrial
systems. This fact can lead to potential sources of false alarm. This means that FD
systems have to be robust to control inputs and unknown inputs and, at the same time,
enhance the sensitivity to the faults [8].Many approaches have been applied in FD area
such as robust H∞ optimization scheme [14], H∞ filtering method [2], and minimum
sensitivity realization [15].

In the last decade, average dwell time (ADT) technique was one of themost popular
method to dealwithmany problems involving switched systems. The so-called average
dwell time means that the average time interval between consecutive switching is no
less than a specified constant. Themotivation comes from that in practice, the switching
frequency of most physical systems is limited and the system components cannot
support too frequent switching [33]. Thus, it is meaningful to design the switching
law satisfying an ADT constraint to meet control objectives. Recently, an enormous
growth of interest in using the ADT approach to deal with FD and fault-tolerant
control (FTC) problems is developed. In [33], the dwell time approach is used to
investigate the robust control and fault detection problems by using the multiobjective
optimization technique. In [22], the problem of robust fault detection filter design for
continuous-time switched linear systems with state delays is formulated as an H∞
filtering problem. In [31] the problem of fault detection for switched systems under
the asynchronous switching is investigated. The ADT is dependent on both state delay
and switching delay of fault detection filters. In [23], the problem of output feedback
stabilization with faulty actuators is studied based on the piecewise Lyapunov function
method combined with the ADT.

In the present work, the fault detection problem is investigated for continuous-
time switched linear systems by using the multiple Lyapunov function and average
dwell time approach. A sufficient condition for the H∞ fault detection observer is
exploited in the formation of LMI. Then, based on the obtained condition, a desired
fault detection observer and controller are constructed. The main feature of the pro-
posed results is the single-step design for observer-based H∞ controller and observer
design problem, which overcomes the drawback induced by using two-step procedure.
In addition, all the variables are put together in an augmented unknown one matrix
to avoid the possibility to obtain some product terms between Lyapunov matrix Pi
and observer and controller matrices. Hence, the conservatism could be reduced by
our proposed approach. A simulation example and an application to a pulse-width-
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modulation (PWM)-driven boost converter are given to show the effectiveness of the
proposed method. The remainder paper is organized as follows. Section 2 deals with
the problem statement, while some preliminary results are recalled in Sect. 3. Sec-
tion 4 is devoted to give sufficient conditions building an observer and controller, these
last are obtained by using multiple Lyapunov function and H∞ methods. To demon-
strate the validity of the proposed approach, two examples are given in Sect. 5 that is
followed by a conclusion in the last section.

Notations Standard notations are used in this paper. For a matrix A, AT denotes its
transpose. A > 0 and A < 0 denote positive-definite and negative-definite matrices,
respectively. The symbol ∗within amatrix represents the symmetric entries. 0, I denote
the null matrix and identity matrix with appropriate dimensions, respectively.

2 Problem Statement

Consider the following continuous-time switching system:

{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Eσ(t)d(t) + Fσ(t) f (t)

y(t) = Cσ(t)x(t) + Nσ(t)d(t) + Mσ(t) f (t),
(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, y(t) ∈ R
p is the output,

d(t) ∈ R
g is the unknown input vector (including disturbance, noise or structured

model uncertainty), f (t) ∈ R
q is the fault and σ ∈ I = {1, 2, . . . , N } is the switching

signal that specifies which subsystem will be activated and N denotes the number of
subsystems.

We assume the switching signal σ(t) time-dependent, that is,

σ(t) : {(t0, σ (t0)), (t1, σ (t1)), . . . , (tk, σ (tk)), . . . , |k = 0, 1, . . .} ,

where t0 denotes the initial time, and (tk, σ (tk)) means that the σ(tk)th subsystem is
activated during t ∈ [tk, tk+1). k denotes the switching ordinal number. Aσ(t), Bσ(t),
Cσ(t), Eσ(t), Fσ(t), Nσ(t), and Mσ(t) are given constant matrices with appropriate
dimensions for all σ ∈ I.We denotematrices associatedwith σ(t) = i by Aσ(t) = Ai ,
Bσ(t) = Bi , Cσ(t) = Ci , Eσ(t) = Ei , Fσ(t) = Fi , Nσ(t) = Ni and Mσ(t) = Mi .
Suppose that at the switching instants tk , system (1) switches from the j th subsystem
to the i th subsystem, thus σ(t−k ) = j , σ(t+k ) = σ(tk) = i .

In this paper, we are interested in the synthesis of an observer in order to detect
faults when they occur in the switching system (1). Hence, consider the following
switching observer:

{ ˙̂x(t) = Gσ(t) x̂(t) + Lσ(t)y(t)

ŷ(t) = Cσ(t) x̂(t),
(2)

where Gσ(t) ∈ R
n×n , Lσ(t) ∈ R

n×p are the observer matrices to be designed.
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By using the following observer-based controller structure, the control can also be
designed to stabilize the system in closed-loop despite the presence of perturbation
and fault:

u(t) = Kσ(t) x̂(t). (3)

The observer-based residual generator is defined by:

r(t) = Vσ(t)(y(t) − ŷ(t)). (4)

Matrices Vi and Ki are also to be computed. By combining the above structures of the
observer, the controller and the residual, and defining e(t) = x(t)− x̂(t), the following
augmented switched system is obtained:

S :
{ ˙̃x(t) = Ãi x̃(t) + B̃iω(t)

r(t) = C̃i x̃(t) + D̃iω(t),
(5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ãi =
[

Ai + Bi Ki −Bi Ki

Ai − LiCi + Bi Ki − Gi Gi − Bi Ki

]
,

B̃i =
[

Ei Fi
Ei − Li Ni Fi − Li Mi

]
,

C̃i = [
0 ViCi

]
, D̃i = [

Vi Ni Vi Mi
] ;

x̃(t) =
[
x(t)
e(t)

]
, ω(t) =

[
d(t)
f (t)

]
.

(6)

3 Preliminary Results

As used in the literature of fault detection [1,22,32], the identification of the fault f (t)
is not necessary. One can use the following residual evaluation function:

Jr (Te) = ‖r(t)‖2 =
(∫ t0+Te

t0
rT (τ )r(τ )dτ

)1/2

, (7)

where t0 denotes the initial evaluation time instant. Te is the evaluation time steps.
The occurrence of faults can be detected by comparing Jr (Te) and Jth according the
following logic relationship:

Jr (Te) � Jth ⇒ Faults ⇒ Alarm

Jr (Te) ≤ Jth ⇒ No Faults.

The threshold value can be calculated during the fault-free system operation as indi-
cated in [8,22]:
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Jth = sup
d(t)∈l2[0,+∞), f (t)=0

‖r(t)‖2 . (8)

Remark 1 For the fault detection problem, it is not necessary to estimate the fault.
By considering the deviation of Jr (Te) between fault-free case and faulty case, we
can decide whether or not the fault has occurred. Compared with the fault estimation
methods [4,9], the proposed technique reduces the requirement of a controller/observer
and leads to less overall complexity in practice.

The technique of H∞ problem for the augmented switching system (5) with average
dwell time consists in ensuring the asymptotic stability of the system for ω(t) = 0
while realizing the following condition under zero initial condition x̃0 = 0, for any
nonzero ω(t) ∈ [0,∞) [24]:

∫ ∞

t0
e−αsr T (s)r(s)ds ≤ γ 2

∫ ∞

t0
ωT (s)ω(s)ds. (9)

Remark 2 In the H∞ theory, the inputω(t) is assumed to be only boundedwithout any
knowledge of its bound. In our case,ω(t) represents the fault f (t) and the perturbation
d(t). No additional assumption is required on these inputs. The idea is to reduce the
impact of this exogenous input ω(t) on the system by reducing as far as possible the
scalars γ defined by Eq. (9).

Before ending this section, we introduce the following definition and lemma.

Definition 1 [11] For any switching signal σ(t) and any t2 � t1 � 0, let Nσ (τ, t)
denotes the number of switching of σ(t) on an interval (t1, t2). If

Nσ (τ, t) ≤ N0 + t2 − t1
τa

(10)

holds for a given N0 ≥ 0 and τa , then the constant τa is called the average dwell
time ADT and N0 the chattering bound. N0 must be at least two in the case of ADT
switching [13], however, we can assume it to be zero for the simplicity ofmathematical
manipulation.

Lemma 1 [6]: If there exist function φ(t) and υ(t) satisfying

φ̇(t) ≤ −ζφ(t) + κυ(t),

then

φ(t) ≤ e−ζ(t−t0)φ(t0) + κ

∫ t−t0

0
e−ζ τ υ(t − τ)dτ. (11)



2362 Circuits Syst Signal Process (2018) 37:2357–2373

4 Main Results

As stated in the previous section, the problem of fault detection and control can be
stated as designing a controller/observer unit such that the augmented system (5) is
asymptotically stable and the H∞ performance index (9) is satisfied. The objective of
this section is to obtain an LMI enabling to synthesize the switching observer together
with its corresponding residual and controller. This will make possible fault detection
and control of the continuous-time switching system under ADT constraint.

Theorem 1 Given constants α � 0, γ � 0, εi � 0, and μ ≥ 1, if there exist positive-
definite matrices Pi , and any matrices Gi , Li , Ki and Vi , for i ∈ I such that

⎡
⎢⎢⎢⎣

ψi + αPi Pi B̃i C̃T
i T

i

∗ −γ 2
I D̃T

i 0

∗ ∗ −I 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎦ ≺ 0 (12)

Pi ≤ μPj , ∀(i, j) ∈ I × I, i �= j (13)

then the system S is asymptotically stable with H∞ performance γ for any switching
signal with average dwell time satisfying

τa ≥ τ ∗
a = lnμ

α
, (14)

where ψi = AT
i Pi + PiAi − εiBiBT

i Pi − εiPiBiBT
i + ε2i BiBT

i

Ai =
[
Ai 0
Ai 0

]
; Bi =

[
0 0 0 Bi
0 0 −I Bi

]
;

i = BT
i Pi + KiCi ;Ki =

⎡
⎢⎢⎣
Gi Li 0 0
Ki 0 0 0
0 0 Gi Li

0 0 Ki 0

⎤
⎥⎥⎦ ; Ci =

⎡
⎢⎢⎣
0 I

0 0
I −I

Ci 0

⎤
⎥⎥⎦ .

Proof It is noted that Ãi = Ai + BiKiCi . The asymptotic stability of system S with
ω(t) = 0 is firstly established.

For this, assume that condition (12) holds. From (12) and by Schur complement,
the following inequality can be obtained:

�i =
[
�i + αPi + C̃T

i C̃i Pi B̃i + C̃T
i D̃i

∗ D̃T
i D̃i − γ 2

I

]
≺ 0, (15)

where

�i = AT
i Pi + PiAi − εiBiBT

i Pi − εiPiBiBT
i + ε2i BiBT

i (16)

+
(
BT
i Pi+KiCi

)T (
BT
i Pi+KiCi

)
.
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It is obvious that �i ≺ 0 implies the following inequality:

�i + αPi + C̃T
i C̃i ≺ 0, (17)

which implies that

AT
i Pi + PiAi − PiBiBT

i Pi +
(
BT
i Pi+KiCi

)T (
BT
i Pi+KiCi

)
+ αPi ≺ 0, (18)

where the following relationship is used:

PiBiBT
i Pi − εiBiBT

i Pi − εiPiBiBT
i + ε2i BiBT

i + C̃i C̃
T
i

= (PiBi − εiBi )
(
BT
i Pi − εiBT

i

)
+ C̃i C̃

T
i � 0. (19)

Rewriting (18) yields

(Ai + BiKiCi )T Pi + Pi (Ai + BiKiCi ) + CT
i KT

i KiCi + αPi ≺ 0, (20)

which implies that

(Ai + BiKiCi )TPi + Pi (Ai + BiKiCi ) + αPi ≺ 0. (21)

Hence

ÃT
i Pi + Pi Ãi + αPi ≺ 0. (22)

Consider now the following Lyapunov function candidate:

Vi (t) = x̃ T (t)Pi x̃(t), (23)

Then, along the trajectory of system (5), we have

V̇i (t) + αVi (t) = ˙̃xT (t)Pi x̃(t) + x̃ T (t)Pi ˙̃x(t) + α x̃ T (t)Pi x̃(t)

= x̃ T (t)( ÃT
i Pi + Pi Ãi + αPi )x̃(t). (24)

Then, according to (22), we obtain

V̇i (t) + αVi (t) ≤ 0; (25)

it follows that

V̇i (t) ≤ −αVi (t). (26)
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Let t1, t2, . . . , tk, tk+1 . . . denote the switching instants of σ(t) over the interval [t0, t].
Integrating inequality (26) from tk to tk+1 gives

Vi (x̃(tk+1)) ≤ Vi (x̃(tk))e
−α(tk+1−tk ). (27)

Thus, over the interval [t0, t) and according to (27) and (13), we have

Vi (x̃(t)) ≤ e−α(t−tk )Vi (x̃(tk))

≤ μe−α(t−tk )Vi−1(x̃(t
−
k ))

≤ · · · ≤ μNσ (t0,t)e−α(t−t0)V0(x̃(t0)), (28)

where t−k denotes the switching instant just before tk . As the definition of the ADT,
Nσ (t0, t) ≤ N0 + (t − t0)/τa , (28) can be written as:

Vi (x̃(t)) ≤ μN0e−(α−ln(μ)/τa)(t−t0)V0(x̃(t0)). (29)

Therefore, if the average dwell time satisfies (14), we conclude that V (t) converges
to zero as t → ∞.
Then, the stability of system S is deduced.

The second part of the proof can be considered. For this, let any nonzero ω(t) ∈
[0,∞) and zero initial condition x̃(0). Consider the Lyapunov function candidate as
in (23) and set (t) = −rT (t)r(t) + γ 2ωT (t)ω(t), one has

V̇i (t) + αVi (t) − (t) = ηT (t)�iη(t), (30)

where η(t) =
[
x̃(t)
ω(t)

]
, �i =

[
ÃT
i Pi + Pi Ãi + αPi + C̃T

i C̃i Pi B̃i + C̃T
i D̃i

∗ D̃T
i D̃i − γ 2

I

]
To proof that �i ≺ 0, we have

�i −
(
ÃT
i Pi + Pi Ãi

)
= CT

i KT
i KiCi + (PiBi − εiBi )

(
BT
i Pi − εiBT

i

)
� 0.

Thus , �i � ÃT
i Pi + Pi Ãi which implies �i + C̃T

i C̃i � ÃT
i Pi + Pi Ãi + C̃T

i C̃i .
Therefore, �i ≺ �i ≺ 0, and hence

V̇i (t) ≤ −αVi (t) + (t). (31)

From Lemma 1, one has

Vi (t) ≤ e−α(t−tk )Vi (tk) +
∫ t

tk
e−α(t−s)(s)ds. (32)
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At the switching instants t0 < t1 < t2 < · · · tk < tk+1 · · · < t during [t0, t) and
according to (32) and (13), we have the following developments:

Vi (t) ≤ e−α(t−tk )Vi (tk) +
∫ t

tk
e−α(t−s)(s)ds

≤ μe−α(t−tk )Vi−1(t
−
k ) +

∫ t

tk
e−α(t−s)(s)ds

≤ μe−α(t−tk−1)Vi−1(tk−1) + μ

∫ tk

tk−1

e−α(t−s)(s)ds +
∫ t

tk
e−α(t−s)(s)ds

≤ μμe−α(t−tk−1)Vi−2(t
−
k−1) + μ

∫ tk

tk−1

e−α(t−s)(s)ds +
∫ t

tk
e−α(t−s)(s)ds

≤ ...............

≤ μNσ (t0,t)e−α(t−t0)V0(t0) + μNσ (t0,t)
∫ t1

t0
e−α(t−s)(s)ds

+ · · · + μNσ (tk−1,t)
∫ tk

tk−1

e−α(t−s)(s)ds + μNσ (tk ,t)
∫ t

tk
e−α(t−s)(s)ds

= μNσ (t0,t)e−α(t−t0)V0(t0) +
∫ t

t0
μNσ (s,t)e−α(t−s)(s)ds. (33)

Under zero initial condition, (33) implies

∫ t

t0
e−α(t−s)+Nσ (s,t) lnμrT (s)r(s)ds

≤ γ 2
∫ t

t0
e−α(t−s)+Nσ (s,t) lnμωT (s)ω(s)ds. (34)

Multiplying both sides of (34) by e−Nσ (0,t) lnμ yields

∫ t

t0
e−α(t−s)−Nσ (0,s) lnμrT (s)r(s)ds

≤ γ 2
∫ t

t0
e−α(t−s)−Nσ (0,s) lnμωT (s)ω(s)ds. (35)

Notice that Nσ (0, s) ≤ s/τa and τa ≥ lnμ
α
; we have Nσ (0, s) lnμ ≤ αs.

Thus, (35) implies

∫ t

t0
e−α(t−s)−αsr T (s)r(s)ds ≤ γ 2

∫ t

t0
e−α(t−s)ωT (s)ω(s)ds. (36)

Integrating the above inequality from t0 to ∞ yields (9). This completes the proof.
��
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Remark 3 The proposed design method in this paper provides strict LMIs in a single
step which reduces redundancy in determination of the controller and observer gain
matrices. Note that the number of variables to be determined in [22] is great than the
ones used in our study. Besides, based on the use of Luenberger switching observer
(2), the number of unknown matrices is lower in our case. In addition, it should be
mentioned that the conservatism is reduced by regulating parameter εi where the more
greater region is obtained for feasibility. This fact can be shown upon an example firstly
studied in [22] leading to small γ in our case (see Example 1).

Remark 4 It is worth noting that using the detection and control units into a single
unit, leads to less complexity compared with the case of separate design. In addition,
it reduces the delay of the communication between the system and the controller via
communication channel. Thismeans that our design approach presentsmore advantage
in real-world applications than designed approaches of FD without control as in [2,
14,22].

5 Examples

In this section, two examples are presented to illustrate the effectiveness of the pro-
posed method. The first one is used for the comparison between the result of this paper
and [22]. The second one is an application to a pulse-width-modulation (PWM)-driven
boost converter.

Example 1 Consider the continuous-time switched system with two subsystems sim-
ilar to the one studied in [22].
Mode 1:

A1 =
[−3 2
1 −6

]
, B1 =

[
0
1

]
, C1 = [

1 0
]
, E1 =

[
0.3
0.5

]
, F1 =

[
0.9
0.7

]
,

N1 = 0.6, M1 = 0.9.

Mode 2:

A2 =
[−2 1
3 −9

]
, B2 =

[
1
0

]
, C2 = [

1 0
]
, E2 =

[
0
0.1

]
, F2 =

[
1
0

]
,

N2 = 0.9, M2 = 0.4.

Given α = 0.1,μ = 1.1 and γ = 0.6, based on Theorem 1, the observer, the controller
and the residual with gain matrices are obtained as follows:

G1 =
[−0.5606 0.0191
0.1164 −0.6857

]
, L1 =

[
0.1566
0.2527

]
, K1 = [

0.0790 0.0467
]
,

V1 = 0.3208

G2 =
[−0.5831 0.2803
0.0274 −0.5867

]
, L2 =

[
0.3497
0.0380

]
, K2 = [

0.1636 −0.2581
]
,

V2 = 0.3050.
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Fig. 1 The evolution of the switching signal σ(t)
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Fig. 2 Residual signal r(t) when the fault occurs from 40 to 60s

Then for the simulation purpose, we let the occurrence of the fault f (t) = 1 from
40 to 60s and d(t) = exp(−0.04t) cos(0.3π t), the threshold value Jth = 0.9545.
The switching signal with average dwell time τa ≥ lnμ

α
= 0.9531 is shown in Fig. 1.

Figure 2 presents the residual signal while the evolution of the system states is shown
in Fig. 4. From Fig. 3, Jr (Te) > Jth when t = 40 s, whichmeans that the fault f (t) can
be immediately and effectively detected when it occurs under the disturbance input.

The comparison of Table 1 shows that the result of the proposed method in this
paper is less conservative than the one of [22].

Example 2 In this example, a pulse-width-modulation (PWM)-driven boost converter,
shown in Fig. 5, is given to illustrate the effectiveness of our designmethod. es(t) is the
source voltage, L is the inductance, C is the capacitance and R is the load resistance.
The switch s(t) is controlled by a PWM device and can switch at most once time
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Fig. 3 The residual evaluation function Jr (Te)
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Fig. 4 State responses with input control

Table 1 Comparison with the
existing results

References γ ADT

[22] 1.1 0.3646

This paper 0.6 0.9531

in each period T . As a typical circuit system, the converter is used to transform the
source voltage into a higher voltage. This class of power converters has been modeled
as switched systems. The differential equations for the boost converter are as follows
[20,29]:
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Fig. 5 Boost converter

ėc(τ ) = − 1

RĈ
ec(τ ) + (1 − s(τ ))

1

Ĉ
iL(τ ), (37)

i̇L(τ ) = − (1 − s(τ ))
1

L̂
ec(τ ) + s(τ )

1

L̂
, (38)

where τ = t
T , L̂ = L

T and Ĉ = C
T .

Then, let x = [ec, iL ]T , so (37)–(38) can be formulated by:

ẋ(t) = Aσ x(t) + Bσu(t), σ ∈ {1, 2} . (39)

where

A1 =
[− 1

RĈ
1
Ĉ− 1

L̂
0

]
, A2 =

[
− 1

RĈ
0

0 0

]
, B1 =

[
0
0

]
, B2 =

[
0
1
L̂

]
.

According to the same normalization technique used in [5], matrices in (39) can be
given by:

A1 =
[−1 1

−1 0

]
, A2 =

[−1 0
0 0

]
, B1 =

[
0
0

]
, B2 =

[
0
1

]
.

We assume that the other system matrices are

C1 = [
0.1 −0.1

]
, E1 =

[
0.1
0.2

]
, F1 =

[−0.6
0.3

]
, N1 = 0.4, M1 = 1.5

C2 = [
0.3 −0.4

]
, E2 =

[
0.2
0.1

]
, F2 =

[−0.8
−0.3

]
, N2 = −0.3, M2 = 1.2.

To demonstrate the effectiveness of the designed method, assume that the disturbance
d(t) = 0.5 exp(−0.04t). cos(0.05π t), and the fault is set up as:

f =
{
1, 40 ≤ t ≤ 60
0, otherwise.
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Fig. 6 The evolution of the switching signal σ(t)
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Fig. 7 Residual signal r(t) when the fault occurs from 40 to 60s

Given α = 0.1, μ = 1.1 and γ = 1.2, by solving the conditions in Theorem 1,
we can obtain the observer, residual and the corresponding stabilizing controller as
follows:

G1 =
[−0.2746 0.0986

−0.2747 −0.4835

]
, G2 =

[−0.4045 0.0098
0.4864 −0.7272

]
, L1 =

[−3.4359
−4.4436

]
,

L2 =
[
0.2256
−2.1329

]
, K1 = [−0.6425 −0.0110

]
, K2 = [

0.0321 −0.1646
]
,

V1 = 0.2206, V2 = 0.1260.

Theminimal average dwell time τ ∗
a = 0.9531 is given by (14). The switching signal

is shown in Fig. 6, which is generated by choosing an average dwell time τa = 3.46.
The generated residual r(t) is shown in Fig. 7. The threshold can be determined as
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Fig. 8 The residual evaluation function Jr (Te)
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Fig. 9 State responses with input control

Jth = 1 for t = 30 s. Figure 8 shows the evolution of residual evaluation function
Jr (Te), in which the solid line is fault-free case, while the dashed line is the faulty case
f (t). The evolution of state trajectories is plotted in Fig. 9, showing that the stability
is maintained in the presence of fault.

6 Conclusion

In this paper, the fault detection and control problem for continuous-time switched
systemswith average dwell time constraint has been investigated. The controller-based
observer has been designed to maintain asymptotic stability of the faulty switching
system and can be considered as a passive fault-tolerant control. This technique uses a
new method assembling in a compact form all the variables in one augmented matrix.
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The obtained conditions have beenworked out in a simpleway to obtain newLMIs, and
the desired observer/controller matrices can be constructed easily through the solution
of LMIs. Finally, two illustrative examples are provided to show the effectiveness and
applicability of the proposed results.
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