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Abstract The problem of recovering a desired signal from a recording corrupted by
a background additive white Gaussian noise is considered. The undecimated wavelet
transform of the noisy recorded signal is taken, and the resulting detail coefficients
are thresholded for the purpose of extracting the desired signal. Simple techniques
exist for performing the thresholding operation such as the hard, soft and trimmed
thresholding methods. Donoho and Johnstone developed a method for selecting the
threshold value at every resolution level by minimizing the Stein’s unbiased risk esti-
mator (SURE) function while adopting the simple thresholding rationale. They next
contributed a hybrid scheme which either uses the last mentioned threshold or defaults
to a universal threshold value if the wavelet coefficients are sparse. In the present paper
a hybrid scheme is proposed where the trimmed thresholding rationale rather than the
soft thresholding rationale is adopted. An expression is first derived for the SURE
function for the case of trimmed thresholding before applying the optimization tech-
nique. Moreover, instead of using a fixed value of the trimming parameter alpha, a
heuristic approach is followed for choosing an optimal value of this parameter. A
comparative simulation study is carried out including both standard test signals and
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electrocardiogram signals. The simulation results testify to themerit of the contributed
method. They show an improvement in the signal-to-noise ratio of the denoised signals
extracted by the proposed scheme over those obtained by the universal threshold with
hard thresholding and the hybrid SURE threshold with soft thresholding or any non-
wavelet-based technique such as the short-time Fourier transform block thresholding,
the spectral subtraction or the phase spectrum compensation.

Keywords Signal denoising · Stein’s unbiased risk estimator (SURE) · Trimmed
thresholding ·Hard thresholding · Soft thresholding ·Undecimated wavelet transform
(UWT)

1 Introduction

The work of Donoho and Johnstone [10] is the foundation of wavelet-based shrinkage
and thresholding methods that have been extensively developed for denoising signals
[2,4,6,9,15,27]. The wavelet thresholding methods are used in many applications
including denoising images [17], electrocardiogram (ECG) signals [1] and speech
signals [19,21]. Despite their success, sometimes the traditional wavelet transforms
exhibit visual artifacts. Coifman and Donoho [7] proposed the use of the translation-
invariant (TI)wavelet transform—known as undecimatedwavelet transform (UWT)—
for denoising signals. This helps in suppressing the artifacts and consequently pro-
ducing better results than the discrete wavelet transform (DWT) as measured by the
mean squared error (MSE) and signal-to-noise ratio (SNR) [20,22,25].
Although the hard thresholding rule is the simplest one, it can be unstable, i.e., sensi-
tive to small changes in data, because it is defined as a discontinuous function. On the
other hand, the soft thresholding rule contributed by Donoho and Johnstone [11]—
despite being the most commonly used one—creates unnecessary bias in cases when
the true coefficients are large. In order to achieve a compromise between the hard
and soft thresholding rules, Fang and Huang [12] proposed the trimmed thresholding
rule with a constant parameter α. The trimmed thresholding rule—defined as a con-
tinuous function—does not create excessive bias when the wavelet coefficients are
large. Actually, the hard and soft thresholding rules are limiting cases of the trimmed
thresholding one corresponding to α → ∞ and α = 1, respectively. One can achieve
the best denoising result by a careful tuning of the trimming parameter α for the signal
at hand.
An important step in applying any thresholding method is the determination of an
appropriate value of the threshold. Many approaches have been proposed for calcu-
lating the threshold value including the mini-max, universal and Stein’s unbiased risk
estimator (SURE) [24] thresholds. The SureShrink denoising method—which uses a
hybrid of the universal threshold and the SURE based on soft thresholding—has been
widely used and shown to perform well [5,11]. A wavelet thresholding denoising
method that uses a hybrid of the universal threshold and the SURE threshold based on
a trimmed thresholding strategy for the UWT coefficients was proposed in [16].
In the present paper, a detailed rigorous derivation of the hybrid SUREwith optimized
trimmed thresholding strategy is given. Moreover, an optimal value of the trimmed
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thresholding parameter α is computed using a simple heuristic technique. In order to
illustrate the effectiveness of the proposed method, it is compared with hard thresh-
olding, the SureShrink and the hybrid SURE with trimmed thresholding using a fixed
value of α. It is also compared with non-wavelet-based methods such as the short-time
Fourier transform (STFT) block thresholding [26], the spectral subtraction [3] and the
phase spectrum compensation [23] methods. The extensive simulation study includes
both the standard test signals of Donoho and Johnstone [10] and ECG signals. It shows
an improvement in the signal-to-noise ratio (SNR) of the denoised signals extracted
by the proposed method.
In Sect. 2 the signal denoising problem is formulated and wavelet-based extraction
methods are reviewed. In Sect. 3 the hybrid SUREwith soft thresholding (SureShrink)
is surveyed. InSect. 4 a detailed derivation of the hybrid SUREwith optimized trimmed
thresholding and the corresponding implementation algorithm are given. In Sect. 5 the
proposed method is applied to test signals as well as ECG signals all contaminated by
background additive white Gaussian noise (AWGN). A comparison of the denoising
results for different noise levels is made.

2 Wavelet-Based Denoising

A sampled noisy signal y = (y1, y2, . . . , yn)T is generated as

y = f + σe, (1)

where f is a vector of samples of a clean signal, e is a vector of independent iden-
tically distributed (i.i.d) zero mean Gaussian noises with unit variance N (0, 1), and
σ is the noise level which may be known or unknown. The UWT [18] removes the
downsampling operator from the usual implementation of the DWT and upsamples
the filter responses, thereby inserting holes between nonzero filter taps. The UWT of
the one-dimensional signal y in (1) with sample length 2J leads to a set of coefficients

W =
{
ĉ j0,k, d̂ j,k

}
, k = 0, 1, . . . , 2J − 1, j = j0 , . . . , J − 1, where ĉ j0,k and d̂ j,k

are, respectively, the scaling and wavelet coefficients of the noisy data and j0 is the
coarsest resolution level.
Donoho and Johnstone [10] suggested the extraction of the significant wavelet coef-
ficients by thresholding, that is, shrink the wavelet coefficients toward zero if their
absolute value is below a certain threshold level, λ ≥ 0. The simplest shrinkage
operation is known as “hard thresholding” [10] which is expressed as:

ηH

(
d̂ j,k, λ

)
=
⎧
⎨
⎩
d̂ j,k,

∣∣∣d̂ j,k

∣∣∣ ≥ λ

0,
∣∣∣d̂ j,k

∣∣∣ < λ,
(2)

where d̂ j,k and ηH

(
d̂ j,k, λ

)
are the empirical wavelet coefficients before and after hard

thresholding, respectively, and λ is the threshold level. This is a keep-or-kill approach.
The hard thresholding process, however, causes discontinuity in the amplitude of
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the shrunk coefficients. To prevent discontinuity, another approach known as “soft
thresholding” was introduced in [7] and can be expressed as:

ηS

(
d̂ j,k, λ

)
=
⎧
⎨
⎩
sgn

(
d̂ j,k

) (∣∣∣d̂ j,k

∣∣∣− λ
)

,

∣∣∣d̂ j,k

∣∣∣ ≥ λ

0,
∣∣∣d̂ j,k

∣∣∣ < λ,
(3)

where ηS

(
d̂ j,k, λ

)
are the wavelet coefficients after the soft thresholding process

and sgn (.) is the signum function. This is a shrink-or-kill approach which has the
merit that the artifacts caused by discontinuities—which appeared in the case of hard
thresholding—are not observed. The disadvantage is that all other coefficients which
represent the original signal are also shrunk causing a decrease in the SNR of the
denoised signal. A more general thresholding scheme which incorporates the advan-
tages of both soft thresholding and hard thresholding is called trimmed thresholding
[13] and is expressed as:

ηT

(
d̂ j,k, λ

)
=

⎧⎪⎪⎨
⎪⎪⎩
d̂ j,k

(∣∣∣d̂ j,k

∣∣∣α−λα

∣∣∣d̂ j,k

∣∣∣α

)
,

∣∣∣d̂ j,k

∣∣∣ > λ

0,
∣∣∣d̂ j,k

∣∣∣ ≤ λ,

(4)

where d̂ j,k and ηT

(
d̂ j,k, λ

)
are the empirical wavelet coefficients before and after

trimmed thresholding, respectively, λ is the threshold value, and α is a real-valued

parameter lying in the range 1 ≤ α ≤ ∞. The wavelet coefficients η
(
d̂ j,k, λ

)
—

obtained by applying any thresholding rule given in (2), (3) or (4)—are used for a
selective reconstruction of the function f in (1). The estimated function—denoted by
f̂ (t)—is obtained by simply performing the inverse undecimated wavelet transform

(IUWT) of {ĉ j0,k, η
(
d̂ j,k, λ

)
}.

3 The SURE Approach with Soft Thresholding

Donoho and Johnstone [11] have developed a wavelet-based denoising method,
denoted by SureShrink, which is based on adaptively choosing threshold values λ j

at every resolution level j with soft thresholding. Given a set
{
X1, . . . , X p

}
of sta-

tistically independent random variables normally distributed as Xi ∼ N (μi , 1) for
i = 1, . . . , p, the estimator of the mean vector of the clean signal μ denoted by μ̂ is
defined by

μ̂ = X + g (X) , (5)

where g = (gi )
p
i=1 is a function from Rp into Rp. Stein showed that for a weakly

differentiable g (X), one has:

Eμ

{∣∣∣∣μ̂ (X) − μ
∣∣∣∣2} = p + Eμ

{
||g (X)||2 + 2∇.g (X)

}
, (6a)
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where ∇.g (X) is the divergence of vector g (X) defined by ∇.g (X) ≡ ∑p
i=1

∂gi
∂Xi

.
One can infer—from the above equation—that the quantity

SURE (λ; X) = p + ||g (X)||2 + 2∇.g (X) (6b)

is an unbiased estimate of the risk: Eμ

{‖ μ̂ (X) − μ ‖2} = Eμ {SURE (λ; X)}.
For the soft threshold estimator μ̂i (X) = ηS (Xi , λ) [11], the function gi (X) is
defined by:

gi (X) = −Xi I (i) − λ sgn (Xi ) I
′ (i) , (7)

where I (i) and I ′ (i) are, respectively, the set indicator functions of the sets I =
{i : |Xi | ≤ λ} and I ′ = {i : |Xi | > λ} and λ is a scalar threshold. The above equation
implies that ∂gi

∂Xi
= −I (i) and consequently

∇.g (X) =
∑
i∈I

−1 = −#I, (8)

where #A denotes the cardinality of set A. Since (7) implies that ‖ g (X) ‖2=∑p
i=1[min(|Xi | , λ)]2, the SURE function of (6b) reduces to:

SURE (λ; X) = p − 2 # I +
p∑

i=1

[min(|Xi | , λ)]2. (9)

Consequently, the problemofminimizing theMSE function reduces to that ofminimiz-
ing SURE (λ; X) in order to obtain the optimal threshold λ. Extending this principle to
the entire set of resolution levels, at each level j , an expression for the SURE threshold
λsj is given by:

λsj = argmin
0≤λ≤λUj

SURE
(
λ, d̂ j

)
, j = j0, . . . , J − 1, (10)

where λUj = σ̂
√
2 ln 2 j is the level-wise universal threshold [8], σ̂ is a robust estimate

of the noise level, and d̂ j is the vector of empirical wavelet coefficients at level j whose
elements are d̂ jk , k = 0, . . . , 2 j − 1. The main advantage of the SURE threshold is
that when the underlying function has jump discontinuities, the reconstructed signal
has no artifacts at the location near discontinuity.
Donoho and Johnstone considered a hybrid scheme of the SURE threshold and the
universal threshold—denoted by SureShrink—in order to avoid a serious drawback
in situations of extreme sparsity of the wavelet coefficients as reported in [11]. This
hybrid scheme is based on the following heuristic idea: If the set of empirical wavelet
coefficients is judged to be sparsely represented, then the hybrid scheme defaults to the
universal threshold λUj [8]; otherwise, the SURE criterion is used to select a threshold
value.
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In mathematical terms, the SureShrink is expressed as [11]:

λHj =
⎧
⎨
⎩

λUj if
∣∣∣
∣∣∣d̂ j

∣∣∣
∣∣∣
2

2
≤ σ̂ 22 j/2

(
2 j/2 + j3/2

)

λsj otherwise
, j = j0, . . . , J − 1. (11)

The inequality in (11) is a good measure of sparsity [2,11]. It is observed that when
using the universal thresholds, the losses seem to be very small for sparse vectors
compared to the case of using SURE, i.e., the hybrid method adaptively “keeps” or
“shrinks” large coefficients and “kills” small ones.

4 The Hybrid Scheme with Trimmed Thresholding

The main advantage of the SureShrink method is that it combines the advantages of
the universal threshold and the SURE threshold. Therefore, it is widely used in many
applications such as speech and image denoising. In this section a hybrid scheme based
on the SUREwith trimmed thresholding and the universal threshold—to be referred to
as the SureTrimm—is introduced. The trimmed thresholding Eq. (4) can be rewritten
as

ηT
(
X j , λ

) = X j

(
1 − λα

∣∣X j
∣∣α
)
I ′ ( j) , α ≥ 1, (12)

where I ′ ( j) is the set indicator function of the set I ′ defined by I ′ ≡ {
j : ∣∣X j

∣∣ > λ
}

and X1, . . . , X p are independent N (μi , 1), i = 1, . . . , p. Letting μ̂ j = ηT
(
X j , λ

)
in (5) and solving for g j (X) one obtains:

g j (X) = ηT
(
X j , λ

)− X j = X j

(
1 − λα

∣∣X j
∣∣α
)
I ′ ( j) − X j . (13)

Upon defining the set indicator function I ( j) of the set I ≡ {
j : ∣∣X j

∣∣ ≤ λ
}
, the above

equation reduces to:

g j (X) = −X j I ( j) − sgn
(
X j
)
.

λα

∣∣X j
∣∣α−1 I

′ ( j) . (14)

Taking the partial derivative, one gets—as derived in “Appendix A”— the following
formula:

∂g j

∂X j
= −I ( j) + λα

{
(α − 1)∣∣X j

∣∣α − 2δ
(
X j
)

∣∣X j
∣∣(α−1)

}
I ′ ( j) , (15a)
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where δ (· · · ) is the Dirac delta function. By ignoring the case of X j = 0, the above
equation simplifies to:

∂g j

∂X j
= −I ( j) + λα (α − 1)∣∣X j

∣∣α I ′( j). (15b)

It is straightforward to show that

∂g j

∂Xi
= 0 , i 
= j. (15c)

Using (15b), the divergence of g reduces to:

∇.g (X) ≡
p∑

i=1

∂gi
∂Xi

=
∑
i∈I

−1 + (α − 1)
∑
i∈I ′

λα

|Xi |α

= −#I + (α − 1) λα
∑
i∈I ′

1

|Xi |α . (16)

Based on (14), the squared norm can be computed as:

‖ g (X) ‖2 =
p∑

j=1

∣∣g j
∣∣2

=
p∑

j=1

∣∣∣∣∣X j I ( j) + sgn
(
X j
) λα

∣∣X j
∣∣α−1 I

′( j)
∣∣∣∣∣

=
∑
j∈I

∣∣X j
∣∣2 +

∑
j∈I ′

(
λα

∣∣X j
∣∣α−1

)2

=
∑
j∈I

∣∣X j
∣∣2 + λ2α

∑
j∈I ′

1∣∣X j
∣∣2(α−1)

. (17)

For j ∈ I: ∣∣X j
∣∣ ≤ λ and

∣∣X j
∣∣α ≤ λα for α ≥ 1 resulting in

∣∣X j
∣∣ ≤ λα

|X j |α−1 .

For j ∈ I ′:
∣∣X j

∣∣ > λ and
∣∣X j

∣∣α > λα for α ≥ 1 resulting in λα

|X j |α−1 <
∣∣X j

∣∣.
Consequently, (17) reduces to:

‖ g (X) ‖2=
p∑

i=1

[
min(|Xi | , λα

|Xi |α−1 )

]2
. (18)
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According toStein, if g (X) is aweakly differentiable function as in the case of trimmed
thresholding, the SURE (λ; X) function of (6b) upon utilizing (16) and (18) reduces
to:

SURE (λ; X) = p − 2 # I + 2 (α − 1) λα
∑
i∈I ′

1

|Xi |α

+
p∑

i=1

[
min

(
|Xi | , λα

|Xi |α−1

)]2
. (19)

Applying the above formula to the entire set of resolution levels, an expression for the
trimmed threshold λTj is obtained as:

λTj = argmin
0≤λ≤λUj

SURE
(
λ; d̂ j

)
, j = j0, . . . , J − 1. (20)

Consequently, the threshold λHTj of the hybrid scheme based on the SURE with
trimmed thresholding and the universal threshold (SureTrimm) reduces to:

λHTj =
⎧⎨
⎩

λUj if
∣∣∣
∣∣∣d̂ j

∣∣∣
∣∣∣
2

2
≤ σ̂ 22 j/2

(
2 j/2 + j3/2

)

λTj otherwise.
(21)

The main difference between the hybrid scheme of the SURE with trimmed thresh-
olding and the universal threshold (SureTrimm)— briefly presented in [16]—and the
SureShrink algorithm of [11] is the use of Eq. (21) in place of Eq. (11) in [11], whereas
the main difference between the proposed algorithm of the present paper and that of
[16] is the use of an optimal α in contrast to using an arbitrarily fixed α in [16].

The solution of the optimization problem (20) follows the same approach adopted
in [11]. One starts by rewriting (19) as:

SURE
(
λ; d̂ j

)
= p − 2 # I + 2 (α − 1)

∑
i∈I ′

⎛
⎜⎝ λ∣∣∣
(
d̂ j

)
i

∣∣∣

⎞
⎟⎠

α

+
p∑

i=1

∣∣∣
(
d̂ j

)
i

∣∣∣
2

⎡
⎢⎣min

⎛
⎜⎝1,

⎛
⎜⎝ λ∣∣∣
(
d̂ j

)
i

∣∣∣

⎞
⎟⎠

α⎞
⎟⎠

⎤
⎥⎦
2

, (22)

where
(
d̂ j

)
i
is the i th element of d̂ j . Rearrange the absolute values of the p elements

of the wavelet coefficients vector d̂ j in ascending order to form the nonnegative vector

v j = [
y1 . . . yp

]T , where y1 ≤ y2 ≤ . . . ≤ yp. Let ζ be the index number in the set

{1, . . . , p} which satisfies yζ ≤ λ and yζ+1 > λ. Consequently, SURE
(
λ; d̂ j

)
will
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be renamed SURE
(
λ; v j

)
and (22) will be rewritten in the following simpler form:

SURE
(
λ; v j

) = p − 2ζ + 2 (α − 1)
p∑

i=ζ+1

(
λ

yi

)α

+
ζ∑

i=1

y2i +
p∑

i=ζ+1

y2i

(
λ

yi

)2α

.

(23)

The corresponding trimmed threshold λTj of (20) will take the form:

λTj = argmin
0≤λ≤λUj

SURE
(
λ; v j

)
, j = j0, . . . , J − 1. (24)

Finally, the threshold λHTj of the hybrid scheme based on the SURE with trimmed
thresholding and the universal threshold (SureTrimm) will be obtained from (21).
Moreover, one can achieve an overall mean squared error (MSE) lower than that
achieved when using a fixed value of α by optimizing the parameter α at the coarsest
resolution level j0 and choosing the threshold accordingly. Toward that goal a heuristic
approach is adopted here.

In order to specify a value forα ≥ 1 that achieves aminimumvalue ofSURE
(
λ; d̂ j

)
of

(22) over each decomposition level j , the rearranged simple form of SURE, namely
SURE

(
λ; v j0

)
of (23), is computed at discrete values of α over a suitably chosen

interval [1, ᾱ], where ᾱ is an arbitrary upper bound for α. Consequently, the minimum
value of SURE over the chosen interval provides the optimal α̂ with the corresponding
optimal threshold λTj0 . As a result, at each level of decomposition j , a minimum value

of SURE
(
λ; d̂ j

)
of (22) is computed using the optimal α̂. After finding the optimal

threshold λHTj using (21), the trimmed thresholding of (12) using the optimal α̂ is

applied to the UWT coefficients to get ηT

(
d̂ jk, λ

HT
j

)
. Finally, the denoised signal

is reconstructed using the IUWT with the coefficients {ĉ j0,k, ηT

(
d̂ jk, λ

HT
j

)
}. The

main steps are summarized in the following algorithm:

Algorithm:
Given the noisy signal samples y, find an estimate of the original signal f according
to model (1).
Input arguments: y, J , j0, ᾱ (an arbitrary upper bound for α).

Procedure:

i. Compute the forwardUWTcoefficients of the noisy signal y:w j,k =
(
ĉ j0,k, d̂ j,k

)
,

for k = 0, 1, . . . , 2J − 1, j = j0, . . . , J − 1.
ii. Compute the minimum value of SURE

(
λ; v j

)
of (23) for j = j0, and find the

corresponding λTj0 using (24) at discrete values of α in [1, ᾱ]. Select α̂ which
achieves the smallest value of SURE.

iii. For j = j0, . . . , J − 1:
a. Compute λTj that minimizes SURE from Eq. (24) using α̂ in (23).
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b. Determine λHTj , the hybrid threshold of (21).

c. Apply trimmed thresholding to the wavelet coefficients to get ηT

(
d̂ jk, λ

HT
j

)

using (12).
iv. Compute the inverse undecimated wavelet transform (IUWT) of the thresholded

coefficients {ĉ j0,k, ηT

(
d̂ jk, λ

HT
j

)
} and use them in reconstructing the denoised

signal.

This simple algorithm achieves a better output SNR than other wavelet-based methods
as will be illustrated in the next section. The whole process is computationally efficient
because the UWT and IUWT of steps (i) and (iv), respectively, can be performed by
a fast algorithm having a computational load of the order of n log (n), where n is the
signal size.

5 Comparative Study

In order to illustrate the effectiveness of the proposed algorithm, the four standard test
signals of Donoho and Johnstone [10]: “Doppler,” “Bumps,” “Blocks” and “Heavi-
Sine” as well as two electrocardiogram signals—“ECG100.dat” and “ECG117.dat”
downloaded from Physionet [14]—are selected. Additive white Gaussian noise
(AWGN) is added to these signals such that the signal-to-noise ratio (SNR) is 5 dB.
The standard well-known SNR definition is:

SNR = 10 log10

⎡
⎢⎣

∑n−1
l=0 f 2 (l)

∑n−1
l=0

[
f̂ (l) − f (l)

]2

⎤
⎥⎦ , (25)

where f (l) and f̂ (l) are the lth clean and noisy signal samples, respectively. A sample
of size n = 1024 for the four standard test signals and a sample of frame length nF =
512 for the ECG signals are chosen, and the undecimated wavelet transform based on
the Symlet8 wavelets with five decomposition levels is applied. The noisy signal is
filtered using the proposed hybrid scheme of the SUREwith trimmed thresholding and
the universal threshold (SureTrimm) with both fixed alpha (α = 2) and (α = 6) and
optimized alpha

(
α̂
)
, and the results are denoted by TT (α = 2) , TT (α = 6) and TT∗,

respectively. For the sake of comparison, the following methods: hard thresholding
(HT), hybrid SURE with soft thresholding (ST) [11], spectral subtraction (SS) [3],
phase spectrum compensation (PSC) [23] and block thresholding (BT) [26], are also
applied.

Figures 1, 2, 3 and 4 show the clean signals in part (a) and the noisy signals with
SNR = 5 in part (b). The corresponding denoised signals are shown in Figs. 5, 6, 7
and 8 where the results of applying the HT and ST are shown in parts (a) and (b),
respectively. Parts (c) and (d) show the results of the TT (α = 2) and TT (α = 6),
respectively. Part (e) in those figures shows the results of applying the TT∗, where the
indicated values of α are the optimal ones that achieve the minimal risk estimate. Parts
(f), (g) and (h) in Figs. 5, 6, 7 and 8 show the denoised signal using the non-wavelet
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methods: the SS, the PSC and the BT, respectively. An examination of Figs. 5, 6,
7 and 8 reveals the improved performance of the proposed method (TT∗) over both
wavelet-based and non-wavelet-based denoising methods. The TT∗ method signifi-
cantly reduces the noise and preserves the edges of the filtered signal at the same
time.
The same methods are applied over a range of input SNRs {− 2, 0, 2, 5, 10, 15}
dB, and the SNRs of the denoised signal—computed according to (25)—are listed in
Tables 1, 2, 3 and 4 for the four standard test signals. The results testify to the improved
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Fig. 4 a HeaviSine signal; b noisy signal with SNR = 5 dB

performance of the proposed method (TT∗) compared to the other methods for the
entire range of input SNR values.
The results of denoising the two electrocardiogram signals—“ECG100.dat” and
“ECG117.dat”—are shown in Figs. 9 and 10, respectively. In each of these two fig-
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Fig. 5 Doppler signal shown in Fig. 1 denoised using a hard thresholding (HT), b SureShrink (ST), c
SureTrimm with fixed alpha TT( α = 2), d TT(α = 6), e SureTrimm with optimized α (TT∗), f spectral
subtraction (SS), g phase spectrum compensation (PSC) and h block thresholding (BT). (The SNR is in
dB.)
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Fig. 6 Bumps signal shown in Fig. 2 denoised using a hard thresholding (HT), b SureShrink (ST), c
SureTrimm with fixed alpha TT( α = 2), d TT(α = 6), e SureTrimm with optimized α (TT∗), f spectral
subtraction (SS), g phase spectrum compensation (PSC) and h block thresholding (BT). (The SNR is in
dB.)
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Table 1 Denoising results of Doppler signal

Input SNR Doppler signal—output SNR

HT ST TT(α = 2) TT(α = 6) TT* SS PSC BT

− 2 7.1950 7.1421 7.1493 7.1704 7.2011 5.1569 4.8619 7.2499

0 13.5081 13.5173 13.5057 13.5557 13.6096 7.8106 6.4830 11.8437

2 10.8353 10.8656 10.8655 10.8651 10.9207 6.9849 10.0524 10.4848

5 12.8758 12.8335 12.8339 12.8350 13.0966 9.5890 10.0935 12.3967

10 16.9243 17.6272 17.8300 16.0718 17.8936 12.4386 11.1976 14.8456

15 19.3361 19.8711 19.9642 19.5798 20.0214 15.0164 17.0621 15.8296

Bold values indicate the maximum value in its row
∗ Signifies an optimized alpha

Table 2 Denoising results of Bumps signal

Input SNR Bumps signal—output SNR

HT ST TT(α = 2) TT(α = 6) TT* SS PSC BT

− 2 5.6270 5.5964 5.6019 5.5019 5.6464 3.7986 4.6253 3.1430

0 6.6822 5.5833 6.0509 6.3813 6.8584 4.7027 6.2848 5.3020

2 9.2253 8.2171 8.4449 8.9419 9.3978 5.0089 4.1556 9.4295

5 8.7934 7.2939 7.8035 8.5060 8.8306 6.3884 8.3044 6.2751

10 14.2522 13.3612 14.9509 14.9111 15.3730 8.5726 10.9138 10.2752

15 16.6690 15.3977 17.1069 17.2641 17.7378 8.8377 15.3686 11.4223

Bold values indicate the maximum value in its row
∗ Signifies an optimized alpha

Table 3 Denoising results of Blocks signal

Input SNR Blocks signal—output SNR

HT ST TT(α = 2) TT(α = 6) TT* SS PSC BT

− 2 6.2660 6.2806 6.2806 6.2783 6.3148 2.6236 3.5540 5.7200

0 8.1212 8.1140 8.1156 8.1198 8.1261 3.5085 5.3174 7.1520

2 9.8793 9.8060 9.8115 9.8251 9.9285 2.8895 5.0156 6.5788

5 11.3262 11.2199 11.2299 11.2592 11.3584 4.4276 7.1618 7.2061

10 13.7021 13.3062 13.4491 13.5817 13.7791 4.9138 8.8322 8.1454

15 16.9432 16.8849 17.0871 17.3856 17.4085 4.8631 11.3076 8.4811

Bold values indicate the maximum value in its row
∗ Signifies an optimized alpha

ures, part (a) shows the original ECG signal and part (b) shows the noisy signal with
SNR = 5 dB. Parts (c)–(h), respectively, show the results obtained by applying the
following six methods: HT, ST, TT∗, SS, PSC and BT.
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Table 4 Denoising results of HeaviSine signal

Input SNR HeaviSine signal—output SNR

HT ST TT(α = 2) TT(α = 6) TT* SS PSC BT

− 2 10.9029 10.9029 10.9029 10.9029 10.8940 1.6217 4.9864 9.7207

0 11.4281 11.4281 11.4281 11.4281 11.4282 2.6899 5.0458 9.6509

2 13.2649 13.4724 13.4720 13.4680 13.4273 1.9598 4.6641 10.0382

5 15.7974 15.9645 15.9643 15.9643 15.9642 4.4735 7.6952 10.2082

10 19.3538 19.3156 19.3183 19.3273 19.3598 3.6143 10.2434 10.4954

15 24.1379 24.0225 24.0345 24.0702 24.2377 3.4432 15.0235 10.8011

Bold values indicate the maximum value in its row
∗ Signifies an optimized alpha
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Original ECG 100.dat  Signal Noisy Signal SNR 5

HT SNR 20.2728 ST SNR 18.8775

TT* α =13 SNR 20.6027 SS SNR 5.2603

PSC SNR 0.79759 BT SNR 15.4252

Fig. 9 a ECG100 signal, b noisy signal, denoised signal using c hard thresholding (HT), d SureShrink
(ST), e SureTrimm with optimized α (TT∗), f spectral subtraction (SS), g phase spectrum compensation
(PSC) and h block thresholding (BT)

6 Conclusion

The problem of extracting a signal from measurements contaminated by additive
noise is considered, and a wavelet-based technique is proposed where the undeci-
mated wavelet transform (UWT) detail coefficients are thresholded with the threshold
determined according to a hybrid scheme incorporating trimmed thresholding. More
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Fig. 10 a ECG117 signal; b noisy signal, denoised signal using c hard thresholding (HT), d SureShrink
(ST), e SureTrimm with optimized α (TT∗), f spectral subtraction (SS), g phase spectrum compensation
(PSC) and h block thresholding (BT)

specifically, an expression is derived for the Stein’s unbiased risk estimator (SURE)
function based on trimmed thresholding and is next minimized in order to determine
the threshold value. The philosophy of the hybrid scheme is to either employ the
optimal threshold value, or to default to a universal threshold in the case of sparse
wavelet detail coefficients. In addition to applying optimization for the determination
of the threshold value, a heuristic approach is followed for the selection of the optimal
trimmed thresholding parameter alpha. An extensive comparison is made between
the proposed method and other wavelet-based methods (the hard thresholding and
the hybrid SURE with soft thresholding) and non-wavelet-based methods (spectral
subtraction, phase spectrum compensation and block thresholding). The simulation
study— including both test signals and ECG signals—demonstrated the merit of the
proposed method in terms of the SNR of the denoised signal.

Appendix A

[Derivation of (15a)]
Let

h (x) = sgn (x)
1

|x |(α−1)
, (A.1)
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where sgn (x) is the signum function defined by:

sgn (x) =
⎧⎨
⎩
1 x > 0
0 x = 0
−1 x < 0.

(A.2)

The above equation can be compactly expressed as:

sgn (x) = 2u (x) − 1, (A.3)

where u (x) is the unit step function defined by:

u (x) =
⎧
⎨
⎩
1 x > 0
0.5 x = 0
0 x < 0.

(A.4)

The derivative of (A.3) is given by:

d

dx

[
sgn (x)

] = 2δ (x) , (A.5)

where δ (x) is the Dirac delta function.
Let ψ (x) be the absolute value function defined by:

ψ (x) = |x | =
{
x x ≥ 0
−x x ≤ 0.

(A.6)

The derivative of the above equation is:

dψ (x)

dx
=
{
1 x > 0
−1 x < 0.

(A.7)

By comparing (A.2) and (A.7) and ignoring the case of x = 0, one gets:

dψ (x)

dx
= sgn (x) . (A.8)

Based on definition (A.6), one can express (A.1) as:

h (x) = sgn (x)
1

[ψ (x)](α−1)
. (A.9)

By taking the derivative of the above equation, one obtains:

dh (x)

dx
= −sgn (x) (α − 1) [ψ (x)]−α dψ

dx
+ 1

[ψ (x)](α−1)

d

dx

[
sgn (x)

]
. (A.10)
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Upon utilizing (A.5) and (A.8), the above equation reduces to:

dh (x)

dx
= − (α − 1)

[ψ (x)]α
+ 2

[ψ (x)](α−1)
δ (x) . (A.11)

Based on definition (A.1), one can express (14) as:

g j (X) = −X j I ( j) − λαh
(
X j
)
Í ( j) . (A.12)

By taking the partial derivative of the above equation with respect to X j and applying
(A.11), one gets:

∂g j (X)

∂X j
= −I ( j) − λα

{
− (α − 1)[
ψ
(
X j
)]α + 2[

ψ
(
X j
)](α−1)

δ
(
X j
)}

Í ( j) . (A.13)

By virtue of (A.6), the above equation reduces to (15a). ��
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