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Abstract In this work, we suggest a new impulse statistic and a new spatial gradient
to design a trilateral filter for removal of mixture of Gaussian and impulse noise
from a noisy image. The proposed impulse statistic is termed as maximum absolute
relative differences statistic, and it is used to remove impulse noise. For Gaussian
noise removal, we design modified spatial gradient-based bilateral filter ‘MSG-BF’.
We also empirically show performance of the proposed algorithm for detection and
removal of noisy pixels in comparison with directional absolute relative differences
statistic and other methods. Also experimental results show that our method achieves
better results in terms of quantitative measures of signal restoration and qualitative
judgments of image quality.

Keywords Image restoration · Noise detector · Random-valued impulse noise ·
Maximum absolute relative differences statistic

1 Introduction

Analog-to-digital conversion errors and improper working of camera sensors are the
two main reasons that cause noise amplification in digital images [5,7,14]. Presence
of noise in any digital image corrupts nature of the image essentially and consequently
the resulting forms like object detection, image segmentation and edge detection and
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so forth turn out to be more difficult. Additionally, execution of subsequent processing
is exceedingly influenced. As an image can be influenced by various sort of noise, it
is a troublesome task to recognize sort of noise, finding amount of noise present in
an image and removal of the noise. Luckily, most part of the noise showed up in the
images can be modeled by the Gaussian noise (GaussNs) [5]. The GaussNs is a kind
statistical noise that follows Gaussian probability density and included in the image
at the time when the image is captured. Local averaging operations (like mean filter,
Gaussian filter, and so on) are the broadly acknowledged methods for the GaussNs
removal [5].

Gaussian filter is a well known technique for GaussNs expulsion; nonetheless, this
filter tends to blur edges which may bring about loss of information in some visually
important areas. To take care of this issue Tomasi et al. [19] proposed bilateral filter
(BFlt) that utilizes weights taking into account radiometric and spatial symmetry. The
respective filter proposed in [19] has ended up being extremely helpful; its downside
is high computational complexity. To overcome this issue Paris et al. [11] proposed a
quick estimate of the BFlt; this is based on linear interpolation using standard signal
processing.Buades et al. [1] proposedNL-means algorithm for evacuation ofGaussNs,
this method depends on non-local averaging of all pixels in the image. Despite the fact
that NL-means algorithm creates better results, in any case it requires fundamentally
more computation when contrasted with beforehand mentioned strategies, its execu-
tion relies on upon the earlier detection of the noise parameter, i.e., we require either
exact or approximate value of noise parameter (prior information of measure of exact
noise available in the corrupted image).

Impulse noise (ImNs) is other type of noise that can affect the image in its trans-
mission and portrayed by changing a few pixels with noise while holding the rest
[12]. The GaussNs removal strategies talked about so far are not ready to remove
this type of noise viably. To take care of this issue, nonlinear filters have been pro-
posed. The most straightforward and exceptionally effective method to expel impulse
noise is the median filter (MedFlt). However, the MedFlt has a tendency of altering
uncorrupted pixels of a given noisy image. To take care of this issue a number of
expansions of MedFlt have been proposed, few of such expansions are discussed in
[10,13,16,17,21]. These switching strategy first distinguish pixels that are corrupted
by ImNs and afterward replace themwith assessed values while keeping the rest of the
pixels unaltered. As these strategies are an extension toMedFlt, consequently they can
bring about some image fine details to be twisted. This issue is successfully explained
by fuzzy procedures, few of such procedures are discussed in [3,8,23]. The execution
of these fuzzy filters varies in as per the efficiency of noise detectors.

In [5], Garnett et al. proposed ROAD statistics for recognizing the pixels that are
affected by ImNs. Garnett et al. [5] utilize this statistics into a trilateral filter (TrFlt)
to evacuate ImNs. This filter has turned out to be better ImNs locator and produces
phenomenal results notwithstanding when the noise substance is high. Later Dong
et al. [4] changed ROAD and proposed a ROLD statistics. This method got better
exhibitions yet it requires more calculations than ROAD. Yu et al. [24] proposed a
RORD statistic. This technique uses a reference image in order to detect noisy and
non-noisy pixel.
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Wu etal. [22] developed a fuzzy parameterized non-local averaging filter to remove
random-valued ImNs. Wu et al. [22] introduce a new fuzzy weighting function, which
reduces the impulsive weight efficiently, to the non-local means. Zhu et al. [27] present
a two-step random-valued ImNs removal method based on local deviation index (LDI)
and edge-preserving regularization. Saxena [15] proposed a two-phase algorithm effi-
cient for decreasing random-valued ImNs with the help of basis splines interpolation.
Gellert et al. [6] proposed ‘context-based prediction filtering of impulse noise images’
(CBPF); this algorithm replaces the noisy pixel with the value occurring with the high-
est frequency, in the same context as the replaceable pixel. Since it is a context-based
technique, it preserves the details in the filtered images better than other methods.

Chen et al. [2] proposed directional absolute relative differences (DARD) statistic.
This method is capable in removing high quality ImNs from image without distorting
image details. Chen et al. [2] have stated that their method has less computational
complexity than many other MedNs filters. Few other algorithms for the removal
of GaussNs have been developed recently; such as in [18], Talebi et al. proposed a
method for global image denoising. In [28], Zuo et al. presented a gradient histogram
preservation (GHP) model for image denoising; this method is able to preserve texture
information in the restored image. Knaus et al. [9] developed an algorithm to remove
the GaussNs, this algorithm assumes image denoising as a physical process.

In this work we develop a new statistic for high quality ImNs removal named “max-
imum absolute relative differences” (MARD). The proposed method uses maximum
difference value to detect noisy and non-noisy pixels. Experimental results show that
proposed statistics works better than DARD and others.

The organization of this work is as follows. Section 2 shows abbreviations of words
and notations that we are using in our work. In Sect. 3 we briefly review DARD
statistics. Section 4 describes about our newly created MARD statistics. Section 5
shows, how to incorporate our statistics into the BFlt to create two new BFlt for
GaussN and ImNs, respectively, and a new TrFlt for MxdNs. In Sect. 6, we provide the
simulations on noise detection and noise removal with visual examples and numerical
results. Finally Sect. 7 concludes proposed work.

2 Abbreviations

In this Sect. Table 1 contains a list of abbreviations and notations that are used by us
in this work.

3 Directional Absolute Relative Differences

Before introducing proposed MARD statistic, we would like to give a brief overview
of DARD statistic [2]. The DARD statistic only focuses on the edge information in
the four main directions as it is shown in Fig. 1 (source [2]). Let Dm (m = 1 to 4) are
set of co-ordinates that the current patch has.

Here authors [2] introduce I ref that contains edge information of the original image
from the image contaminated with noise. Now for each direction, authors [2] defined
dmi, j as the addition ofwhole absolute differences of gray-level intensity values between

neighbors of I ref and its centered pixel in (i, j). Now dmi, j is given as:
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Table 1 Abbreviations and notations

AMBE Absolute mean brightness error GaussNs Gaussian noise

DIP Digital image processing ImNs Impulse noise

DARD Directional absolute relative differences MedFlt Median filter

SSIM Structure similarity index measure MxdNs Mixed noise

n1 # of correctly detected noise pixels I ref Reference image

n2 # of correctly detected noise-free pixels g(x; y) Noisy pixel

f (x; y) Original uncorrupted image f̂ Restored image

PSNR Peak signal to noise ratio SG Spatial gradient

ROAD Rank ordered absolute differences SNP Salt and pepper

ROLD Rank ordered logarithmic differences BFlt Bilateral filter

RORD Rank ordered relative differences COR Correlation

η(x; y) Noise model (type of noise) TrFlt Trilateral filter

g Observed noisy image f (x; y) Original pixel

MSE Mean square error * *

Fig. 1 Four directions for noise detection in a (2U + 1) × (2U + 1) window (U=2 for example)

dmi, j =
∑

(p,q)∈Dm

∣∣∣I refi+p, j+q − Ii, j
∣∣∣ ,m = 1 ∼ 4, (1)

next authors ([2]) define gmi, j as the addition of all differences in mentioned direction

in the I ref as:
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gmi, j =
∑

(p,q)∈Dm

∣∣∣I refi+p, j+q − I refi, j

∣∣∣ ,m = 1 ∼ 4, (2)

then define an DARD statistic for each direction as follows:

DARDm
i, j =

∣∣∣dmi, j − αgmi, j

∣∣∣ , m = 1 ∼ 4, 0 ≤ α ≤ 1, (3)

here for simplicity authors ([2]) suggestα = 0.5. Finally, theDARD statistic is defined
as:

DARD = min(DARD1,DARD2,DARD3,DARD4). (4)

Finally, to take decision that whether a pixel is corrupted with ImNs or not; a threshold
is used which says that if DARDi, j > T then Ii, j contains ImNs, otherwise it is noise
free [2].

4 MARD Statistic for Detecting ImNs

The DARD is as of now a decent statistics [2]. Nonetheless, we observed that for a
window of size (2U + 1) × (2U + 1), DARD does not consider 4U 2 − 4U pixels
and this value is substantial for U ≥ 3. These 4U 2 − 4U pixels may influence the
general execution of any impulse detector. In our work we build up another impulse
detector statistics which considers all pixels in a window of size (2U +1)× (2U +1),
we likewise watch that as opposed to figuring dmi, j and gmi, j in the way it is computed
in DARD, even maximum value of absolute difference can be a decent measure to
recognize whether a given pixel is noisy or not. The proposed statistics depends on
taking after two presumptions.

– Uncorrupted images have locally smoothly varying areas which is separated by
edges of image [17].

– Either smaller or larger values are taken by noisy pixels than their neighborhoods
[25,26].

The proposed impulse detector considers all pixels of (2U + 1) × (2U + 1) size
window. At first for a patch of size (2U + 1) × (2U + 1) centered at (i, j) we define
d̂i, j as the largest value of among all absolute differences of gray-level values between
neighbors in I ref and its centered pixel in I as:

d̂i, j = max
{∣∣∣I refi+p, j+q − Ii, j

∣∣∣
}

p, q ∈ [−U, 0]
⋃

[0,U ], (5)

we define ĝi, j as the largest value among all absolute differences of gray-level values
between neighbors in I ref and its centered pixel in I ref as:

ĝi, j = max
{∣∣∣I refi+p, j+q − I refi, j

∣∣∣
}

p, q ∈ [−U, 0)
⋃

(0,U ], (6)

Finally the MARD statistic is defined as:

MARDi, j = |d̂i, j − ĝi, j | . (7)
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It is clear that unlike ROLD and DARD, the proposed MARD does not have any
dependency on α, it just depends on ĝi, j and d̂i, j .

5 The Proposed Method

We are defining a new weighting function named wN
G , this weighting function is

calculated as follows.
wN
G (i, j) = e−GN (i, j)

2
/2σ 2

G , (8)

where GN (i, j) is calculated using the proposed edge detector operator. To calculate
value of GN (i, j), in an image I , we consider its all 3 × 3 patches, then for a given
patch centered at (i, j) value of GN (i, j) is defined as follows:

GN (i, j) = |Ii, j − min{Ii+a, j+b}|, a, b ∈ [−1, 0]
⋃

[0, 1]. (9)

It is clear from Fig. 2 that proposed edge detector operator detects all clear edges
as compared to the Sobel operator and unlike the Sobel operator it does not require
complex calculations for processing. Now based on this new weighting function and
MARD statistic the proposed filters are defined as follows:

Fig. 2 Results of proposed edge detector operator in comparison with the Sobel operator, here a original
Lena image, b result of the Sobel operator, c result of proposed edge detector operator, d Lena image
corrupted from SNP noise, e result of the Sobel operator for image of {(d)} and f result of the proposed
edge detector operator for image of {(d)}
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– MSG-BF This filter is capable in removing GaussNs from image, it is described
as follows:

Ĩi, j =
∑U

x=−U
∑U

y=−U wS(x, y)wN
G (x, y)Ix+i,y+ j

∑U
x=−U

∑U
y=−U wS(x, y)wN

G (x, y)
. (10)

– MARD-BF This filter is capable in removing ImNs from image, it is described as
follows:

Ĩi, j =
∑U

x=−U
∑U

y=−U wS(x, y)w′
I (x, y)Ix+i,y+ j

∑U
x=−U

∑U
y=−U wS(x, y)w′

I (x, y)
. (11)

– SG-MARD-TRIF This filter is capable in removing both GaussNs and ImNs, it is
described as follows:

Ĩi, j =
∑∑

wS(x, y)wN
G (x, y)w′

I (x, t)Ix+i,y+ j∑∑
wS(x, y)wN

G (x, y)w′
I (x, y)

. (12)

Here outer and inner
∑

are having ranges as x = −U to U and y = −U to U ,
respectively. The weights wS and w′

I (for MSG-BF, MARD-BF, SG-MARD-TRIF)
are defined as: wS(i, j) = e−((i−x)2+( j−q)2)/2σ 2

S , w′
I (i, j) = e−MARD(i, j)2/2σ 2

I .

5.1 Denoising Algorithm

In the proposed algorithm, the I ref plays a significant role. A satisfactory I ref can be
obtained by using a two-step algorithm. Initially we generate reference image using
MedFlt and from the next step; previously generated restoration result is used as I ref .
The proposed algorithm to generate a required I ref is as follows.

Algorithm 1 GET REFERENCE IMAGE
Require: COUNTMAX > 0
COUNT ← 1, uCOUNT ← SMF(I ), I ref ← uCOUNT

while (+ + COUNT ≤ COUNTMAX ) do
RESTOREALLPIXELSUSINGMARD-BFORSG-MARD-TRIFANDGETANEWREFERENCE
IMAGE IN uCOUNT , I ref ← uCOUNT ;

end while

Next we are giving our algorithm used for image denoising. In Fig. 3, we are showing
mean MARD values for Lena and barbara images. Here these values are shown for
different levels of SNP noise.

5.2 Comparison of MARD with RORD

In this section we are giving a situation where the RORD ([24]) fails to detect noisy
pixel in an image patch (patch used here is taken fromwork of [2]). This patch is shown
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Algorithm 2 IMAGE DENOISING
Require: I ref WHICH IS GENERATED FROM “GET REFERENCE IMAGE” ALGORITHM, AND
I MG ← I
I M AGE_W I DT H = W I DT H(I MG);
I M AGE_HE IGHT = HE IGHT (I MG);
ROW ← 1;
COL ← 1;
while ROW ≤ I M AGE_W I DT H do

while COL ≤ I M AGE_HE IGHT do
if MARD(ROW,COL) > T then
RESTORE ALL PIXELS USING MARD-BF OR SG-MARD-TRIF;

else
ĨROW,COL = IROW,COL ;

end if
COL = COL + 1;

end while
ROW = ROW + 1;

end while

Fig. 3 Mean MARD values for two images corrupted with different level of SNP noise, a for barbara
image and b for Lena image

in Fig. 4, in this patch centered pixel is uncorrupted and its neighbors are corrupted
with ImNs.

5.3 Comparison of MARD with DARD

Here we are comparing performance of our MARD statistic with DARD. Now in
this case, we are showing our results on a patch of Lena image. See Fig. 5 for better
understanding.

In Fig. 5 we are demonstrating image of Lena ruined with ImNs, in this image
we have denoted a small patch and we are demonstrating its content at base of the
Figure. In the given patch consider its inside window of size 7× 7, in this window of
more than 50% of pixels of centered pixel are corrupted with ImNs (corrupted pixels
are appeared in red color). Next we are demonstrating consequences of DARD and
MARD statistics on this patch keeping in mind the end goal to identify noise pixels.

FromFig. 6, it is clear that for a center uncorrupted pixel, having fewof its neighbors
corrupted with noise both MARD and DARD are able to detect noisy and noise-free
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Fig. 4 A situation where RORD fails. In this patch centered pixel is uncorrupted and its neighbors are
corrupted with ImNs

Fig. 5 A patch {location (299, 172)} of Lena image, here image is corrupted by ImNs

pixels, and this leads to a conclusion that we can use MARD statistic to detect noisy
pixels in situations where the image is corrupted with heavy ImNs.

6 Simulations

We evaluate performance of proposed filters with state-of-the-art. For simulation we
use several 512 × 512 gray scale standard test images corrupted with GaussNs, SNP
noise, random-valued ImNs, and MxdNs. For illustrations, the results for images
‘barbara’, ‘baboon’, ‘cameraman’, ‘elaine’, ‘fingerprint’, ‘house’, ‘Lena’, ‘man’ and
‘peepers’ are presented here. Figure. 7 shows denoising results by various methods on
the famous barbara image.

Based on results of Fig. 7, it is clear that proposed MSG-BF filter is able to remove
high amount of GaussNs from a given noisy image without affecting its edge details.
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Fig. 6 Comparison of MARD with DARD in detection of noisy pixels, here original image patch shows
pixel values of lena image in a 9 × 9 patch starting from location (299, 172); a original image patch, b
same patch after addition of noise, c result of 3× 3 MF, d result of DARD statistic and e result of proposed
MARD statistic

Fig. 7 Denoising results, here image is corrupted with GN, a barbara image, b image corrupted with
GaussNs σ = 40, c BFlt result, d gaussian filter result, e MedFlt 3 × 3 result, f MedFlt 5 × 5 result, g
SG-BF filter result, h MSG-BF filter result

In MSG-BF filter we are using our newly proposed edge detector operator which does
not require complex calculations like the Sobel operator and hence it is clear that our
MSG-BF filter requires less computation then SG-BF filter.

Based on results of Fig. 8 we observe that proposed MARD-BF filter is able to
remove SNP noise from given image without disturbing its other visual details, also
proposed filter does not affect edge information of given image.

From Fig. 9, it is clear that proposed SG-MARD-BF filter produces better results
than SG-DARD-BF filter. However, it is not able to produced visually better results
than CBPF method. It is also clear from Fig. 9 that SG-MARD-BF and CBPF are
producing results that look more natural than other denoising filters; this is because
these filters are able to preserve information and detailing of edges in the processed
image even when the noise contents in the noisy image are very high. However, CBPF
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Fig. 8 Denoising results, here image is corrupted with SNP noise, a baboon image, b image corrupted
with SNP noise with p = 20%, c MedFlt 3 × 3 result, d MedFlt 5 × 5 result, e DARD-BF BFlt result, f
MARD-BF BFlt result and g CBPF result

Fig. 9 Denoising results, here image is corrupted with MxdNs, a baboon image, b image corrupted with
MxdNs with p = 60% and σ = 10%, c MedFlt 3 × 3 result {PSNR = 11.9193}, d MedFlt 5 × 5
result {PSNR = 18.2158}, e SG-DARD-BF TrFlt result {PSNR = 18.7442}, f SG-MARD-BF TrFlt result
{PSNR = 23.0808} and g CBPF result {PSNR = 19.8886}

method is not able to minimize mean squared error in between input and processed
image and hence it has comparatively less value of PSNR than SG-MARD-BF filter.x

6.1 Selection of Parameters

The proposed algorithm has three parameters which are, σG (for controlling gradient
weight) σS (for controlling spatial weight) and σI (for controlling MARD weight), by
experimenting on large set of images we found optimal values for these parameters
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as: σG ∈ [1.0, 2.0] for all kinds of noise. σI ∈ [0.09, 0.6] for salt and pepper noise
and σI ∈ [0.05, 0.1] for random-valued ImNs. σS ∈ [0.8, 3.0] for GaussNs and
σS ∈ [2.4, 3.0] for others. By hidden and trials; parameter T is set as T ≥ 0.01 and
T ≤ 0.10 with a larger value for SNP noise but a lower one for random-valued ImNs
and GN.

6.2 Noise Removal and Noise Detection Results

This section shows performance of proposed filter in removal and detection of noise
from given noisy images. At first we will explain about image noise and its model.
Image noise is generally a part of electronically generated noise, which causes an
image to have irregular variety in color information, texture information and bright-
ness. Images are contaminated with noise decrease in the capacity of eyewitness in
understanding the image. By and large the image noise model is considered as:

g(x, y) = f (x, y) + η(x, y), (13)

Aim of all denoising method is to estimate a f̂ from the given g based on some prior
knowledge about η. The f̂ is assumed to be of better quality if the f̂ → f . Now from
equation (13) it is clear that g − f̂ will give us an approximation of amount of noise
removed via image restoration and f − f̂ will give us an approximation of amount of
noise left in the image after image restoration. In Fig. 10 we are showing amount of
noise left in image after image restoration.

In view of consequences of Fig. 10, unmistakably every of the algorithms can
distinguish (detect) noise from given noisy image. A profound observation of Fig. 10
demonstrates that end results of SG-BFmethod contain some information about edges
of given noisy image, which basically demonstrates that this algorithm is removing
some edge image alongside noise. Taking into account equation 13, in actuality, cir-
cumstances, we don’t have any information about presence of the ( f ), consequently
it is practically difficult to measure amount of noise left in the restored image after
image restoration. The down to earth approach to check efficiency of any technique
is by subtracting g from f . This will give us an estimation of the amount of noise is
expelled from g by the restoration method. This specific result is appeared in Fig. 11.
A profound perception of Fig. 11 demonstrates that proposed strategy can remove
high amount of GaussNs from given image without much influencing other visual
information.

6.3 Limitation of PSNR

Quality of restored signal is measured using PSNR. Large value of PSNR shows that
the restoration is of better quality. One weakness of PSNR is that it depends on MSE
and MSE measure depends on scaling of variables despite the fact that the image is
invariant to scaling. This can be explained from Fig. 12 (source [20]), where in many
aspects images are different from each other, still they have same MSE values.
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Fig. 10 Restoration results of various methods including proposed method for barbara image, B-a original
image,B-b noisy image corruptedwith GaussNswith σ = 40,B-c restoration result of BFlt,B-d restoration
result of the Gaussian filter, B-e restoration result of MedFlt 3 × 3, B-f restoration result of MedFlt 5 × 5,
B-g restoration result of SG-BF and B-h restoration result of proposed method. For amount of noise left in
the restored image B-c’ result of BFlt, B-d’ result of the Gaussian filter, B-e’ result of MedFlt 3 × 3, B-f’
result of MedFlt 5 × 5, B-g’ result of SG-BF and B-h’ result of proposed method

It is clear from Fig. 12 that MSE produces similar values even after the image does
not have same structural similarity. Hence to evaluate efficiency of proposed filters,
we are using SSIM and COR.

6.4 Structure Similarity Index Measure (SSIM)

The SSIM is used to measure structural similarity between two images. Mathematical
equation to calculate SSIM between 2 images x and y is:
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Fig. 11 Restoration results of various methods including proposed method for barbara image, B-a original
image,B-b noisy image corruptedwith GaussNswith σ = 40,B-c restoration result of BFlt,B-d restoration
result of the Gaussian filter, B-e restoration result of MedFlt 3 × 3, B-f restoration result of MedFlt 5 × 5,
B-g restoration result of SG-BF and B-h is restoration result of proposed method. For amount of noise
removed from the noisy image B-c’ result of BFlt, B-d’ result of the Gaussian filter, B-e’ result of MedFlt
3 × 3, B-f’ result of MedFlt 5 × 5, B-g’ result of SG-BF and B-h’ is result of proposed method

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)(
μ2

x + μ2
y + c1

) (
σ 2

x + σ 2
y + c2

) , (14)

here different parameters are given values according as suggested by [20].

6.5 Correlation (COR)

Two-dimensional correlation (COR) between 2 images X and Y , having size N1×N2
is defined as:
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Fig. 12 Shows the limitation ofMSE a original image, b degraded image {MSE = 144, SSIM = 0.998},
c degraded image {MSE = 144, SSI M = 0.913}, d degraded image {MSE = 144, SSIM = 0.840}, e
degraded image {MSE = 144, SSIM = 0.694}, f degraded image {MSE = 142, SSIM = 0.662}

COR = ∑N1
i=1

∑N2
j=1(Xi, j − XM )(Yi, j − YM )

√(∑N1
i=1

∑N2
j=1(Xi, j − XM )2

) (∑N1
i=1

∑N2
j=1(Yi, j − YM )2

) , (15)

where Xi, j and Yi, j denote the pixel intensities of the restored image and the uncor-
rupted image, respectively, XM and YM denote mean intensity value of corresponding
image. In general larger value signifies better image restoration. In Table 2 we are
showing average results of COR and SSIM for given set of images { ‘baboon’, ‘bar-
bara’, ‘cameraman’, ‘elaine’, ‘fingerprint’, ‘house’, ‘Lena’, ‘man’, ‘peepers’ }. Here
images are corrupted with high amount of SNP noise in the range p ∈ {40, 50, 60}
and MxdNs in the range σ = 10 with p ∈ {40, 50, 60}. Based on experimental results
of DARD with various other existing filters, Chen et al. [2] have concluded that their
method works better in removing GaussNs and MxdNs as well as in removing ImNs
than many other existing methods. Now based on results of Table 2, we conclude that
proposed filters work better than DARD and CBPF [6] and hence it is an effective
choice for image restoration. For CBPF method we have used parameter settings as:
CS = 3,SR = 4, T = 500; these values are found as being the best in the article [6].
For the calculation of A-COR and A-SSIM; the test images are taken in the gray-level
intensity range [0, 1].
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Table 2 Average COR and
SSIM for images corrupted with
SNP noise

Method name A-COR A-SSIM A-COR A-SSIM
SNP SNP MxdNs MxdNs

Med-Filt 3 × 3 0.5937 0.9629 0.5903 0.9622

Med-Filt 5 × 5 0.8540 0.9824 0.8485 0.9821

DARD-BF 0.9111 0.9863 0.9192 0.9882

CBPF 0.8948 0.9905 0.8984 0.9879

MARD-BF 0.9238 0.9917 0.9216 0.9935

Table 3 Average CR for images
corrupted with SNP noise

Method name

DARD CBPF MARD

Noise σ = 60 87.28 85.95 87.36

Noise σ = 70 85.28 82.61 85.50

6.6 Noise Detection Result Using Classification Rate

In Fig. 6, we have indicated experimental results of proposed MARD statistics in
recognition of noisy pixels for an image patch. Here we will demonstrate average
results of MARD in identification of noisy pixels. We assume that in a given noisy
image, we definitely know locations of every noisy pixel. Presently the pixels of an
image can be assembled into 2 sets: the noisy pixel set and the noise-free pixel set.
Any noise detector would be of better quality on the off chance that it can distinguish
a large portion of the noisy pixels and noise-free pixels. Additionally its CR ought to
be as high as could be allowed. In general the CR is defined as: CR = n1

N + n2
N , where

N is size of the image. In Table 3 we are showing average results of CR for given set
of images { ‘baboon’, ‘barbara’, ‘cameraman’, ‘elaine’, ‘fingerprint’, ‘house’, ‘Lena’,
‘man’, ‘peepers’ }, here images are corruptedwith SNPnoise in the range p ∈ {60, 70}.
Despite the fact that DARD is best strategy for noise removal in the accessible writing
[2], However, for a given (2U + 1) × (2U + 1) window DARD does not consider
4U 2 − 4U pixels. These 4U 2 − 4U pixels may influence overall performance of any
noise detector. Some of the time itmight happen that DARD identifies less uncorrupted
edge pixels as corrupted pixels, this prompts lower CRvalues. FromTable 3 obviously;
on a normal proposed MARDmeasurement can identify more number of noisy pixels
than DARD and CBPF [6].

6.7 Computational Complexity Analysis

In this section we have shown a step-by-step computational complexity analysis
of DARD ([2]) and MARD methods. Both methods are combination of different
weighting functions; hence, we are showing computational complexity of differ-
ent weighting functions only. For this we have assumed image size as n×n and
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Table 4 Computational complexity analysis of DARD and MARD

Weighting function DARD Weighting function MARD

G(i, j) O(a2·n2) GN (i, j) O(a·n2)
wS O(a·n2) wS O(a·n2)
DARD O(a·n2) MARD O(a·n2)
wI O(n2) w′

I O(n2)

a = (2U + 1) × (2U + 1). We have also assumed that all single-line statements
take O(1) (constant) time in execution (Table 4).

So the total computational complexity of DARD andMARDmethods is O(a2n2)+
O(a·n2)+O(a·n2)+O(n2) and O(an2)+O(a·n2)+O(a·n2)+O(n2), respectively.
If we drop the lower order terms then the computational complexity of DARD and
MARDmethods isO(a2n2) andO(a·n2), respectively. This clearly shows thatMARD
is computationally ‘a’ times efficient than DARD method.

6.8 Contribution of The Proposed Work

The main contributions of the proposed work are as follows:

1. The MARD statistics considers all the pixels of a patch size and hence it is more
accurate than the DARD [2] method.

2. Also the MARD method is not dependant on α.
3. The MARD successfully detects pixels in the cases where RORD [24] fails.
4. The MARD is not sensitive to the edge information of the image.
5. The MARD is computationally more efficient than DARD [2].

7 Conclusion

As described in this paper, the filters available in the literature are able to reduce noise
contents from given corrupted image; however, they are computationally expensive.
We proposed a statistic termed as MARD and modified SG. The proposed MARD
statistic shows how impulse-like a pixel; in the sense that the larger the impulse, the
larger the MARD value. Modified SG is used as weighting function for BFlt. Using
MARD and modified SG we design a TrFlt which is efficiently able to remove the
GaussNs and MxdNs as well as ImNs. To show the efficiency of the proposed filter
we conduct few experiments and compare our results with the results of DARD and
others. These comparisons are both quantitative and qualitative in nature and their
results are shown in different figures and tables. These experimental results show that
the proposed method is able to reduce GaussNs and MxdNs as well as ImNs more
accurately than DARD and others.
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