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Abstract Face recognition becomes a challenging topic in several fields since images
of faces are varied by changing illuminations, facial rotations, facial expressions, etc.
In this paper, two dimensional discrete multiwavelet transform (2D DMWT) and fast
independent component analysis (FastICA) are proposed for face recognition. Pre-
processing, feature extraction, and classification are the main steps in the proposed
system. In the preprocessing step, each pose in the database is divided into six parts to
reduce the effect of unnecessary facial features and highlight the local features in each
part. For feature extraction, the 2D DMWT is applied to each part for dimensionality
reduction and features extraction. This results in two facial representations. Then Fas-
tICA followed by �2-norm is applied to each representation, which produces six and
three different techniques for the first and second representation, respectively. This
results in features that are more discriminating, less dependent, and more compressed.
In the recognition step, the resulted compressed features from the two representations
are fed to a neural network-based classifier for training and testing. The proposed tech-
niques are extensively evaluated using five databases, namely ORL, YALE, FERET,
FEI, and LFW, which have different facial variations, such as illuminations, rotations,
facial expressions, etc. The results are analyzed using K-fold cross-validation. Sample
results and comparison with a large number of recently proposed approaches are pro-
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vided. The proposed approach is shown to yield significant improvement compared
with the other approaches.

Keywords Discrete wavelet and multiwavelet transform · Independent component
analysis (ICA) · FastICA · Neural network · Face recognition

1 Introduction

Face recognition has received considerable attention in computer vision, pattern recog-
nition, and image processing. Face recognition is a popular research topic due to its
wide applications in access control, personal identification, and security in which, for
example, the identified person can access a specific building, confidential documents,
etc. Instead of authenticating people through physical and virtual domains, which are
based on passwords, PIN, smart cards, etc., that are subjected to be forgotten, stolen,
etc., the face recognition is promising to recognize the individual. Face recognition
does not require a direct contact with the acquisition devices or a voluntary action
compared with the other biometrics, such as iris detection/recognition, finger print,
etc., that require a voluntary action by the users. Also, faces can be captured and
detected from far using inexpensive fixed small camera, while other biometrics might
require expensive equipment [30,43].

There are a large number of algorithms that have been proposed for face recognition.
Designing an efficient facial recognition system is a challenging task due to the large
dimensions of the data. Data compression/feature extraction is always performed.
The most broadly used subspace method for face recognition is principal component
analysis (PCA) [47]. Truk and Pentland [56] applied the eigenfaces method for face
recognition. The eigenfaces, defining a feature vector space that dramatically reduces
the dimensions of the original faces, corresponded to the eigenvectors associated with
the dominant eigenvalues of the known face Covariance matrix. The performance of
PCA suffers significant degradationwhen the training face images have different facial
variations in pose, illuminations, and expressions. Fast �1-PCA was reported in [34]
to improve PCA performance under facial variations and was integrated with a greedy
search algorithm in [31] to achieve better results.

Another subspace approach called linear discriminant analysis (LDA), fisherfaces,
is a supervised method. LDA constructs a linear subspace in which data are opti-
mally discriminated by maximizing between class scatters and minimizes within class
scatters in the projective linear subspace. It is widely used for facial representation
and recognition [29]. Locality preserving projection (LPP), an alternative approach
to PCA, seeks to find the optimal linear approximation to the eigenfunctions on the
face manifold. LPP is used for dimensionality reduction and feature selection; hence,
it is employed for facial representation and classification [51]. Local features were
extracted using LPP approach in [7] for facial recognition in which the effect of facial
variations was reduced. An extended version of PCA is an independent component
analysis (ICA). In contrast to PCA that only considers the second-order statistics,
ICA employs the high-order statistics in the data. ICA is successfully used for fea-
ture selection in image processing applications, such as face recognition [8]. In such
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application, the basis images extracted using ICA are as independent as possible com-
pared with the basis images extracted using PCA that are uncorrelated. Both ICA
and supported vector machine (SVM) were introduced in [60] for face recognition.
Non-negative matrix factorization (NMF) [36] has been recently shown to be one of
the most powerful decomposition tools for multivariate data, which is inherent into
several applications in image processing, computer vision, etc. NMF requires that
the projective vectors and associated weighted coefficients are non-negative. Sparse
spatial facial information was extracted in [40] using NMF for face recognition.

Discrete wavelet transform (DWT), based on multiresolution analysis (MRA), is
broadly used in different fields. DWT is used for dimensionality reduction, feature
extraction, and noisemitigation. Based on favorable properties of wavelet filters, DWT
integrated with the other approaches, such as PCA, ICA, etc., to achieve superior
performance. In [44], 2D PCA was applied to the approximation coefficients of the
third level of DWT decomposition for feature selection/data compression. The authors
in [44] demonstrated that using the integrated tools PCA/DWT led to better results
than those reported using PCA or DWT alone. ICA and 2D DWT were proposed in
[41] for facial representations and classification. In [41], ICA was applied to different
levels of DWT decomposition and the results obtained using the integrated tools were
higher than the results reported using traditional ICA or DWT.

Although discrete cosine transform (DCT) is well known in image compression,
DCT is widely used for facial representations/classification. Tools are integrated to
overcome the weakness that found in a single transform and to obtain features less
sensitive to the facial variations. A hybrid technique based on DCT and Gabor wavelet
transform (GWT) was presented in [2] to obtain discriminant facial features. Facial
images were efficiently represented using the integrated tools DCT/PCA for feature
extraction and classified using NN [10]. Vector quantization (VQ) is successfully used
in image compression since Linde, Buzo, and Gray (LBG) published their distinguish-
able work in 1980 [39]. Four different algorithms-based VQ were studied in [45] for
facial representations. In [45], the algorithms were tested against DCT-based system,
and the Kekre’s fast codebook generation (KFCG) algorithm accomplished highest
results among all the algorithms.

Multiwavelet transform (MWT), based on MRA, is used for signal representation
and data compression. Filters used in MWT have more degree of freedom than those
filters used inWT. 2DDMWT, 2DRadon Transform (2DRT) that was used to align the
features around the origin, and 2D DWT were proposed in [3] to achieve better facial
representations and less storage requirements. Infrared facial images were classified
using 2D PCA/DMWT [62]. For further compaction in [62], 2D PCA was applied
to different MWT sub-bands and thereafter each sub-band was differently weighted
using Fisher discriminant criterion. In [5], Facial images were efficiently represented
using eigenvalues and eigenvectors of ICA based on MRA features.

Artificial neural network (ANN) and deep learning (DL) are used to improve the
performance of the face recognition system. DL-basedmultimodal face representation
was proposed in [17] to improve the system performance that evaluated using faces
that appeared inmultimedia applications, such as social media. Lei et al. [37] proposed
stacked image descriptor (SID), which employs deep structure, for face recognition.
More complex facial information was extracted using deep structure. Also, features’
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compactness and discriminant were improved. A better result was accomplished when
sparse autoencoder SADL was applied to the facial images [61].

The traditional canonical correlation analysis (CCA) can address the relationship
between two multivariate data sets, through which some of the important information
can be missing. To overcome this problem, the authors in [12] proposed intra-facial-
features CCA, which involves multiple multivariate data sets, for face recognition.
Moments are widely used for feature extraction due to their superior discrimina-
tory power and geometrical invariance. Zernike moments and Hermite kernels were
proposed in [20] for face recognition. Rahman et al. [42] showed that the 2DGaussian–
Hermitemoments (2D-GHMs) has an ability to capture higher-order hidden non-linear
2D structures within images. Thereafter, Rahman et al. [50] used orthogonal 2D
Krawtchouk moments (2D KCMs) for face recognition since KCMs have the abil-
ity to capture region-based higher-order hidden non-linear structures from discrete
coordinates of finitely supported images.

To overcome the limitations of some algorithms, such as PCA, LDA, and LPP
when applied to the databases under facial variations, local-based features can achieve
promising results [38]. Extracting local features from facial images can be done auto-
matically using suitable tools or by partitioning faces into several parts. The most
common methods used for extracting local features are LBP [1] and GWT [57]. Duan
and Tan in [19] segmented the facial images to n overlapping subregions. Then, PCA
applied to each subregion for further feature compression. Although the complexity in
[19] was increased, the highest rates achieved were 92.4% based on FERET database.

Several efficient methods for representing image data have been exploited for
features extraction. Recently, 2D DMWT and FastICA were used for processing
image signal. In this contribution, a new face recognition system is presented that
employs successive application of 2D DMWT followed by FastICA on partitioned
facial images. The contribution of the paper is as follows:

1. The first key is dividing the input facial image into 6 overlapping parts, each
contains some of the local facial features, which are eyes, mouth, and nose. The
motivation behind this is to identify people using local facial features. Also, this
is performed to reduce the effect of unnecessary information, which is in common
among all poses/persons, such as background. Also, partitioning improves the
system performance since each part is participated with the other two parts, which
increase the matching probability.

2. The second key is achieving less storage requirements as well as high recognition
rates. In this paper, one level of DMWT decompositions is applied to each part.
Each part is divided into four frequency sub-bands, which are low–low (LL), low–
high (LH), HL, and HH pass filters. It is shown later that most of the information is
localized in the LL sub-bands; hence, the LL sub-band is retained while all other
sub-bands are eliminated. Therefore, the dimensionality reduction (less storage
requirements) is accomplished. Furthermore, each sub-band is further divided
into four sub-images. For each pose, there are two representations resulted from
DMWT step, as shown in Fig. 7. The first representation is using all sub-images
in the LL sub-band, while the second one is using only one sub-image.
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3. The FastICA is applied to the two representations. This step is performed to pro-
duce discriminated and independent features since ICA is robust to the facial
variations as reported in [8,18,59]. Then the FastICA is followed by �2-norm for
further dimensionality reduction and data compression. As a result, six different
techniques are established in the first representation, and three different techniques
are formed in the second representation.

4. Finally, the compressed/discriminated local features are fed NN-based classifier
for the recognition task.

The proposed techniques of two representations are extensively evaluated using
five databases, namely ORL, YALE, FERET, FEI, and LFW that have different facial
variations, such as facial expressions, facial rotations, illuminations, makeups. Then,
the experimental results are analyzed using K-fold cross-validation (CV) [6]. The
proposed techniques are shown to improve the recognition accuracy in comparison
with a large number of recently proposed methods. The performance improvement
has been consistently obtained.

The rest of the paper is organized as follows. In Sect. 2, background about 2D
DMWT and FastICA is discussed. The proposed techniques are presented and broadly
explained in Sect. 3. In Sect. 4, the experimental results are illustrated. Discussion of
the experimental results is provided in Sect. 5. The neural network performance of the
proposed techniques is presented in Sect. 6. Finally, we give some concluding remarks
in Sect. 7.

2 Background: Wavelet, Multiwavelet and FastICA

2.1 Discrete Wavelet and Multiwavelet Transform

The DWT is an extended version of the discrete Fourier transform (DFT). DWT, based
onMRA, has one scaling function φ(t) and onewavelet functionψ(t). Both functions,
(φ(t) and ψ(t)), are associated with low pass and high pass filters, respectively, [9].
The 2D DWT for 2D image f (x, y) is expressed as:

Wφ( j0, m, n) = 1√
M N

M−1∑

x=0

N−1∑

y=0

f (x, y)φ j0,m,n(x, y) (1)

W i
ψ( j, m, n) = 1√

M N

M−1∑

x=0

N−1∑

y=0

f (x, y)ψ i
j,m,n(x, y) (2)

where i = {H, V, D}, directional wavelets, j0 is an arbitrary start scale. φ j0,m,n(x, y)

and ψ i
j,m,n(x, y) are the scaled and translated basis functions, respectively.

Wφ( j0, m, n) represents the approximation of the image f (x, y) at scale j0. The
W i

ψ( j, m, n) denotes to the horizontal (H), vertical (V ), and diagonal (D) coeffi-

cients at scale j ≥ j0. Usually, j0 = 0 and N = M = 2J are selected such that
j = 0, 1, . . . , J − 1 and m = n = 0, 1, . . . , 2 j − 1 [23]. Each level of DWT decom-
positions is dividing the image into four sub-bands, namely LL, LH, HL, and HH as
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(a) (b)

Fig. 1 a, b 1-Level of decomposition for DWT and DMWT, respectively

shown in Fig. 1a, where L and H are the low and high pass filters, respectively. The
LL sub-band is the approximation coefficients of the image. The LH, HL, and HH
are the detail coefficients, which are the vertical, horizontal, and diagonal directions
of the original image, respectively. Most of the image information is localized in LL
sub-band.

TheMRA for multiwavelet case is the same as the standardMRA except that MWT
uses Q scaling functions,φ1(t−k), φ2(t−k), . . . , φQ(t−k). The Q scaling functions
expressed in the vector notation as Φ(t) = [φ1(t), . . . , φQ(t)]T ∈ L2(R)Q , which is
called multiscaling functions. Analogue to the scalar case, this can satisfy the matrix
dilations as:

Φ(t) = √
2

∞∑

k=−∞
Hk · Φ(2t − k) (3)

where Hk is Q × Q matrix dimensions for each integer k and it is associated with the
low pass filter. The Q scaling functions are associated with Q wavelet functions that
can satisfy the vector notation as ψ(t) = [ψ1(t), . . . , ψQ(t)]T ∈ L2(R)Q , which is
called multiwavelet functions. The Q multiwavelet functions are satisfying wavelet
matrix equation as:

Ψ (t) = √
2

∞∑

k=−∞
Gk · Φ(2t − k) (4)

where Gk is Q × Q matrix dimensions for each integer k and Gk is associated with
high pass filter [53,54].

One of the famous multiwavelets system was constructed by Geronimo, Hardian,
and Massopust (GHM) [21]. Their system uses multiplicity Q = 2. In such case,
there are two scaling functions Φ(t) = [φ1(t) φ2(t)]T as shown in Fig. 2a, b, and two
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Fig. 2 Multiscaling and multiwavelet functions for GHM filter

wavelet functions Ψ (t) = [ψ1(t) ψ2(t)]T are shown in Fig. 2c, d [53]. The matrix
elements in the GHM filter provide extra degree of freedom compared with the scalar
case. The GHM filter are combining the orthogonality, high order of approximation,
and symmetry. Also, both multiscaling and multiwavelet functions of GHM filter are
quite smooth [53]. For GHM case, both Eqs. (3) and (4) are written as [53]:

Φ =
[
φ1(t)
φ2(t)

]
= √

2
∑

k

Hk ·
[
φ1(2t − k)

φ2(2t − k)

]
(5)

Ψ =
[
ψ1(t)
ψ2(t)

]
= √

2
∑

k

Gk ·
[
φ1(2t − k)

φ2(2t − k)

]
(6)

Hence, the dilation Eq. (3) and wavelet Eq. (4) can be written as:

Φ =
[
φ1(t)
φ2(t)

]
= H0Φ(2t) + H1Φ(2t − 1) + H2Φ(2t − 2) + H3Φ(2t − 3), (7)

Ψ =
[
ψ1(t)
ψ2(t)

]
= G0Φ(2t) + G1Φ(2t − 1) + G2Φ(2t − 2) + G3Φ(2t − 3), (8)

and Hk and Gk , where k = 0, 1, 2, 3, are expressed as [53,54]:

H0 =
[

3
5
√
2

4
5

−1
20

−3
10

√
2

]
, H1 =

[
3

5
√
2

0
9
20

1√
2

]
, H2 =

[
0 0
9
20

−3
10

√
2

]
, H3 =

[
0 0
−1
20 0

]

G0 =
[ −1

20
−3

10
√
2

1
10

√
2

3
10

]
, G1 =

[
9
20

−1√
2−9

10
√
2

0

]
, G2 =

[
9
20

−3
10

√
2

9
10

√
2

−3
10

]
, G3 =

[ −1
20 0
−1

10
√
2
0

]

There are four favorable properties for GHM scaling functions [53,54]:

1. The short support for both scaling functions is [0, 1] and [0, 2].
2. The approximation of the GHM system is based on the second order.
3. Translated version of the scaling and the wavelet functions are orthogonal.
4. Both scaling and wavelet function are symmetric.

The transformation matrix T , GHM filter matrix, of DMWT is constructed using
the above scaling and wavelet functions and can be written as [53,54]:
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T =

⎡

⎢⎢⎢⎢⎢⎣

H0 H1 H2 H3 0 0 · · ·
G0 G1 G2 G3 0 0 · · ·
0 0 H0 H1 H2 H3 · · ·
0 0 G0 G1 G2 G3 · · ·
...

...
...

...
...

... · · ·

⎤

⎥⎥⎥⎥⎥⎦
(9)

As we mentioned that both Hk and Gk are associated with low pass and high pass
filters, respectively. They are 2 × 2 matrix dimensions for each integer k [53,54].
Hence, the transformation matrix T is written as [52–54]:

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H00,0 H00,1 H10,0 H10,1 H20,0 H20,1 H30,0 H30,1 0 0 0 0 ···
H01,0 H01,1 H11,0 H11,1 H21,0 H21,1 H31,0 H31,1 0 0 0 0 ···
G00,0 G00,1 G10,0 G10,1 G20,0 G20,1 G30,0 G30,1 0 0 0 0 ···
G01,0 G01,1 G11,0 G11,1 G21,0 G21,1 G31,0 G31,1 0 0 0 0 ···
0 0 0 0 H00,0 H00,1 H10,0 H10,1 H20,0 H20,1 H30,0 H30,1 ···
0 0 0 0 H01,0 H01,1 H11,0 H11,1 H21,0 H21,1 H31,0 H31,1 ···
0 0 0 0 G00,0 G00,1 G10,0 G10,1 G20,0 G20,1 G30,0 G30,1 ···
0 0 0 0 G01,0 G01,1 G11,0 G11,1 G21,0 G21,1 G31,0 G31,1 ···
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ···

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Figure 1b shows the resultant of applying one level of DMWT decomposition to
2-D signal. It is obvious there that the input data is divided into four main sub-bands
and each sub-band is further divided into four sub-sub-bands. For example, the sub-
sub-band L2H1 corresponds to the data from the first channel (high pass filter) in
the horizontal direction and second low pass filter in the vertical direction. The total
number of sub-bands related to the number of decompositions can be expressed as
4 + 12 × L∗, where L∗ is the number of multiwavelet decomposition levels.

In contrast to theDWT, theDMWThas several favorable features through achieving
a good reconstruction (orthogonality), better performance (linear phase symmetry),
high order of approximation (vanishing moments), and compact support. These desir-
able features cannot be achieved at the same time in the scalar wavelet, while in MWT
provide more degree of freedom and give good performance in signal and image
applications [53].

2.1.1 Preprocessing for Multiwavelet

In multiwavelet, both low pass filter Hk and high pass filter Gk are Q × Q matrix
filter. DMWT is required a vector valued input signal compared to DWT that uses a
scalar input signal during the convolution step. In MWT, the signal is passed through
the so-called preprocessing step. In the preprocessing step, a sequence of an input
vectors is required to be extracted from the scalar input to achieve better performance
[11,53,54].

Let’s assume that the dimensions of the input image after resizing to power of
two are Z × Z . The preprocessing is called oversampling scheme (repeated row
preprocessing) if it produces Z -length 2 vector. The preprocessing is called critical
sampling scheme (approximation-based preprocessing) if the preprocessing produces



Circuits Syst Signal Process (2018) 37:2045–2073 2053

Fig. 3 Shows different preprocessing algorithms. a Original image. b Application of DMWT using
critically sampled preprocessing scheme. c Illustrates the result of DMWT using oversampled scheme
preprocessing

Z/2-length 2 vector. In this paper, we used critically sampled preprocessing scheme
(approximation-based preprocessing) [11,53,54]. Figure 3 shows an example of apply-
ing DMWT to facial image using different preprocessing techniques to the facial
image. For sake of brevity, we have omitted the mathematical details of computing
1-D and 2-D MWT preprocessing algorithms. Reader refers to [11,53,54] for further
mathematical details. The dimensions of the transformation matrix T using critically
sampled preprocessing scheme has the same input dimensions.

2.2 Independent Component Analysis (ICA)

Blind source separation (BSS) is a method of restoring the original source signal
from a set of mixed signals without any prior knowledge about the source signals and
mixing signals. Several algorithms and approaches have been proposed to solve the
BBS problems, such as PCA [32], Projection Pursuit [22], etc. ICA is developed to
solve the BSS problems, and it is a powerful tool in signal processing and data analysis
[8,28].

The principle of the ICA is to express a set of random variables as a linear com-
bination of statistically independent components (source signals), where both source
signal and mixing matrix are unknown. Figure 4 shows the block diagram of ICA. Let
a vector S = [s1, s2, . . . , sr ]T denote as r -dimensional unknown source signals with
zero mean and X ′ = [x ′

1, x ′
2, . . . , x ′

r ]T denote as r -dimensional observed signals.
Let assume a matrix A is a mixing matrix, then the mixture module can be expressed
as:

X ′ = A.S =
r∑

i=1

ai si , i = 1, 2, 3, . . . , r (11)
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Fig. 4 Block diagram for independent component analysis (ICA)

where A = (a1, a2, . . . , ar ) ∈ Rr×r is a full rank matrix and ai is the basis vector of
the mixing matrix. si is the independent components [58]. Based in ICA assumptions
explained in detail in [58], the noise n(t) introduced in Fig. 4 is very small compared
with the observed signal X ′; hence, it is neglected.

Each observed x ′
j is a linear combination of weighted independent components si .

Based on several assumptions and constrains corresponding to ICA problems, which
are explained in detail in [58], the ICA algorithm attempts to find the transformation
matrix W ′ of the mixing signals such that

O = W ′.X ′ = W ′.A.S (12)

is an estimation of the independent source signal [18,58]. ICA, which is an extension
and a generalization of PCA that decorrelates the second-order statistic, is well known
to decorrelate the high-order statistic of the input data. Therefore, only if the source
signal has aGaussian distribution, the PCA can be performed to achieve the separation.
This is due to the fact that the uncorrelation is equivalent to the statistical independence
for normal distribution random process. Hence, the signal can be described by only
the second-order statistic. Data representation using ICA is more meaningful than
data representation based on using PCA [8,58]. In the field of the face recognition,
important informationmay be localized in the high-order relationships between pixels.
Also, ICA can capture the local characteristics of the input face images. Due to these
favorable properties of ICA, the ICA bases vectors are extremely robust to the natural
face variations such as facial expressions, rotations, and illuminations [8,18,59]. As
discussed in [8,27,58], there is another way of representing the input facial images by
using unknown mixing matrix A that is shown in Eq. 12.

Both centering and whitening are preprocessing steps for ICA. Applying linear
transformation to the r -dimensional signal X ′ such that the output O = W ′.X ′ is
a white signal which is the so-called whitening process. Before employing ICA, a
transformation matrix W ′ is applied to the observed vector X ′ such that the covariance
matrix of the output O = W ′.X ′ is an identity matrix I . Let X ′ be r -dimensional
random variables with zero mean and CX ′ is

CX ′ = Cov(X ′) = E
[

X ′.X ′T]
= E D′ET (13)

a covariance matrix of X ′ and it is positive definite. D′ is the diagonal matrix of its
eigenvalues and E is an orthogonal matrix of its eigenvectors such that E ET = I .
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Therefore, the linear whitening transform is W ′ = D′− 1
2 ET. Applying whitening

process to the observed signal leads to the transformation matrix W ′ be an orthogonal
matrix; hence, the output vector O is a white. ICA uses whitening preprocessing to
reduce the complexity of the problem [8,18,58].

2.2.1 Fast Independent Component Analysis (FastICA)

FastICA, which is first proposed and developed by [27,28], is a faster algorithm for
ICA. There are several advantages of using FastICA compared to ICA algorithms,
such as FastICA has faster convergence, FastICA does not required to select a step size
comparedwith ICAbased on gradient-based algorithm. FastICAfinds the independent
non-Gaussian signal using any arbitrary non-linear function θ , while other algorithms
required to evaluate the PDF of the selected non-linear function [27,58].

The method of FastICA tries to find a local extreme of the Kurtosis of the observed
mixing signals. The target of the fixed point is to find the maximum of oi = w′T

i x ′
that hasmaximumnon-Gaussianity. FastICAuses negentropy as the objective function
[58]. [26] introduced a simple way to approximate the negentropy function:

J ′(oi ) ≈ [
E

{
G ′(oi )

} − E
{
G ′(ν)

}]2 (14)

where oi is the output random variable with zero mean and unit variance, G ′ is non-
quadratic function, and ν is a Gaussian random variable with zero mean and unit
variance. The approximation given in Eq. (14) leads to use new objective function for
estimating ICA. Hence, maximizing the function J ′

G ′

J ′
G ′(w′) =

[
E

{
G ′ (w′T x ′)}

− E
{
G ′(ν)

}]2
(15)

gives one independent component and w′ is the r -dimensional weighted vector. The
algorithm for FastICA based on maximum negentropy objective function is explained
in details in [26–28,58].

2.2.2 ICA Architectures

There are two different ICA architectures employed for the face recognition. In
architecture-I, which is used in this paper as shown in Fig. 5, the goal is to find
a statistically independent basis images [8,18]. In this architecture, the input facial
images are organized in the rows and pixels are in the columns. The input facial
images (X ′ = A.S) are considered as a linear combination of unknown statistically
independent components S by unknown mixing matrix A. Then the basis compo-
nents (images) are found by projected input facial images X ′ onto transformation
matrix W ′. As mention earlier, the goal of ICA is to find the transformation matrix
W ′ such that the rows of O = W ′.X ′ are as statistically independent as possible.
Thereafter, the statistically independent source images estimated from the rows of
O are considered as basis images that are used to construct the input facial images
[8,18].
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Fig. 6 Reconstruct the input face image using the independent basis images

For input facial image reconstruction as shown in Fig. 6, the rows of O are used
with the linear coefficients ai . These coefficients are contained in the inverse of trans-
formation matrix W ′−1 � A [8,18].

In architecture-II, the input facial images in X ′ are arranged so that the images are
in the columns and pixels are in the rows. Therefore, the ICA basis are arranged in the
columns of O = W ′.X ′. The independent basis coefficients contained in the columns
of O are used with the coefficients contained in W ′−1 to reconstruct the input facial
images in X ′ [8,18,58].

3 Proposed System

The proposed system consists of three main phases as shown in Fig. 7. In the first
phase, all poses in the databases are divided into six partitions to reduce the effect
of unnecessary information on the system performance and to highlight the local
features. The second phase aims to find the most efficient and discriminating features
from the set of different databases. The determined discriminated features enhance the
recognition rates. Finally, NN based on back propagation training algorithm (BPTA)
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Fig. 8 Shows samples of databases after cropping, a ORL, b YALE, c FERET, d FEI, e LFW

is applied to the extracted features to built a classifier system. Five databases are
used to evaluate the proposed techniques, namely ORL, YALE, FERET, FEI, and
LFW that have different facial configurations. Samples of each database are shown in
Fig. 8.

3.1 Preprocessing

The preprocessing phase consists of several steps:

1. Apply cropping technique to the databases used as shown in Fig. 8. This step aims
to remove most of the background information (unnecessary information) found
in each pose.
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Table 1 The dimensions of the databases

Databases Actual size Dimensions after
cropping

Dimensions of
each part

Proposed dimension
of each part

ORL 112 × 92 112 × 92 112 × 46 OR 56 × 92 64 × 64

YALE 243 × 320 180 × 150 180 × 75 OR 90 × 150 128 × 128

FERET 384 × 256 220 × 170 220 × 85 OR 110 × 170 128 × 128

FEI 480 × 640 320 × 290 320 × 145 OR 160 × 290 256 × 256

LFW 250 × 250 64 × 64 64 × 32 OR 32 × 64 32 × 32

2. Divide all poses of all persons in the databases to 6 partitions, see Fig. 9. The
motivation from partitioning is to differentiate the local features in each part. This
reduces the effect of the common features, which are mutual in some partitions
between persons, on the overall system performance.

3. Convert dimensions of each part of each pose into adequate dimensions as shown
in Table 1. The proposed dimensions were chosen since the algorithm used in this
paper required dimensions that are power of two.

4. Apply a critically sampled preprocessing scheme (approximation-based prepro-
cessing) to the input facial images [11,53,54].

3.2 Feature Extraction

Variations in the faces of the subjects in terms of facial expressions, illumination,
partial obstacles, rotations, makeups, etc., lead facial recognition to be a challenging
topic in several fields although there are many samples for each subject. Since the
human faces are not solid bodies, there is a lot of unnecessary information that is
not essential for recognition. Feature extraction, in which the data compression is
employed, is considered to be an important step in every recognition system. Since
the input facial image has large dimensions, which have lot of useless information,
the recognition rate decreases and the computational complexity increases.

Therefore, the goal of this step is to find themost pertinent features from the original
images to best represent the faces and achieve high accuracy while fulfilling the low
dimensionality and less storage requirements. Hence the following efficient tools are
applied to get better facial representation:

1. The 2D DMWT based on MRA is used for:
(a) Dimensionality reduction, Less storage requirement.
(b) Noise alleviation.
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Fig. 10 An example of applying 2-D DMWT to ORL and FEI databases, a ORL, b FEI

(c) Feature selection by localizing most of the energy in a single band.
2 The FastICA is used for:
(a) Decorrelating the high-order statistics beside decorrelating the second-order

moments. Most of the information about the local characteristics of the facial
images is contained in the high-order statistics. Hence, ICA basis is used for
better representing the facial images [8,18,41,59].

(b) Improving the convergence rate and reducing the computational complexity
[8,27].

This leads to the resultant ICA features are:

(a) Less sensitive to the facial variations arising from different facial expressions,
illuminations, rotations, different poses, etc. [8,18,59].

(b) Independent. The ICA architecture-I produces spatially localized representation
compared with PCA and ICA architecture-II that produce global representations,
which are sensitive to any distortion in the faces. These traits of ICA architecture-I
enhance the system performance [8,18,58].

The first step in the feature extraction is applying 2D DMWT to each partition of
each pose in the databases. Samples of 2D DMWT results are shown in Fig. 10. As
shown in Fig. 10, each partition is divided into four main sub-bands. Hence, each sub-
band has 32 × 32 dimensions for ORL database, 64 × 64 dimensions for both YALE
and FERET databases, 128×128 dimensions for FEI database, while each sub-band in
LFWdatabase has 16×16 dimensions.Moreover, each sub-band is further divided into
four sub-images each with 16×16 dimensions for ORL database, 32×32 dimensions
for both YALE and FERET databases, 64×64 dimensions for FEI database, and 8×8
dimensions for LFW database. From Fig. 10a, b, most of the relevant information
is localized in the upper left sub-band, which is low–low (LL) frequency sub-band.
Therefore, the LL sub-band is maintained and all the other sub-bands are eliminated.
Hence, the resultant feature tensor for each partition has dimensions of 16 × 16 × 4,
32× 32× 4, 64× 64× 4, and 8× 8× 4 for ORL, YALE and FERET, FEI, and LFW
databases, respectively. The following procedures are applied to the retained feature
matrices to obtain better facial representations:
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Fig. 11 Two representations. S∗
1 . . . S∗

6 are denoted as sub-images with maximum �2-norm. a First repre-
sentation. b Second representation

(a) Convert each sub-image in the retained LL sub-band of each partition to 1-D vector
of 256 × 1, 1024 × 1, 4096 × 1, 64 × 1 for ORL, YALE and FERET, FEI, and
LFW databases, respectively.

(b) Repeat [1] to all sub-images in each partition of each pose in the databases. There
are two representations as shown in Fig. 11:
(A) The first representation shown in Fig. 11a is using all four sub-images of LL

sub-band with X∗ × 4 × 6 dimensions for each pose. Where X∗ is varied
according to which database is involved.

(B) The second representation, Fig. 11b, uses only one sub-image that has maxi-
mum �2-norm. Hence, each pose has X∗ × 6 dimensions.

Producing new features from the original one is a very beneficial step in order
to reduce the dimensionality and achieve better facial representation. In order
to achieve that, the following techniques are applied to the resultant matrices
corresponding to the first and second representations:
(A) First representation shown in Fig. 11a.

– Technique 1
(i) Apply 2D FastICA to each resultant LL sub-band matrix of each part

that has X∗ × 4 dimensions, see Fig. 11a.
(ii) Find �2-norm for each row of the resultant ICA matrix, independent

features I Fl as shown in Fig. 12, to reduce the dimensionality of
the data and constrain all the energy in a single column. Hence, the
resultant features for each pose of each person has X∗×6 dimensions.

– Technique 2 Is the same as Tech.1 except that we used Mixing matrix A
expressed in Eq. (11) instead of using resultant Independent features as
an alternative way of facial representation [8,27,58].

– Technique 3
(i) Apply 2D FastICA to each LL sub-band matrix of each part of each

pose as in Tech.1-i.
(ii) Choose the I Fl column, see Fig. 12, that has maximum �2-norm

for better feature representation and further dimensionality reduction.
The dimensions of the resulting matrix features of each pose are the
same as dimensions expressed in Tech.1.

– Technique 4
(i) Apply 2D FastICA to the combined feature matrix of all partitions of

LL sub-band, Fig. 11a, which has X∗ × 24 dimensions.
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Fig. 12 Applying FastICA to
retained LL sub-band. Sl
represents sub-images of LL
sub-band. I Fl represents
independent features. Where
l = 1, 2, 3, and 4

S1 S4

FastICA+ =

IF1 IF4S2 IF2S3 IF3

X*

(ii) Find �2-norm for each row of the resultant ICA pose matrix for fur-
ther dimensionality reduction/feature compaction. Here, the resultant
features matrix for each pose has of X∗ × 1 dimensions.

– Technique 5 It is the same as Tech.4 except using Mixing matrix A pre-
sented in Eq. (11) instead of using resultant independent features. As we
mentioned, it is considered as an alternative way of representing the input
signal [8,27,58].

– Technique 6
(i) Apply 2D FastICA to the combined feature matrix as performed in

Tech.4.
(ii) Choose the I Fl column, Fig. 12, that hasmaximum �2-norm for better

facial representation and further data compaction. Thus, the resultant
features for each pose have X∗ × 1 dimensions.

(B) Second representation shown in Fig. 11b.
– Technique 1

(i) Apply 2D FastICA to the matrix resulted from second representation
shown in Fig. 11b that has X∗ × 6 dimensions.

(ii) Find �2-norm for each row of the resultant features to reduce feature
dimensions and concentrate the energy in one column. The resultant
features for each pose have X∗ × 1 dimensions.

– Technique 2
(i) The mixing matrix A, used in Eq. (11), resulted form Tech.1 is used

here instead of FastICA signal matrix.
(ii) Apply Tech.1-ii to mixing matrix. The dimensions of the resultant

feature matrix of each pose are of X∗ × 1.
– Technique 3

(i) Apply the first step of Tech.1.
(ii) The I Fl column, shown in Fig. 12, that has maximum �2-norm is

selected. The dimensions of the output features resulted are the same
as dimensions of Tech.1 and Tech.2.

(c) Repeat step [1–2] for all poses and for all persons in the databases.
(d) The final compacted independent feature, which has dimensions varied from

Technique to another according to which database gets involved, is fed to the
recognition step for classification, which is based on BPTA.
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Fig. 13 Hyperbolic tangent sigmoid transfer function. The activation function is expressed as tansig(x) =
2

1 + e−2x
− 1 and considered as tansh(x). Its output range is between (−1, 1)

3.3 Recognition

In this phase, the unknown image will be compared with the training images (stored
database). Therefore, building a good classifier is a very important step in order to
anticipate a good performance and accuracy. Thus, the recognition phase consists of
two important modes: Training and Testing Mode.

A NN is a very powerful tool used to classify the input signals. The NN based
on BPTA is used in this paper in both training and testing modes. The BPTA is
a supervised learning algorithm; thus, it is necessary to choose the desired output
for each database used in this paper. Each desired output for each person should be
different from other desired outputs of other persons. However, for the same person
the desired output should be the same for all poses used in the trainingmode and for all
partitions. For example, the desired output for person one of YALE database is written
as: [1−1−1−1−1−1−1−1−1−1−1−1−1−1−1]. Where number (1) represents the
output (1) is active and number (−1) represents the output is inactive. Note that the
output might not be equal to 1 or−1 but may reach to these values since the activation
function used in the BPTA is hyperbolic tangent sigmoid transfer function shown in
Fig. 13 [24]. The configuration of the NN has three layers, namely input, hidden, and
output layers. The number of the neurons in the input and the output layers is always
fixed according to the dimensions of the input vectors and the number of the persons in
the database, while the choice of the number of hidden neurons is somehow flexible.

In the training mode, the NN is configured and the classifier is built using the
described training features. Each technique has a classifier different from other tech-
niques since each one has its own resultant features and then each one will have its
own results as shown in the experimental results section.

In the testing mode, the same procedures of the training mode are employed. First,
each test pose is passed through preprocessing steps. Second, 2D DMWT is applied
to each partition. Then only LL sub-band is retained and the remaining sub-bands are
eliminated. Next, convert all sub-bands to 1-D form.After that all discussed techniques
of the two representations are applied to the resultant features. Finally, the resulting
matrix features that have dimensions vary from technique to another are fed to NN for
classification.
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3.4 Decision

In this section, we will explain how the decision is made. The following example
is presented according to the first representation. Let’s assume we have an unknown
pose (tested pose) corresponding to the person 1. Since we have 6 different features
corresponding to 6 different partitions resulted from Tech.1–Tech.3, each one is tested
individuallywith the training features and assigned to the specific person. Let’s assume
that the outputs from the NN for these six partitions are (111511), which mean the
following:

– (1): The tested features of these partitions are matched with the corresponding
trained features and assigned to person 1, which is correct.

– (5): The tested features of the fourth partition are matched with one of the trained
partitions of person 5 and person 5 is assigned, which is incorrect.

In general, if there are more than three tested partitions matched with the corre-
sponding trained features of the same person, the testing pose is correctly matched.
In the above example, the tested pose is correctly matched with person 1. If there
is no majority matched, the testing pose is incorrectly matched. Also, if the partition
1–partition 4 are assigned to the same person, the program will stop and the decision
is made since the majority is achieved. This leads to less computational complexity.

4 Experimental Results

The experimental results of the proposed techniques based on two representations are
presented and compared with a large number of the state-of-the-art methods. Five
databases, namely ORL, YALE, FERET, FEI, and LFW containing different facial
variations, such as facial expressions, light conditions, rotations, are used to test the
proposed techniques. K-fold cross-validation (CV) is employed to analyze the exper-
imental results. Various values of K are chosen, K = 2, K = 3, and K = 5. The
recognition rates reported in Tables 2, 3, 4, 5 and 6 are the average of the rates obtained
across the K-folds CV. The NN simulations of the proposed techniques are presented
and compared with the existing approaches. The proposed techniques achieved 100%
recognition rates when tested with the training poses.

4.1 Experimental Results for the ORL Database

The ORL database consists of 10 different poses of each of 40 different persons with
the resolution of 112 × 92 pixels in the BMP format. The poses of all subjects have
different facial variations, such as facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses/ no glasses). The images were taken against a
dark homogeneous background with the persons in an upright, frontal position [14].
Table 2 summarizes the results of the proposed techniques basedon two representations
compared with the state-of-the-art approaches.
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Table 2 Experimental results for the ORL database

Proposed techniques Other methods

First representation PCA–CDA [47] 95%

Tech.1 100% RV–LDA [29] 97%

Tech.2 99% OLPP [51] 93.5%

Tech.3 98.5% SNMFSPM [40] 98.15%

Tech.4 99.25% DWT–PCA [44] 96.75%

Tech.5 98.75% DWT–ICA [41] 97.5%

Tech.6 98.25% LBPP–DCT [13] 95.5%

Second representation GWT–DCT [2] 97.25%

Tech.1 99% DCT–PCA [10] 96%

Tech.2 98.75% SADL [61] 97.5%

Tech.3 98.25% DWT–MPSO [33] 98.33%

Table 3 Experimental results
for the YALE database

Proposed techniques Other methods

First representation Fast �1-PCA [31] 83%

Tech.1 100% OLPP [51] 98.2%

Tech.2 99.17% LPP [7] 97.14%

Tech.3 98.47% SNMFSPM [40] 97.69%

Tech.4 99.58% DWT–PCA [44] 96.55%

Tech.5 98.89% DWT–ICA [41] 97.25%

Tech.6 98.1% GWT–DCT [2] 96.95%

Second representation DCT–PCA [10] 96.34%

Tech.1 99.17% SADL [61] 94.67%

Tech.2 98.75% DWT–MPSO [33] 98.29%

Tech.3 97.18% NFLS-II [46] 82.42%

The proposed techniques improved the recognition accuracy compared with other
methods. Also, the proposed techniques achieved higher recognition rates when com-
pared with the results reported in [3–5,7].

4.2 Experimental Results for the YALE Database

There are 15persons in theYALEdatabase, eachwith 11different poseswith resolution
of 320×243 pixels inGIF format. All of themhave different facial configurations, such
as center-light, glasses, happy, left-light, no glasses, normal, right-light, sad, sleepy,
surprised, and wink [15]. Table 3 shows the results of the proposed techniques based
two representations and the comparison with the other methods. As before, the results
achieved using the proposed techniques were better than the results reported in [3–5].
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Table 4 Experimental results
for the FERET database

Proposed techniques Other methods

First representation OLPP [51] 92.1%

Tech.1 99.6% DWT–PCA [44] 96.4%

Tech.2 98.86% DWT–ICA [41] 97.33%

Tech.3 98.3% GWT–DCT [2] 96.8%

Tech.4 99.2% DCT–PCA [10] 95.7%

Tech.5 98.66% SADL [61] 94.33%

Tech.6 98.21% LFLM–SIFT [19] 92.4%

Second representation

Tech.1 99.05%

Tech.2 98.4%

Tech.3 98%

Table 5 Experimental results
for the FEI database

Proposed techniques Other methods

First representation OLPP [51] 98.9%

Tech.1 99.61% DWT–PCA [44] 96.25%

Tech.2 99% DWT–ICA [41] 97.21%

Tech.3 98.5% GWT–DCT [2] 96.65%

Tech.4 99.4% DCT–PCA [10] 95.85%

Tech.5 98.83% VQ–KFCG [45] 93.81%

Tech.6 98.23% LFLM–SIFT [19] 85.3%

Second representation DWT–MPSO [33] 97.08%

Tech.1 99.2% NFLS-II [46] 93%

Tech.2 98.6% PCNC [35] 94.17%

Tech.3 98.2%

4.3 Experimental Results for the FERET Database

The FERET database used in this paper contains 200 individual, each with 11 different
poses with resolution 256 × 384 pixels in TIFF format. The poses in this database
have different facial variations, such as light conditions, rotations, background, facial
expressions, and glasses/no glasses [48,49]. The results of both representations are
summarized in Table 4.

The results exhibit the same behavior as in the previous databases when compared
with the existing approaches. Also, the proposed techniques accomplished higher
accuracy compared to those reported in [3–5,45].

4.4 Experimental Results for the FET Database

The FEI database contains Brazilian faces recorded at the artificial intelligence lab-
oratory of FEI in São Bernardo do Campo, São Paulo, Brazil. The FEI consists of
200 individuals each with 14 different poses with the resolution of 640 × 480 pixels
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Table 6 Experimental results for the LFW database

Proposed techniques Other methods

First representation DWT–PCA [44] 94.8%

Tech.1 98.91% DWT–ICA [41] 95.72%

Tech.2 98.06% GWT–DCT [2] 95.3%

Tech.3 97.33% DCT–PCA [10] 94.5%

Tech.4 98.54% CNN–SAE [17] 98.24%

Tech.5 97.87% LDA–SID [37] 95.65%

Tech.6 97.11% GWT–PCA [16] 96%

Second representation HPEN–HD-Gabor–JB [63] 95.25%

Tech.1 98.31%

Tech.2 97.65%

Tech.3 96.8%

in the JPG format. This is a colored database with facial images rotated up to 180
degrees, distinct appearance, hairstyle, and adornments [55]. The gray scale version
of this database is used in this paper. The results, which are presented in Table 5, of
the proposed techniques based two representations demonstrate the same attitudes in
comparison with the state-of-the-arts approaches.

4.5 Experimental Results for the LFW Database

Labeled faces in the wild (LFW), a large database of photographs designed for use in
unconstrained face recognition, contains 13,233 images of 5749 persons. 1680 people
have two or more image, while the remaining 4069 people have just a single image in
the database. Each pose is labeled with the name of the person. These facial images
were collected from the Internet; therefore, all poses of all persons have different
facial variations, such as pose, occlusion, illumination, facial expression variations,
etc. This is a color database with the size of 250× 250 pixels in the JPG format [25].
The cropped and gray scale version of this database is used in this paper. Table 6
summarizes the results of the proposed techniques compared with the state-of-the-arts
methods.

5 Discussion

As we mentioned the purpose of applying partitioning step in the preprocessing phase
was to reduce the effect of unnecessary information, which is common among all poses
and persons and to highlight the local features. Also, partitioning helps to improve
the recognition accuracy since each partition contained local facial features that are in
common with the other two partitions. This led to increase the matching probability
for each pose and hence the overall recognition accuracy improved.
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In contrast to theDWT, theDMWThas several favorable features through achieving
a good reconstruction (orthogonality), better performance (linear phase symmetry),
high order of approximation (vanishing moments), and compact support. These desir-
able features cannot be achieved at the same time in the scalar wavelet, while in
MWT provide more degree of freedom and give perfect performance in signal and
image applications [53]. Based on a number of decomposition levels required and
the resulted sub-bands that mathematically expressed as 3 × L∗ + 1 for DWT and
4+ 12× L∗ for DMWT, DMWT achieves high dimensionality reduction than DWT.
Where L∗ is the number of decomposition levels required. Therefore, the proposed
techniques accomplished less storage compared to those reported in [41,44] that used
DWT.

Also, the results of the proposed techniques based two representations are higher
than the results reported in [19] even though they partitioned the input facial images to
n overlapping partitions. These achievements are due to applying efficient integrated
tools (2D DMWT and 2D FastICA) to the partitioned images. The dimensionality
reduction and efficient feature extraction were obtained by retaining only the LL sub-
band of 2D DMWT. Furthermore, producing independent and more discriminating
features were achieved through applying 2D FastICA to the resultant of DMWT rep-
resentations.

As explained, FastICA has several advantages compared with ICA, such as Fas-
tICA has faster convergence than traditional ICA since it does not require to select a
step size compared with ICA-based gradient algorithm. Also, the independent non-
Gaussian signal usingFastICA is found by any arbitrary non-linear function θ(t), while
other ICA algorithms required to evaluate the PDF of the selected non-linear function
[27,58]. Therefore, FastICA is more efficient of estimating the statistical components.
Hence, the key of using FastICA in this paper is to find the bases images that are statisti-
cally independent. These bases are maintaining the structural information of the facial
images. The ICA representations are more robust to the different variations caused
by different facial expressions, pose, and illuminations, which can be considered as
forms of noises with respect to the original images [8,18,59]. Therefore, combining
these favorable properties of DMWT and the efficient representations of FastICA led
us to achieve a notable dimensionality reduction as well as an improvement in the
recognition rates.

Each partition has possessed its own features (local features). Since each par-
tition is in common with other two partitions, as seen in Fig. 9, the matching
probability for each pose is significantly increased if features of each partition are
participated in both training and testing phase. Since techniques 1–3 in the first rep-
resentation are applied to DMWT features of each partition, there are six resultant
feature representations for each pose. After testing these six features of each pose
with the trained stored features of whole database and after applying voting tech-
nique, we can see that the experimental results of Techniques 1–3 outperformed other
results of Techniques 4–6 and Techniques 1–3 in the first and second representa-
tions, respectively, which were employed to all partitions, whole image, at the same
time.

In other words, using the features extracted from each partition (6 features for
each pose) in both training and testing mode led the proposed Techniques 1–3 in the
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Table 7 The computation time per second

Methods Proposed
methods

DWT–PCA [44] DWT–ICA [41] GWT–DCT [2] DCT–PCA [10]

Computation
time

Training
mode

366 326 348 357 336

Testing
mode

16 9.5 11.8 14.2 10.36

first representation to accomplish higher recognition rates compared to those obtained
using one matrix (features) to represent the whole pose as in Techniques 4–6 and
Techniques 1–3 in the first and second representations, respectively. Figure 9b shows
how parts are participating with each other. Also, the results of the first representation
outperformed the results of the second representation. This is due to the fact that
images of faces are more efficiently described by the first representation as compared
to the second representation.

Although the Techniques 4–6 and Techniques 1–3 in the first and the second rep-
resentation, respectively, are applied to the all combined partitions (whole image),
their results illustrate an improvement in the recognition rates when compared with
the state-of-the-art approaches.

The method was implemented using a Laptop computer that has following prop-
erties: Model: Hp Envy m4 Notebook PC, Windows 10, CPU: Intel (R) Core (TM)
i7-3632QM @ 2.2GHz. The processer is a third generation, and RAM: 16 GB. The
proposed methods and other approaches were performed using MATLAB 2016a. The
computation time, for example of FERET database at K = 5, taken to perform the
proposed method compared with the other approaches is shown in Table 7 below:

As shown in Table 1, the computation time taken by each technique of our proposed
system in the training mode was 366s on average. Hence, each pose in the FERET
database required a time of 366/1600 = 0.228 s. While in the testing mode, each
pose required a time of 16/600 = 26.67ms. Our proposed methods used, on average,
comparable times compared with the time taken by other approaches. In Table 7, we
did not report the time taken by the NNs in the training mode since NNs are affected
by several factors, as explained in Sect. 6.

6 Performance of Neural Network

There are several factors that affect the performance of NN in the training mode and
lead to impact the overall system accuracy. The first factor is the Network complexity,
which depends on the number of hidden layers, the number of neurons in each hidden
layer, and the type of activation functions used for each interconnection weights. The
second one is Learning complexity, which depends on choosing training algorithms,
initialization parameters, and weight selection. Finally, the Problem complexity that
depends on how accurate, efficient, and sufficient the databases used in the training
mode.
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Fig. 14 NN performance for the proposed techniques compared with the other approaches based first
representation. a ORL. b FERET. c FEI

In this paper, we used one hidden layer for all five databases. Hence, 256, 1024,
1024, 4069, and 64 hidden neurons were selected for ORL, YALE, FERET, FEI,
and LFW databases, respectively. The activation function used is hyperbolic tangent
sigmoid shown in Fig. 13. The databases are trained and tested using BPTA. Mean
square error with regularization (msereg) is used to calculate the error. Msereg is
finding the mean sum of the square error between the actual output and the target.
Figure 14 shows samples of the performance of the NN in the training mode of all
discussed techniques based on the first representation in comparison with some of the
state-of-the-arts approaches [2,10,41,44].

It is obvious from Fig. 14 that the proposed Techniques 1–3 outperformed and
achieved at the goal faster than Techniques 4–6. In addition, the performance of first
representation is achieved the goal faster than the second representation that shown
in Fig. 15. In addition, all proposed techniques based on the two representations
outperformed the existing approaches, such as [2,10,41,44]. This is due to the fact
that partitioning step and employing the two efficient tools (DMWT and FastICA) in
the feature extraction steps produced features more efficient than those obtained by
the existing methods. Hence, the NN convergence is enhanced and the accuracies are
improved.
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Fig. 15 NN performance for the proposed techniques compared with the other approaches based second
representation. a ORL. b FERET. c FEI

7 Conclusion

Anewapproach applying 2DDMWTfollowed byFastICA to partitioned facial images
for face recognition was proposed in this paper. Dimensionality reduction, efficient
feature extraction, and as a consequence, high recognition rates were accomplished
in this contribution. The disadvantages and shortcomings of DWT and ICA and other
methods have been taken into account while considering the combination of DMWT
and FastICA. The facial images were Partitioned into six parts in order to reduce the
effect of the mutual information found among all persons in the databases on the over-
all system performance, and to highlight the local features. 2D DMWT was applied
to each part, and only the LL sub-band is retained and all other sub-bands were elimi-
nated. As a consequence, the dimensionality reduction (less storage requirements) was
accomplished. Two representations were constructed using DMWT features. Splitting
the feature extraction into the two representation methods and the use of FastICA
followed by the �2-norm help to retrieve the useful information from the images and
discard the non-discriminating features.
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The dimensionality reduction proposed in the system helps in reducing the compu-
tational burden and improving the accuracy. The combination of the feature extraction
methods (2D DMWT and FastICA followed by �2-norm) led to more discriminat-
ing features being extracted and further led to faster convergence. The final features
extracted using the proposed techniques that fed toNN for training/testing have dimen-
sions of X∗×Y ∗, where X∗ is 256, 1024, 4096, and 64 dimensions forORL,YALE and
FERET, FEI, and LFW databases, respectively. Y ∗ is either 6 or 1 according to which
technique gets involved and which representation was employed. The proposed sys-
temwas extensively evaluated using five databases that have different facial variations,
such as illuminations, facial expressions, rotations, facial details. The experimental
results were analyzed using different values of K-fold CV. The proposed techniques
based on the two representations were not only achieving high recognition rates com-
pared to the other methods, shown in Tables 2, 3, 4, 5 and 6, but also having faster NN
convergence than the other approaches, as shown in Figs. 14 and 15.
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