
Circuits Syst Signal Process (2018) 37:1542–1561
https://doi.org/10.1007/s00034-017-0624-4

Adaptive Fuzzy Observer-Based Fault-Tolerant Control
for Takagi–Sugeno Descriptor Nonlinear Systems with
Time Delay

Dhouha Kharrat1,2 · Hamdi Gassara1,2 ·
Ahmed El Hajjaji1 · Mohamed Chaabane2

Received: 28 September 2016 / Revised: 28 July 2017 / Accepted: 31 July 2017 /
Published online: 18 August 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper investigates the problems of state/fault estimation and active
fault-tolerant control (AFTC) design for time-delay descriptor fuzzy systems sub-
ject to external disturbances and actuator faults. Using Takagi–Sugeno fuzzy models,
an adaptive fuzzy observer is proposed to achieve system state and actuator fault
estimation simultaneously. According to Lyapunov functional method, design and
analysis conditions of the resulting closed-loop delayed descriptor system are formu-
lated in terms of linear matrices inequalities (LMIs). Observer and controller gains
are computed by solving a set of LMIs in only one step and then used to both esti-
mate the unmeasured states and actuator faults in AFTC context. Numerical examples
are provided to show the merit and the conservativeness of the proposed approach in
comparison with the existing methods by considering various types of actuator faults.
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1 Introduction

Actuator, sensor or plant failuresmay totallymodify the systembehavior by generating
the instability and performance degradation of the control systems. Therefore, many
researches on fault detection and isolation (FDI) have been extensively conducted dur-
ing the last decades [16]. To ameliorate system performance efficiency and reliability,
the issue of fault-tolerant control (FTC) has been more and more considered.

According to Blanke in [2] and [20], the objective of FTC is to preserve current
performance and maintain stability conditions in the event of system component mal-
functions. In the literature such as [7,24], there are two classes of FTC: active and
passive or reliable ones. The passive FTC (PFTC) tolerates only limited predetermined
faults throughout the whole control process. The major drawback of this approach is
that the fault tolerance capability could be very limited. In contrast to PFTC, the active
FTC (AFTC) is generally constructed to treat the occurrence of system faults in real
time. It is characterized by the use of an online FDI unit to preserve the stability and
performance of the global system.

Generally speaking, the FTC allows to maintain a certain level of reliability, pro-
ductivity and safety in most industrial systems and also to guarantee satisfactory
performance not only during the normal operation but also in the presence of both
sensor and actuator faults (see [22,23,29] and references therein).

Furthermore, it is well known that time delay can be a cause of instability for
dynamical systems and performance degradation for control systems. So, this topic
has received a substantial attention in the past years, and different design approaches
have been proposed (see [11,26] and references therein).

Recently, the TS fuzzy model-based control of descriptor fuzzy systems with time
delay has been investigated for their interests in several engineering applications, such
as constrained robot systems, circuit systems and chemical processes [8,17].

Similar to the standard fuzzy systems with time delay, the results on stability analy-
sis and stabilization of descriptor delayed systems can be classified into two categories:
delay-independent criteria, which are applicable to delay of an arbitrary size [3,25],
and delay-dependent ones which include information about the size of delay [26]. It
is known that the latter one results are usually less conservative than the former ones,
especially when the size of delay is small [8,30].

More recently, the active actuator FTC design problem of descriptor fuzzy systems
has been investigated in [10] and [12]. However, the observer and controller design
conditions are given in bilinear matrix inequality (BMI) form and then solved using
a two-step algorithm. The present work improves the previous results in terms of
conservatism reduction and computational complexity by formulating observer and
fault-tolerant control design conditions in a set of linear matrices inequalities (LMIs)
which can be solved on only one step using LMI Toolbox or Yalmip ofMATLAB soft-
ware [6].Moreover, no tuningmatrices are needed to solve theLMIs as required in [12].

By choosing an appropriate Lyapunov–Krasovskii functional, delay-dependent sta-
bility and stabilization conditions are developed to estimate time-varying faults, and an
adaptive fuzzy observer is proposed to estimate both states system and actuator faults.

The purpose of this work is to develop a state/fault fuzzy observer-based FTC
strategy of descriptor nonlinear delayed systems described by the T–S fuzzy models.
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Thus, using obtained fault information given by an adaptive fuzzy observer, a fault-
tolerant controller is designed to compensate the effect of actuator faults [13,21].

The rest of the paper is organized as follows. The second section introduces the
structure of the T–S fuzzy descriptor system with state delay under actuator faults
and the problem formulation. Section 3 holds the main result and gives LMI-based
design conditions for the adaptive fuzzy observer-based fault-tolerant controller. A
simulation examples are presented in Sect. 4 to compare and to show the validity of
the suggested approach. Finally, Sect. 5 concludes this contribution.

Notations In this paper, a real symmetric positive definite matrix (respectively, nega-
tive definite matrix) is represented by A > 0 (respectively, A < 0). The notation (∗)

corresponds to matrix block incited by symmetry, sym(A) signifies A + AT, and A†

represents the generalized inverse of A. λmax(A) stands for the maximum eigenvalues
of A. As well, ‖ · ‖ corresponds to the standard norm symbol, and ∀ denotes “for all.”

2 Problem Formulation

Consider a T–S fuzzy descriptor system with state delay described by a set of if-then
rules, and each rule is a local linear representation of the nonlinear system. The i th
rule of the system is given as follows.

Plant rule i(i = 1, 2, . . . , r): If θ1 is μi1 and, · · · , and θp is μi p, then

Eẋ(t) = Ai x(t) + Ahi x(t − h) + Biu(t) + Dd(t) + Fi fa(t)

y(t) = Cx(t)

x(t) = Φ(t), ∀t ∈ [−h̄, 0] (1)

where θ j (x(t)) are the premise variables which are assumed measurable, μi j (i =
1, . . . , r, j = 1, . . . , p) are the fuzzy sets which are characterized by the membership
functions, r and p are the total number of if-then rules and the premise variables,
respectively.

x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, y(t) ∈ R
p is the

measured output, d(t) ∈ R
ν is the external disturbance, fa(t) ∈ R

m represents the
actuator fault which can be constant or time-varying function, h is a constant delay
satisfying 0 � h � h̄ and Φ(t) is an initial condition.

Matrix E ∈ R
n×n is assumed to be singular, andwe suppose that rank(E) = q ≤ n.

Ai , Ahi , Bi , Fi and C are known real constant matrices of appropriate dimensions.
It is supposed that matrices Fi and Ci are of full column rank and of full row rank,
respectively.

By fuzzy blending, the overall fuzzy system is given as follows:

Eẋ(t) =
r∑

i=1

hi (θ(x(t)))[Ai x(t) + Ahi x(t − h) + Biu(t) + Dd(t) + Fi fa(t)]

y(t) = Cx(t) (2)
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in which

θ(x(t)) = [θ1(x(t)), . . . , θp(x(t))]

hi (θ(x(t))) = νi (θ(x(t)))
r∑

i=1

νi (θ(x(t)))

; νi (θ(x(t))) =
p∏

j=1

μi j (θi (x(t)))

where μi j (θi (x(t)) is the grade of the membership of θi (x(t)) in μi j .

It is evident that 0 ≤ hi (θ(x(t))) ≤ 1 and
r∑

i=1

hi (θ(x(t))) = 1.

Then, for briefness we get hi to stand for hi (θ(x(t))).
Before giving the design of the adaptive observer, six assumptions are assumed:

Assumption 1 [1]

rank

[
E
C

]
= n (3)

Assumption 2 [15] Triple matrix (E, Ai ,C) is R-detectable,

rank

[
sE − Ai

C

]
= n, ∀s ∈ C, Re(s) ≥ 0, ∀i = [1, . . . , r ] (4)

Assumption 3 [14]

rank

[
E D
C 0

]
= n + rank(D) (5)

Assumption 4 Fault fa(t) satisfies ‖ fa(t)‖ ≤ α1, and the derivative of fa(t) with
respect to time is norm-bounded, i.e., ‖ ḟa(t)‖ ≤ f1max and 0 ≤ α1, f1max < ∞.

Assumption 5
B1 = · · · = Br = B (6)

Assumption 6
rank(BFi ) = rank(B), ∀i ∈ [1, . . . , r ] (7)

Remark 1 Referring to Assumption 6, there exists a nonzero matrix F̌i ∈ R
m×m such

that Fi = BF̌i , ∀i ∈ [1, . . . , r ].

(In − BB†)Fi = (In − BB†)BF̌i = 0, ∀i ∈ [1, . . . , r ] (8)

Two lemmas which are used in the proof are given as follows:

Lemma 1 [7]Given a symmetric positive definite matrix Q and a scalar μ ∈ R
+, we

have the following inequality

2xᵀy ≤ 1

μ
xᵀQx + μyᵀQ−1y (9)

x, y ∈ R
n .
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Lemma 2 [8] Given a matrix R of appropriate dimension such that RT�R < 0,
consider a negative definite matrix � < 0, then ∃ λ > 0 such that

RT�R ≤ −λ(R + RT) − λ2�−1 (10)

3 Main Results

3.1 Design of Adaptive Fuzzy Observer-Based Fault-Tolerant Controller

So as to estimate the state and the faults of system (2), we propose the following
adaptive fuzzy observer design

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ(t) =
r∑

i=1
hi [H1Ai x̂(t) + H1Ahi x̂(t − h) + H1Biu(t) + L1i (y(t) − ŷ(t))

+L2i (y(t − h) − ŷ(t − h)) + H1Fi f̂a(t)]
x̂(t) = w(t) + H2y(t)
ey(t) = y(t) − ŷ(t)
ŷ(t) = Cx̂(t)
˙̂f a(t) = �

r∑
i=1

hi Ni (ėy(t) + σey(t))

(11)

and the active fault-tolerant control is:

u(t) = −
r∑

i=1

hi Ki x̂(t) − B†
r∑

i=1

hi Fi f̂a(t) (12)

where w(t) ∈ R
n and x̂(t) ∈ R

n are the observer state and the estimated state vector,
respectively. ŷ(t) ∈ R

p and ŷ(t − h) ∈ R
p are the estimated output vectors at the

sampling time t and t − h, respectively. ey(t) ∈ R
p is the output estimation error,

f̂a(t) ∈ R
m is the estimated of actuator fault fa(t), and H1, H2, L1i , L2i , Ni and Ki

are gain matrices with appropriate dimensions to be determined.
Under Assumption 1, there exist nonsingular matrices H1 ∈ Rn×n and H2 ∈ Rn×m

such that in [5,21]:
H1E + H2C = In (13)

The state and the fault estimation errors are given as follows :

ex (t) = x(t) − x̂(t), e f (t) = fa(t) − f̂a(t)

By taking into account (2), (11) and by using relation (13), state estimation error
dynamic ex (t) and output estimation error ey(t) are given by:
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ėx (t) =
r∑

i=1

hi [(H1Ai − L1iC)ex (t) + (H1Ahi − L2iC)ex (t − h)

+H1Fie f (t) + H1Dd(t)] (14)

ey(t) = Cex (t) (15)

Using the same idea proposed in [4] and [19] concerning the disturbance–decoupling
techniques, matrix H1 is selected such that

H1D = 0 (16)

Then, estimation error dynamic (14) can be simplified as:

ėx (t) =
r∑

i=1

hi [(H1Ai −L1iC)ex (t)+(H1Ahi −L2iC)ex (t−h)+H1Fie f (t)] (17)

To find simultaneously matrices H1 and H2 from Eqs. (13) and (16), one can define
the following augmented matrix:

[
H1 H2

] [
E D
C 0

]
= [

In 0
]

(18)

Under Assumption 3, H1 and H2 can be expressed by the following system:

[
H1 H2

] = [
In 0

] [
E D
C 0

]†
(19)

In contrast to the constant fault giving in [28] and [27], here time-varying faults
are considered. Then, it follows that ḟ (t) 
= 0. Consequently, the dynamic of fault
estimation error is given by the following expression:

ė f (t) = ḟa(t) − ˙̂f a(t) (20)

Then,

ė f (t) = ḟa(t) − �

r∑

i=1

hi Ni (ėy(t) + σey(t)) (21)

Under Assumption 5 and Remark 1, the closed loop of the T–S Descriptor System
without external disturbances becomes

Eẋ(t) =
r∑

i=1

hi [Ai x(t) − BKi x̂(t) + Ahi x(t − h) + Fi fa(t)

+ (In − BB†)Fi f̂a(t) − Fi f̂a(t)]
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Eẋ(t) =
r∑

i=1

hi [(Ai − BKi )x(t) + Ahi x(t − h) + BKiex (t) + Fie f (t)] (22)

3.2 Stability and Stabilization Analysis

Theorem 1 Considering system (22), under Assumptions 1, 2, 3 and 5, if there exist
symmetric positive definite matrices Q1, Z1, P2, Q2, Z2 and a positive definite matri-
ces P1 as well as Ni , Ki and M such that ∀i ∈ [1, . . . , r ], the following conditions
hold:

ETP1 = PT
1 E ≥ 0 (23)

(H1Fi )
TP2 = NiC (24)

φi < 0, i = 1, 2, . . . , r (25)

then the adaptive fuzzy observer proposed in (11) and the FTC designed in (12) can
realize that the state vector of overall system (22), the state estimation error and the
fault estimation error are uniformly bounded.
where

φi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ11
i ϕ12

i PT
1 BKi 0 PT

1 Fi 0 ϕ17
i

∗ −(Q1 + ETZ1E) 0 0 0 0 AT
h P1

∗ ∗ ϕ33
i ϕ34

i ϕ35
i ϕ36

i KT
i B

TP1

∗ ∗ ∗ −(Q2 + Z2) ϕ45
i ϕ46

i 0

∗ ∗ ∗ ∗ ϕ55
i FT

i HT
1 PT

2 FT
i P1

∗ ∗ ∗ ∗ ∗ ϕ66 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ77

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
in which

ϕ11
i = sym(PT

1 Ai − PT
1 BKi ) + Q1 − ETZ1E

ϕ12
i = PT

1 Ahi + ETZ1E

ϕ17
i = (Ai − BKi )

TP1

ϕ33
i = sym(P2H1Ai − P2L1iC) + Q2 − Z2

ϕ34
i = P2(T Ahi − L2iC) + Z2

ϕ35
i = − 1

σ
(AT

i H
T
1 P2 − CTY T

1i )H1Fi

ϕ36
i = (H1Ai − L1iC)TP2

ϕ45
i = − 1

σ
(AT

hi H
T
1 P2 − CTY T

2i )H1Fi

ϕ46
i = (H1Ahi − L2iC)TP2
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ϕ55
i = − 1

σ
(H1Fi )

TP2(H1Fi ) + 1

σμ
M

ϕ66 = −P2(h
2Z2)

−1P2; ϕ77 = −PT
1 (h2Z1)

−1P1

Proof See “Appendix A”.

Our objective now is to transform conditions in Theorem 1 in set of LMIs.

Theorem 2 Considering system (22), under Assumptions 1, 2, 3 and 5, if there exist
symmetric positive definite matrices Q̃1, Z̃1, X2, Q2, Z2 and a positive definite matri-
ces X1 as well as Ni ,Y1i , Y2i , M and Wi such that ∀i ∈ [1, . . . , r ] the following
conditions hold:

E X1 = XT
1 E

T
1 ≥ 0 (27)

Minimize η > 0 subject to [6]

[
ηIm (H1Fi )TX2 − NiC
∗ ηIn

]
> 0, i = 1, 2, . . . , r (28)

Ξi < 0, i = 1, 2, . . . , r (29)

where

Ξi =

⎡

⎢⎢⎣

Ξ11
i Ξ12

i Ξ13
i 0

∗ Ξ22
i Ξ23

i λ3 I
∗ ∗ Ξ33

i 0
∗ ∗ ∗ Ξ44

i

⎤

⎥⎥⎦ (30)

then the adaptive fuzzy observer proposed in (11) and the FTC designed in (12) can
realize that the state vector of overall system (22), the state estimation error and the
fault estimation error are uniformly bounded.
In this case, the gains of the adaptive fuzzy observer and controller are, respectively,
given by L1i = X−1

2 Y1i , L2i = X−1
2 Y2i and Ki = Wi X

−1
1 .

Ξ11
i =

[
sym(Ai X1 − BWi ) + Q̃1 − E Z̃1ET Ahi X1 + E Z̃1ET

∗ −(Q̃1 + E Z̃1ET)

]

Ξ12
i =

[
BWi 0 Fi 0
0 0 0 0

]
, Ξ13

i =
[

(Ai X1 − BWi )
T

(Ahi X1)
T

]

Ξ22
i =

[−λ3(X1 + XT
1 ) 0

∗ −2λ3 I

]
, Ξ23

i =

⎡

⎢⎢⎣

(BWi )
T

0
FT
i
0

⎤

⎥⎥⎦

Ξ33
i = [−λ2(X1 + XT

1 ) + λ22h
2 Z̃1

]
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Ξ44
i =

⎡

⎢⎢⎢⎢⎢⎣

sym(X2H1Ai −Y1i C)+Q2−Z2 X2H1Ahi −Y2i C+Z2 − 1
σ

(AT
hi H

T
1 P2−CTY T

2i )H1Fi (X2H1Ai −Y1i C)T

∗ −(Q2 + Z2) − 1
σ

(AT
hi H

T
1 P2 − CTY T

2i )H1Fi (X2H1Ahi − Y2i C)T

∗ ∗ − 1
σ

(H1Fi )TP2(H1Fi ) + 1
σμ

M (X2H1Fi )T

∗ ∗ ∗ −2λ1X2 + λ21h
2Z2

⎤

⎥⎥⎥⎥⎥⎦

Proof see “Appendix B”.

Remark 2 The actuator fault estimation for this class of systems is not fully inves-
tigated, and the problem is still open. In [12], the proposed result presents three
drawbacks: The first one is that the result is delay independent. The second one is
that the proposed LMI conditions require to choose some tuning matrices which need
to be fixed beforehand. The third one is that the controller and observer design are the
BMIs which are solved using a two-step algorithm.

4 Numerical Example

In this section, two examples are given to demonstrate the effectiveness of the proposed
methods.

Example 1 As stated in Remark 2, to show the conservativeness of our approach a
comparison with the result in [12] will be stated.

Consider the following T–S fuzzy descriptor system with time delay proposed in
[8] and [18]

⎧
⎪⎪⎨

⎪⎪⎩

Eẋ(t) =
3∑

i=1

hi [Ai x(t) + Ahi x(t − h) + Biu(t) + Dd(t)]

y(t) = Cx(t)

(31)

where

E =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ; A1 =
⎡

⎣
0 1 0
0 0 1
1 −6 0

⎤

⎦ ; A2 =
⎡

⎣
0 1 0
0 0 1
1 0 −6

⎤

⎦ ; A3 =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

Ahi =
⎡

⎣
0 0 0
0 0 0
0.8 0 0

⎤

⎦ ; Bi =
⎡

⎣
0
0
1

⎤

⎦ ; D =
⎡

⎣
1
0
1

⎤

⎦ ; C =
[
0 1 1
1 0 0

]
, i = 1, 2, 3

Applying Theorem 2, we get a feasible solution and we obtain the controller and
observer gains as follows:

K1 = [
3.2145 0.0920 3.4882

]
, K2 = [

3.7327 5.6808 −1.0278
]
, K3 = [

2.9409 4.3092 2.7649
]

L11 =
⎡

⎣
0.5832 0.8709
1.0490 0.5885

−0.3761 −0.3645

⎤

⎦ , L12 =
⎡

⎣
0.5997 0.8400
0.6547 −0.2518
0.0338 0.5042

⎤

⎦ , L13 =
⎡

⎣
0.0911 0.7414
0.7329 −0.0949

−0.2118 −0.1369

⎤

⎦

L21 =
⎡

⎣
0.6209 0.4146
0.0905 −0.3693
0.5872 0.1145

⎤

⎦ , L22 =
⎡

⎣
0.6258 0.3519
0.5347 0.0940
0.1344 −0.3350

⎤

⎦ , L23 =
⎡

⎣
0.1234 0.2435
0.4701 0.0217
0.4433 −0.0174

⎤

⎦
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Then, we apply Theorems 1 and 2 in [12], where delay-independent conditions have
been developed, and we find an infeasible problem.

Example 2 In this section, we consider a truck–trailer system in [12,28].
Considering the following dynamic model of the truck–trailer system,

ẋ1(t) = −a
vt̄

Lt0
x1(t) − (1 − a)

vt̄

Lt0
x1(t − h) + vt̄

lt0
u(t)

ẋ2(t) = a
vt̄

Lt0
x1(t) + (1 − a)

vt̄

Lt0
x1(t − h)

ẋ3(t) = vt̄

t0
sin

[
x2(t) + a

vt̄

2L
x1(t) + (1 − a)

vt̄

2L
x1(t − h)

]
(32)

Model parameters are: a = 0.7, l = 2.8, L = 5.5, v = −1, t̄ = 2, t0 = 0.5 and
h = 0.5.

To have the T–S descriptor representation, the following state variable is introduced:

x4(t) = x2(t) − a
vt̄

Lt0
x1(t) − (1 − a)

vt̄

Lt0
x1(t − h) (33)

The following fuzzy rules can be employed:
Rule 1: If θ(t) = x2(t) + a vt̄

Lt0
x1(t) + (1 − a) vt̄

Lt0
x1(t − h) is about 0, then

{
Eẋ(t) = A1x(t) + Ah1x(t − h) + B1u(t) + Dd(t)

y(t) = Cx(t)

Rule 2: If θ(t) = x2(t) + a vt̄
Lt0

x1(t) + (1 − a) vt̄
Lt0

x1(t − h) is about π or −π , then

{
Eẋ(t) = A2x(t) + Ah2x(t − h) + B2u(t) + Dd(t)

y(t) = Cx(t)

where

E =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎥⎦ ; A1 =

⎡

⎢⎢⎢⎢⎣

−a vt̄
Lt0

0 0 0

a vt̄
Lt0

0 0 0

−a v2 t̄2
2Lt0

vt̄
t0

0 0

−a vt̄
Lt0

1 0 −1

⎤

⎥⎥⎥⎥⎦
; Ah1 =

⎡

⎢⎢⎢⎢⎣

−(1 − a) vt̄
Lt0

0 0 0

(1 − a) vt̄
Lt0

0 0 0

(1 − a) v2 t̄2
2Lt0

0 0 0

−(1 − a) vt̄
Lt0

0 0 0

⎤

⎥⎥⎥⎥⎦
;

B1 =

⎡

⎢⎢⎣

vt̄
lt0
0
0
0

⎤

⎥⎥⎦
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A2 =

⎡

⎢⎢⎢⎢⎣

−a vt̄
Lt0

0 0 0

a vt̄
Lt0

0 0 0

−a ϕv2 t̄2

2Lt0
ϕvt̄
t0

0 0

−a vt̄
Lt0

1 0 −1

⎤

⎥⎥⎥⎥⎦
; Ah1 =

⎡

⎢⎢⎢⎢⎣

−(1 − a) vt̄
Lt0

0 0 0

(1 − a) vt̄
Lt0

0 0 0

(1 − a)
ϕv2 t̄2

2Lt0
0 0 0

−(1 − a) vt̄
Lt0

0 0 0

⎤

⎥⎥⎥⎥⎦
;

B2 =

⎡

⎢⎢⎣

vt̄
lt0
0
0
0

⎤

⎥⎥⎦ ; C = I4; D =

⎡

⎢⎢⎣

0
0
vt̄
t0
0

⎤

⎥⎥⎦

we set ϕ = 10t0
π

and d(t) = sin(θ(t)) − θ(t)
Consider now actuator faults, it is supposed that F1 = B1 and F2 = B2.
The membership functions for rules 1 and 2 are designed as follows:

h1(θ(t)) =
(

1

1 + exp(−3(θ(t) + 0.5π))

)

(
1 − 1

1 + exp(−3(θ(t) − 0.5π))

)
, h2(θ(t)) = 1 − h1(θ(t)) (34)

By solving (19), H1 and H2 can be given as follows

H1 =

⎡

⎢⎢⎣

0.5 0 0 0
0 0.5 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ ; H2 =

⎡

⎢⎢⎣

0.5 0 0 0
0 0.5 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

By choosing the tuning parameter values as follows: λ1 = 2, λ2 = 3, λ3 = 3, σ =
2, μ = 0.2, � = 0.5 and η = 0.01.

Within MATLAB LMI Toolbox, we can solve the optimization problem of Theo-
rem 2 and we obtain the following feasible solution:

X1 =

⎡

⎢⎢⎣

63.5299 9.2108 −24.9982 0
9.2108 8.5007 17.5163 0

−24.9982 17.5163 203.4188 0
27.2301 10.4030 −8.4407 106.0576

⎤

⎥⎥⎦ ,

X2 =

⎡

⎢⎢⎣

257.8177 −0.1618 0.1288 0.0202
−0.1618 169.4268 0.1317 0.0452
0.1288 0.1317 170.0010 −0.0025
0.0202 0.0452 −0.0025 170.0363

⎤

⎥⎥⎦
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Fig. 1 State x1(t) and its estimated x̂1(t) with a time-varying fault fa1
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Fig. 2 State x2(t) and its estimated x̂2(t) with a time-varying fault fa1
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Fig. 3 State x3(t) and its estimated x̂3(t) with a time-varying fault fa1

Let consider the first time-varying fault as follows:

fa1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 t ≤ 4.5

1.5 4.5 < t ≤ 7

0 7 < t ≤ 10

0.5 + 0.3 sin(7t) 10 < t ≤ 14

0 t > 14

(35)
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Fig. 4 State x4(t) and its estimated x̂4(t) with a time-varying fault fa1
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Fig. 5 Actuator fault fa1(t) and its estimated f̂a1(t)
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Fig. 6 State x1(t) and its estimated x̂1(t) with a time-varying fault fa2

Simulation results of this example are illustrated in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. It is
quite clear to see that the adaptive observer proposed in this work can estimate system
state and actuator faults (Fig. 9).

Consider now the second time-varying fault as follows:

fa2(t) =

⎧
⎪⎨

⎪⎩

0 t ≤ 7

0.3(t − 3) 7 < t ≤ 11

0 t > 11

(36)
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Fig. 7 State x2(t) and its estimated x̂2(t) with a time-varying fault fa2
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Fig. 8 State x3(t) and its estimated x̂3(t) with a time-varying fault fa2
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Fig. 9 State x4(t) and its estimated x̂4(t) with a time-varying fault fa2

By referring to simulation results, it can be deduced that the use of the adaptive
fuzzy observer-based fault-tolerant controller can rapidly recover the performance
and the stability of the closed-loop system in the presence of time-varying fault which
gives us a good estimation of the states and the actuator faults. As shown in Figs. 5
and 10, the two faults which are considered in this paper are rapidly and accurately
estimated.
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Fig. 10 Actuator fault fa2(t) and its estimated f̂a2(t)

For the two examples of actuator faults, by choosing � = 0.5 in the simulation
example, the derivative of fa1(t) and fa2(t) over time are norm-bounded by f11max =
2.1 and f12max = 0.3, respectively. δ1 = μ

σ
f 211maxλmax(�

−1M−1�−1) = 0.0273 and
δ2 = μ

σ
f 212maxλmax(�

−1M−1�−1) = 5.5773.10−4 reduce the radius of the ball in
which the estimation errors converge.

5 Conclusion

In this article, an adaptive fuzzy observer-based actuator fault-tolerant controller
design for Takagi–Sugeno fuzzy descriptor systemwith time delay and external distur-
bances has been investigated. The proposed strategy allows to estimate simultaneously
the system states and time-varying actuator faults. The delay-dependent stabilization
conditions are presented in terms of LMIs which can be easily solved usingMATLAB
LMI Toolbox. A simulation results are given to show the effectiveness of the design
method.

Appendix A: Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional:

V (t) = (Ex(t))TP1x(t) +
∫ t

t−h
xT(s)Q1x(s) ds + eTx (t)P2ex (t)

+
∫ t

t−h
eTx (s)Q2ex (s) ds

+ 1

σ
eTf (t)�

−1e f (t) + h
∫ 0

−h

∫ t

t+θ

(Eẋ(s))TZ1(Eẋ(s)) ds dθ

+ h
∫ 0

−h

∫ t

t+θ

ėTx (s)Z2ėx (s) ds dθ (37)
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The time derivative of V (t) is given by:

V̇ (t) = (Eẋ(t))TP1x(t) + (Ex(t))TP1 ẋ(t) + xT(t)Q1x(t)

− xT(t − h)Q1x(t − h) + 2ėTx (t)P2ex (t)

+ eTx (t)Q2ex (t) − eTx (t − h)Q2ex (t − h) + 2

σ
eTf (t)�

−1ė f (t)

+ h2[(Eẋ(t))TZ1(Eẋ(s))]
− h

∫ t

t−h
(Eẋ(s))TZ1(Eẋ(s)) ds + h2[ėTx (s)Z2ėx (s)]

− h
∫ t

t−h
ėTx (s)Z2ėx (s) ds (38)

By using Lemma 1, we have:

2

σ
eTf (t)�

−1 ḟa(t) � 1

σμ
eTf (t)Me f (t) + μ

σ
ḟ Ta (t)�−1M−1�−1 ḟa(t)

2

σ
eTf (t)�

−1 ḟa(t) � 1

σμ
eTf (t)Me f (t) + δ (39)

where
δ = μ

σ
f 21maxλmax(�

−1M−1�−1) (40)

By using (23) and substituting (22), (17) and (39) into Eq. (38), one can obtain:

V̇ (t) ≤ x(t)T[PT
1 (Ai − BKi ) + (AT

i − KT
i B

T)P1 + Q1]x(t)
+ 2x(t)TPT

1 Ahi x(t − h) + 2x(t)TPT
1 BKiex (t) + 2x(t)TPT

1 Fie f (t)

−xT(t − h)Q1x(t − h) + eTx (t)[P2(T Ai − L1iC)

+(T Ai − L1iC)TP2 + Q2]ex (t) + 2eTx (t)P2(T Ahi − L2iC)ex (t − h)

− eTx (t − h)Q2ex (t − h) + 1

σμ
eTf (t)Me f (t) + δ

+ h2[(Eẋ(t))TZ1(Eẋ(s))] − h
∫ t

t−h
(Eẋ(s))TZ1(Eẋ(s)) ds

+ h2[ėTx (s)Z2ėx (s)] − h
∫ t

t−h
ėTx (s)Z2ėx (s) ds (41)

Applying Jessen’s inequality [9] to deal with the cross product items, we obtain

−h
∫ t

t−h
(Eẋ(s))TZ1(Eẋ(s)) ds ≤

[
Ex(t)

Ex(t − h)

]T [−Z1 Z1
∗ −Z1

] [
Ex(t)

Ex(t − h)

]

(42)

≤
[

x(t)
x(t − h)

]T [−ETZ1E ETZ1E
∗ −ETZ1E

] [
x(t)

x(t − h)

]
(43)
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−h
∫ t

t−h
ėTx (s)Z2ėx (s) ds ≤

[
ex (t)

ex (t − h)

]T [−Z2 Z2
∗ −Z2

] [
ex (t)

ex (t − h)

]
(44)

Noting the extended state vector as follows:

ξ(t) =
[
xᵀ(t) xᵀ(t − h) eTx (t) eTx (t − h) eTf (t)

]T
(45)

Then, we can write :

V̇ (t) ≤ ξ Tφ11
i ξ(t) + h2[(Eẋ(t))TZ1(Eẋ(s))] + h2[ėTx (s)Z2ėx (s)] + δ (46)

where

φ11
i =

⎡

⎢⎢⎢⎢⎣

ϕ11
i ϕ12

i PT
1 BKi 0 PT

1 Fi
∗ −(Q1 + ETZ1E) 0 0 0
∗ ∗ ϕ33

i ϕ34
i ϕ35

i∗ ∗ ∗ −(Q2 + Z2) ϕ45
i∗ ∗ ∗ ∗ ϕ55
i

⎤

⎥⎥⎥⎥⎦
(47)

Denote

φi =
⎡

⎣
φ11
i φ12

i φ13
i

∗ −(h2P−1
2 Z2P

−1
2 )−1 0

∗ ∗ −(h2P−1
1 Z1P

−T
1 )−1

⎤

⎦ (48)

where

(φ12
i )T = [

0 0 P2(T Ai − L1iC) P2(T Ahi − L2iC) P2(T Fi )
]

(φ13
i )T = [

PT
1 (Ai − BKi ) PT

1 Ahi PT
1 BKi 0 PT

1 Fi
]

By using Schur complement, inequality (25) is equivalent to ξ Tφ11
i ξ(t)+h2[(Eẋ(t))T

Z1(Eẋ(s))] + h2[ėTx (s)Z2ėx (s)] < 0.
If condition (25) holds, it follows from (41) that

V̇ (t) ≤ −ζ‖ξ(t)‖2 + δ (49)

where ζ = λmin(−φi )

It follows that V̇ (t) � 0 for ζ‖ξ(t)‖2 > δ, and according to Lyapunov stability
theory, ξ(t) will converge to a small set � = {ξ(t)/‖ξ(t)‖2 ≤ δ

ζ
} ; thus, ξ(t) is

uniformly bounded.
The proof is completed.
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Appendix B: Proof of Theorem 2

We can write inequality (26) in this form

Λi =
⎡

⎣
Λ11

i Λ12
i Λ13

i∗ Λ22
i Λ23

i∗ ∗ Λ33
i

⎤

⎦ < 0 (50)

where

Λ11
i =

[
sym(PT

1 Ai − PT
1 BKi ) + Q1 − ETZ1E PT

1 Ahi + ETZ1E
∗ −(Q1 + ETZ1E)

]

Λ12
i =

[
PT
1 BKi 0 PT

1 Fi 0
0 0 0 0

]
, Λ13

i =
[

(Ai − BKi )
TP1

AT
hi P1

]

Λ22
i =

⎡

⎢⎢⎢⎢⎢⎣

sym(P2H1Ai −P2L1i C)+Q2 − Z2 P2(H1Ahi −L2i C)+Z2 − 1
σ

(AT
hi H

T
1 P2−CTY T

2i )H1Fi (H1Ai −L1i C)TP2

∗ −(Q2 + Z2) − 1
σ

(AT
hi H

T
1 P2 − CTY T

2i )H1Fi (H1Ahi − L2i C)TP2

∗ ∗ − 1
σ

(H1Fi )TP2(H1Fi ) + 1
σμ

M (H1Fi )TP2

∗ ∗ ∗ −P2(h2Z2)
−1P2

⎤

⎥⎥⎥⎥⎥⎦

Λ33
i = [ −PT

1 (h2Z1)
−1P1

]

Consider the following symmetric matrix:

Z =
⎡

⎣
Z11 0 0
0 Z22 0
0 0 Z33

⎤

⎦

where Z11 = diag(P−T
1 , P−T

1 ),Z22 = diag(P−T
1 , I, I, I ) and Z33 = P−T

1
We can transform inequality (50) by pre- and post-multiplying it by Z, and we

obtain this form:

⎡

⎢⎣
Z11Λ

11
i Z

T
11 Z11Λ

12
i Z

T
22 Z11Λ

13
i Z

T
33

∗ Z22Λ
22
i Z

T
22 Z22Λ

23
i Z

T
33

∗ ∗ Z33Λ
33
i Z

T
33

⎤

⎥⎦ < 0 (51)

By using Lemma 2, we obtain the following inequalities:

− P2(h
2Z2)

−1P2 ≤ −2λ1P2 + λ21h
2Z2 (52)

Z33Λ
33
i Z

T
33 = −P−T

1 (h2 Z̃1)
−1P−1

1 ≤ −λ2(P
−T
1 + P−1

1 ) + λ22h
2 Z̃1 (53)

Z22Λ
22
i Z

T
22 ≤ −λ3(Z22 + Z

T
22) − λ23(Λ

22
i )−1 (54)
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By applying Schur complement, we obtain the following inequality:

⎡

⎢⎢⎢⎢⎣

Z11Λ
11
i Z

T
11 Z11Λ

12
i Z

T
22 Z11Λ

13
i X

T
33 0

∗ −λ3(Z22 + Z
T
22) Z22Λ

23
i Z

T
33 λ3 I

∗ ∗ Z33Λ
33
i Z

T
33 0

∗ ∗ ∗ Λ22
i

⎤

⎥⎥⎥⎥⎦
< 0 (55)

By posing X1 = P−1
1 , X2 = P2, Z̃1 = P−1

1 Z1P
−T
1 , Q̃1 = P−T

1 Q1P
−1
1 ,Y1i =

P2L1i ,Y2i = P2L2i and Wi = Ki P
−1
1 , we obtain inequality (30).

The proof is completed.
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