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Abstract This paper is concerned with the problem of H∞ control for a class of
switched systems. Time delays that appear in both the state and the output are consid-
ered. In addition, the switching of the controllers experiences a time delay with respect
to that of subsystems, which is called “asynchronous switching.” By the utilization
of the piecewise Lyapunov function technique, sufficient conditions that ensure the
exponential stability and a weighted H∞ performance level for the closed-loop system
under a mode-dependent average dwell time (MDADT) scheme is proposed. MDADT
means that each subsystem has its own average dwell time (ADT), which is more gen-
eral than ADT. Two types of MDADT are gained by dividing all the subsystems
into two parts. Then, the asynchronous H∞ dynamical output feedback controller
is designed in terms of linear matrix inequalities. Finally, a numerical example is
provided to demonstrate the effectiveness of the proposed method.

Keywords Asynchronous switching · Mode-dependent average dwell time ·
Time-varying delay · H∞ control · Switched system

1 Introduction

Switched systems belong to an important class of hybrid systems, represented by a
finite number of subsystems and a switching signal orchestrating the switching among
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them. Due to the significance in theoretical development and practical application, the
investigation of switched systems has been attracting increasing attention. A consid-
erable number of results have been reported [2,7,8,16]. Since time-delay phenomena
exist widely in many engineering systems, which may lower the system performance
and even lead to system instability, switched delay systems have been extensively
studied [5,13,17,35,38].

Switched systems display complicated dynamical behavior. Switched systems
might be stable or unstable for different switching signal. Switched systems might
be unstable even if each subsystem is stable [9]. Thus, it is necessary to co-design the
switching signal and controller to obtain the performance of the system.

For the switching signal design, an effectivemethod is average dwell time (ADT) [6,
34], which has been widely used to investigate the stability and stabilization problems
of switched systems [10,23,25]. Recently, the authors in [32] put forward mode-
dependent average dwell time (MDADT) in which each subsystem has its own ADT.
It has been proved that MDADT is a more general class of ADT [26,27,33].

For the controller design, the mainly used technique is linear matrix inequalities
(LMIs) [1,4]. Various controllers have been designed in [10,14,15,18,22–25,30]with-
out asynchronous switching. However, as stated in [36,37], in actual operation, it takes
some time to identify the active subsystem and apply the matched controller, so there
inevitably exists asynchronous switching between the subsystems and controllers.
The results related to the switched systems under asynchronous switching have been
reported. To mention a few, asynchronous H∞ filtering problem has been investi-
gated in [28,29], asynchronous output feedback control problem has been addressed
in [3,20], and asynchronous state feedback control problem has been studied in
[11,12,21,31]. In practice, it is often not possible to obtain full information on the
state variables to use them for feedback control. This makes it necessary to study the
dynamical output feedback (DOF) control problem [20]. To the best of our knowledge,
the asynchronous H∞ DOF control problem of switched systems with time-varying
delay, especially based on the MDADT approach, has been rarely studied. The pres-
ence of time-varying delay makes the DOF control problem much more complicated.
Meanwhile, its presence adds the difficulty for the design of the DOF controller. How
to choose the piecewise Lyapunov function technique to establish solvable conditions
for the DOF controller is a crucial issue, which has not been resolved. Thus, research
in this area should be of both theoretical and practical importance, which motivates
us to undertake this work.

In this paper, we are interested in investigating the asynchronous H∞ DOF control
for switched time-varying delay systems. By using the MDADT approach combined
with the piecewise Lyapunov function technique, sufficient conditions are proposed to
guarantee the exponential stability with a weighted H∞ performance for the switched
closed-loop system. By dividing the subsystems into two parts, two types of MDADT
are gained. Moreover, the conditions for solving the DOF controller are given in terms
of LMIs. Finally, the simulation result is provided to illustrate the effectiveness of the
proposed theory. The contribution of this paper is as follows: (1) The DOF controller
under asynchronous switching for switched time-varying delay systems is designed;
(2) the weighted H∞ performance is introduced to study the DOF control problem
of switched time-varying delay systems, which has rarely been addressed before;
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(3) a more general class of switching signal, i.e., the MDADT switching signal, is
considered; (4) two types of smaller MDADT are gained.

The remainder of the article is organized as follows. Preliminaries and problem
formulation are introduced in Sect. 2. Section 3 presents the main results. A numerical
example is provided in Sect. 4. The conclusions are summarized in Sect. 5.

1.1 Notations

R
n denotes the n-dimensional Euclidean space.Rm×n is the set of all realm×n matri-

ces. P > 0 means that P is a positive definite symmetric matrix. λmin(P) (λmax (P))

is the minimum (maximum) eigenvalue of matrix P . AT denotes the transpose of
matrix A. * stands for the symmetric terms in matrices. || · || refers to the Euclidean
vector norm. I and 0 denote the identity matrix and the zero matrix with appropriate
dimension, respectively. diag{· · · } stands for a block diagonal matrix. L2[0,∞) is the
space of square-integrable vector functions over [0,∞). N represents the set of all
nonnegative integers.

2 Problem Formulation and Preliminaries

Consider a class of switched delay systems

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t − d(t)) + Bσ(t)u(t) + Eσ(t)ω(t),
y(t) = Cσ(t)x(t) + Fσ(t)x(t − d(t)) + Gσ(t)ω(t),
z(t) = Lσ(t)x(t) +Uσ(t)x(t − d(t)) + Hσ(t)ω(t),
x(t) = ϕ(t), t ∈ [−h, 0],

(1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control input, y(t) ∈ Rny is the mea-
surement output, z(t) ∈ Rnz is the controller output, ω(t) ∈ Rnω is the disturbance
input which belongs to L2[0,∞). d(t) denotes the time-varying delay satisfying 0 ≤
d(t) ≤ h and ḋ(t) ≤ hd < 1. ϕ(t) is a vector-valued initial function on [−h, 0].σ (t) :
[t0,∞) → M = {1, 2, ..., M}, called the switching signal, is a piecewise right contin-
uous function.M is the number of subsystems, and t0 is the initial time. For a switching
sequence of the subsystems Σ = {(σ (to), to), (σ (t1), t1), ..., (σ (tk), tk), ...|k ∈ N},
when t ∈ [tk, tk+1), σ (t) = σ(tk) = p ∈ M, we say that the pth subsystem is active.
Ap, Dp, Bp, Ep, Cp, Fp, Gp, L p,Up, and Hp are known real constant matrices with
appropriate dimensions.

Due to the asynchronous switching between the controllers and subsystems, we
consider the dynamical output feedback (DOF) controller as follows:

{
ẋc(t) = Ac,σ (t−Δk )xc(t) + Bc,σ (t−Δk )y(t), ∀ t ∈ [tk, tk+1), k ∈ N

u(t) = Cc,σ (t−Δk ), xc(0) = 0,
(2)

where Δ0 = 0, and Δk < tk+1 − tk represents the delayed period.
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Let σ(tk) = p ∈ M, σ (tk−1) = q ∈ M, p �= q. Applying the controller (2) to
system (1), we obtain the following closed-loop system

⎧
⎨

⎩

˙̄x(t) = Āσ̃ x̄(t) + D̄σ̃ x̄(t − d(t)) + Ēσ̃ ω(t),
z(t) = L̄ p x̄(t) + Ūp x̄(t − d(t)) + H̄pω(t), ∀t ∈ [tk, tk+1), k ∈ N

x̄(t) = ϕ̄(t), t ∈ [−h, 0],
(3)

where

σ̃ =
{
pq, t ∈ [tk, tk + Δk)

p, t ∈ [tk + Δk, tk+1),

x̄(t) = [
xT(t) xTc (t)

]T
, H̄p = [

Hp
]
, L̄ p = [

L p 0
]
, Ūp = [

Up 0
]
,

Ā p =
[

Ap BpCc,p

Bc,pCp Ac,p

]

, D̄p =
[

Dp 0
Bc,pFp 0

]

, Ē p =
[

Ep

Bc,pG p

]

,

Ā p =
[

Ap BpCc,q

Bc,qCp Ac,q

]

, D̄pq =
[

Dp 0
Bc,q Fp 0

]

, Ē pq =
[

Ep

Bc,qG p

]

.

Now, we state the following definitions and lemma for latter development.

Definition 1 [32] For a switching signal σ(t) and any T > t ≥ 0, let Nσ p(t, T )

be the switching numbers that the pth subsystem is activated over the interval [t, T )

and Tp(t, T ) denote the total running time of the pth subsystem over the interval
[t, T ), p ∈ M. We say that σ(t) has a mode-dependent average dwell time (MDADT)
τp if there exist positive numbers N0p (we call N0p the mode-dependent chatter
bounds) and τp such that

Nσ p(t, T ) ≤ N0p + Tp(t, T )

τp
. (4)

Definition 2 [17] The equilibrium x̄ = 0 of closed-loop system (3) with w(t) = 0 is
globally uniformly exponentially stable (GUES) under certain switching signal σ(t)
and initial condition x̄(t0), if there exist constants δ > 0 and η > 0 such that the
solution of the system satisfies

||x̄(t)|| ≤ δe−η(t−to) ||x̄(t0)||c1 ,∀t ≥ t0, (5)

where ||x̄(t0)||c1 = sup−h≤θ≤0
{||x̄(t0 + θ)|| , ∣∣∣∣ ˙̄x(t0 + θ)

∣
∣
∣
∣
}
.

Definition 3 For the given constants αp > 0 and γ > 0, system (3) is said to be
GUES with a weighted H∞ performance γ , if the following conditions are satisfied:

(1) System (3) is exponentially stable with w(t) = 0;
(2) Under zero initial condition, i.e., ϕ̄(t) = 0, t ∈ [−h, 0], it holds for any nonzero

w(t) ∈ L2[0,∞) that

∫ ∞

t0
exp

⎧
⎨

⎩
−

M∑

p=1

[
αpTp(t0, t)

]

⎫
⎬

⎭
zT(t)z(t)dt ≤ γ 2

∫ ∞

t0
wT(t)w(t)dt. (6)
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Remark 1 The standard H∞ performance, which has been commonly adopted for
non-switched systems, cannot be achieved in general for switched systems with an
ADT switching. Thus, weighed H∞ performance with the weighted term e−αt is
used in [23,34]. In this paper, since the MDADT switching technique is used, the
weighted term is replaced by exp{−∑M

p=1[αPTp(t0, t)]}. It can be seen that when
αp = α,∀p ∈ M, Definition 3 is turned into that in [23,34]. Thus, Definition 3 can
be viewed as an extension of that in [23,34].

Lemma 1 [38] Let x(t) ∈ R
n be a vector-valued function with first-order continuous-

derivative entries. Then, the following integral inequality holds for any matrices
N1, N2 ∈ R

n×n and X = XT > 0, and a scalar function 0 ≤ d(t) ≤ h :

−
∫ t

t−d(t)
ẋT(s)X ẋ(s)ds ≤ ζT(t)

[
NT
1 + N1 −NT

1 + N2

∗ −NT
2 + N2

]

ζ(t)

+ hζT(t)

[
NT
1

NT
2

]

X−1 [ N1 N2
]
ζ(t), (7)

where ζ(t) = [xT(t) xT(t − d(t))]T.
Lemma 2 [1] (Schur complement) For a given symmetric matrix with the partition

W =
[
W11 W12
W21 W22

]

,

where W11 and W22 is a square matrix and WT
12 = W21, the following three conditions

are equivalent

(1) W < 0;
(2) W11 < 0 and W22 − WT

12W
−1
11 W12 < 0;

(3) W22 < 0 and W11 − W12W
−1
22 WT

12 < 0.

3 Main Results

3.1 Stability and H∞ Performance Analysis

In this section,we focus on the stability and H∞ performance of the closed-loop system
(3) with asynchronous behaviors. For concise notation, let T�(0, t) (T�(0, t)) represent
the total periods that the controllers and the subsystems are matched (unmatched) dur-
ing [0, t). Let T�p(0, t) (T�p(0, t)) denote the total running time of the pth subsystem
controlled by the matched (unmatched) controller during [0, t).

The following theorem presents a sufficient condition of exponential stability for
the system (3) with w(t) = 0.

Theorem 1 For the switched system (3) with w(t) = 0, let αp > 0, βP , μp ≥ 1 and
μ̂p ≥ 1, p ∈ M be given constants, if there exist matrices Pp > 0, Q p > 0, Sp > 0,
Ppq > 0, Q pq > 0 and Spq > 0, such that ∀ (p, q) ∈ M × M, p �= q,
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⎡

⎢
⎢
⎣

Γ
p
11 Γ

p
12 h ĀT

pK
T

∗ Γ
p
22 hD̄T

pK
T

∗ ∗ −hS−1
p

⎤

⎥
⎥
⎦ < 0, (8)

⎡

⎢
⎢
⎣

Γ
pq
11 Γ

pq
12 h ĀT

pq K
T

∗ Γ
pq
22 hD̄T

pq K
T

∗ ∗ −hS−1
pq

⎤

⎥
⎥
⎦ < 0, (9)

Pp ≤ μp Ppq , Qp ≤ μpQ pq , Sp ≤ μpSpq ,

Ppq ≤ μ̂p Pp, Qpq ≤ μ̂pQ p, Spq ≤ μ̂pSq , (10)

where

Γ
p
11 = ĀT

p Pp + Pp Āp + αp Pp + Qp,

Γ
p
12 = Pp D̄p + e−αph KTK ,

Γ
p
22 = −(1 − hd)e

−αph Q p − 2e−αph KTK + he−αph KTS−1
p K ,

Γ
pq
11 = ĀT

pq Ppq + Ppq Āpq − βp Ppq + Qpq ,

Γ
pq
12 = Ppq D̄pq + KTK ,

Γ
pq
22 = −(1 − hd)Qpq − 2KTK + hKTS−1

pq K .

Then, the closed-loop system (3) is GUES for any switching signal σ(t) with the
following MDADT

τp ≥ τ ∗
p = ln(μpμ̂pμ̃p)

αp
, βp + αp ≤ 0,

τp ≥ τ ∗
p = ln(μpμ̂pμ̃p) + (αp + βp)ΔpM

αp
, βp + αp > 0, (11)

where μ̃p = max
q∈M,q �=p

{μqp}, μqp = eαq+βp , ΔpM = max T�p(tk, tk+1),∀k ∈ N.

Proof According to the value of αp +βp, we divide all the subsystems into two parts:
if αp + βp ≤ 0, the subsystem belongs to set Ψ1 = {1, . . . , l}; otherwise, it belongs
to set Ψ2 = {l + 1, . . . , M}.

For ∀t ∈ [tk, tk+1), k ∈ N, let t0 = 0, and define K = [I 0]. Choose a piecewise
Lyapunov function of the following form:

V (t) = x̄T(t)Pσ̃ x̄(t) +
∫ t

t−d(t)
eκ(t−s) x̄T(s)Qσ̃ x̄(s)ds

+
∫ 0

−h

∫ t

t+θ

eκ(t−s) ˙̄xT(s)KTSσ̃ K ˙̄x(s)dsdθ, (12)
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where

κ =
{

βp, t ∈ [tk, tk + Δk)

−αp, t ∈ [tk + Δk, tk+1).

Taking the derivation of the Lyapunov function, we have

V̇ (t) ≤ κV (t) − κ x̄T(t)Pσ̃ x̄(t) + 2 ˙̄xT(t)Pσ̃ x̄(t)

+ x̄T(t)Qσ̃ x̄(t) + h ˙̄xT(t)KTSσ̃ K ˙̄x(t)ds
− (1 − hd)v x̄

T(t − d(t))Qσ̃ x̄(t − d(t))

− v

∫ t

t−d(t)

˙̄xT(s)KTSσ̃ K ˙̄x(s)ds, (13)

where

v =
{
1, t ∈ [tk, tk + Δk)

e−αph, t ∈ [tk + Δk, tk+1).

Define ξ(t) = [x̄T(t) x̄T(t −d(t))]T, it follows from Lemma 1 with N1 = 0, N2 = I :

−v

∫ t

t−d(t)

˙̄xT(s)KTSσ̃ K ˙̄x(s)ds

≤ v

{

ξT(t)

[
0 KTK
∗ −2KTK

]

ξ(t) + hx̄T(t − d(t))KTS−1
σ̃

K x̄(t − d(t))

}

. (14)

From (12)–(14), it yields that

V̇ (t) ≤
{

βpV (t) + ξT(t)(Γ pq + dΘpq SpqΘT
pq)ξ(t), t ∈ [tk, tk + Δk)

−αpV (t) + ξT(t)(Γ p + dΘpSpΘT
p )ξ(t), t ∈ [tk + Δk, tk+1),

(15)

where

Γ p=
[

Γ
p
11 Γ

p
12

∗ Γ
p
22

]

, Γ pq=
[

Γ
pq
11 Γ

pq
12

∗ Γ
pq
22

]

,Θp=
[
ĀT
p KT

D̄T
p KT

]

,Θpq=
[
ĀT
pq KT

D̄T
pq KT

]

.

By Schur complement Lemma, (8) and (9) imply

V̇ (t) ≤
{

βpV (t), t ∈ [tk, tk + Δk)

−αpV (t), t ∈ [tk + Δk, tk+1)
, (16)

which gives that

V (t) ≤
{
eβp(t−tk )V (tk), t ∈ [tk, tk + Δk)

e−αp(t−tk−Δk )V (tk + Δk), t ∈ [tk + Δk, tk+1).
(17)
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Using (10) and (12), we get

V (tk) ≤ μ̂pμ̃pV (t−k ),

V (tk + Δk) ≤ μpV ((tk + Δk)
−). (18)

For ∀t ∈ [tk, tk+1), combining (17) and (18) yields

V (t) ≤ μσ(tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)V (tk)

≤ μσ(tk )μ̂σ (tk )μ̃σ (tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)V (t−k )

≤ μσ(tk−1)μσ(tk )μ̂σ (tk )μ̃σ (tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)

× eβσ(tk−1)T�(tk−1,tk )−ασ(tk−1)T�(tk−1,tk )V (tk−1)

≤
k∏

i=k−1

(μσ(ti )μ̂σ (ti )μ̃σ (ti ))e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)

× eβσ(tk−1)T�(tk−1,tk )−ασ(tk−1)T�(tk−1,tk )V (t−k−1)

≤ · · ·

≤
k∏

i=1

(μσ(ti )μ̂σ (ti )μ̃σ (ti ))e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)

× e
∑k

i=1

[
βσ(ti−1)T�(ti−1,ti )−ασ(ti−1)T�(ti−1,ti )

]

V (t0)

= exp

⎧
⎨

⎩

M∑

p=1

[
βpT�p(0, t) − αpT�p(0, t)

]

⎫
⎬

⎭

M∏

p=1

(μpμ̂pμ̃p)
Nσ p(0,t)V (t0)

= Ω1Ω2V (t0), (19)

where

Ω1 = exp

⎧
⎨

⎩

l∑

p=1

[
βpT�p(0, t) − αpT�p(0, t)

]

⎫
⎬

⎭

l∏

p=1

(μpμ̂pμ̃p)
Nσ p(0,t) ,

Ω2 = exp

⎧
⎨

⎩

M∑

p=l+1

[
βpT�p(0, t) − αpT�p(0, t)

]

⎫
⎬

⎭

M∏

p=l+1

(μpμ̂pμ̃p)
Nσ p(0,t) .

For Ω1 noticing that βp ≤ −αp, together with Definition 1, we get

Ω1 ≤ exp

⎧
⎨

⎩

l∑

p=1

[−αpTp(0, t)
]

⎫
⎬

⎭

l∏

p=1

(μpμ̂pμ̃p)
Nσ p(0,t)

≤ exp

⎧
⎨

⎩

l∑

p=1

[

N0p ln(μpμ̂pμ̃p) + Tp(0, t)

(
ln(μpμ̂pμ̃p)

τp
− αp

)]
⎫
⎬

⎭
. (20)
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For Ω2, noticing that T�p(0, t) ≤ ΔpM Nσ p(0, t), together with Definition 1, we have

Ω2 ≤ exp

⎧
⎨

⎩

M∑

p=l+1

[−αpTp(0, t) + (αp + βp)ΔpM Nσ p(0, t)
]

⎫
⎬

⎭

M∏

p=l+1

(μpμ̂pμ̃p)
Nσ p(0,t)

≤ exp

⎧
⎨

⎩

M∑

p=l+1

[
N0p ln(μpμ̂pμ̃p) + (αp + βp)ΔpM

]

⎫
⎬

⎭

× exp

⎧
⎨

⎩

M∑

p=l+1

[(
ln(μpμ̂pμ̃p) + (αp + βp)ΔpM

τp
− αp

)

Tp(0, t)

]
⎫
⎬

⎭
. (21)

Define

π1 = min
p,q∈M,p �=q

{λmin(Pp), λmin(Ppq)},

π2 = max
p∈M{λmax(Pp)} + h max

p∈M{λmax(Qp)} + h2

2
max
p∈M{λmax(Sp)}.

Set

δ =
√

π2

π1
exp

⎧
⎨

⎩

1

2

l∑

p=1

[
N0p ln(μpμ̂pμ̃p)

]

+1

2

M∑

p=l+1

[
N0p

(
ln(μpμ̂pμ̃p) + (αp + βp)ΔpM )

)]

⎫
⎬

⎭
,

η = −1

2
max

{

max
p∈Ψ1

{
ln(μpμ̂pμ̃p)

τp
− αp

}

,

max
p∈Ψ2

{
ln(μpμ̂pμ̃p) + (αp + βp)ΔpM

τp
− αp

}}

.

Then, from (11) and (19)–(21), we can obtain

||x̄(t)|| ≤ δe−η(t−t0) ||x̄(t0)||c1 . (22)

By Definition 2, we can conclude that the closed-loop system (3) with w(t) = 0 is
GUES for any switching signal with MDADT (11). This completes the proof. 
�
Remark 2 To facilitate the latter design of the DOF controller, in Theorem 1, a matrix
K = [I 0] is added into the third term of the piecewise Lyapunov function (12).

Remark 3 A unique feature of the approaches in this paper is the utilization of
MDADT. Different from the ADT approach adopted in [12,18–20], where the param-
eters are mode-independent, and the ADT for all the subsystems are required to be
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larger than a common constant τa , the parameters selected in this paper are mode-
dependent, and we only require the ADT among the intervals associated with the pth
subsystem to be larger than τp, where the intervals are not adjacent.

Remark 4 Different form most existing results on asynchronous control problem [3,
11,12,20,28,29,31], in which α and β are positive, in this paper, βp, p ∈ M can be
negative. Based on the value of αp + βp, p ∈ M, we get two types of MDADT (11).
It can be seen that for the same parameters α and μ if only βp < 0, p ∈ M exist, the
MDADT (11) is smaller than that in [3,11,12,20,28,29,31].

Now, we are in a position to give the weighted H∞ performance analysis for the
system (3).

Theorem 2 For the switched system (3), let γ > 0, αp > 0, βp, μp ≥ 1 and μ̂p ≥ 1,
p ∈ M be given constants, if there exist matrices Pp > 0, Q p > 0, Sp > 0, Ppq > 0,
Q pq > 0 and Spq > 0, ∀(p, q) ∈ M × M, p �= q, such that (10) and the following
inequalities hold

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ
p
11 Γ

p
12 Pp Ē p L̄T

p h ĀT
pK

T

∗ Γ
p
22 0 ŪT

p h D̄T
pK

T

∗ ∗ −γ 2 I H̄T
p h ĒT

p K
T

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −hS−1
p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (23)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ
pq
11 Γ

pq
12 Ppq Ē pq L̄T

p h ĀT
pq K

T

∗ Γ
pq
22 0 ŪT

p h D̄T
pq K

T

∗ ∗ −γ 2 I H̄T
p h ĒT

pq K
T

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −hS−1
pq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (24)

then the closed-loop system (3) is GUES with a weighted H∞ performance level γ̃

for any switching signal σ(t) with MDADT satisfying (11), where γ̃ = γ
√

ρ and ρ =
exp{∑l

p=1[N0p ln(μpμ̂pμ̃p)] +∑M
p=l+1[((αp + βp)ΔpM + ln(μpμ̂pμ̃p))N0p]}.

Proof (8) and (9) can be concluded from (23) and (24). By Theorem 1, the exponential
stability of the system (3) with w(t) = 0 is guaranteed.

Next, we will show the weighted H∞ performance of the system.
Constructing the Lyapunov function (12) and using the same method in Theorem

1, it gives

V̇ (t) ≤
{

βpV (t) − Υ (t), t ∈ [tk, tk + Δk)

−αpV (t) − Υ (t), t ∈ [tk + Δk, tk+1)
(25)

where Υ (t) = zT(t)z(t) − γ 2wT (t)w(t).
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Integrating both sides of (25), it holds that

V (t) ≤

⎧
⎪⎨

⎪⎩

eβp(t−tk)V (tk) − ∫ t
tk
eβp(t−s)Υ (s)ds, t ∈ [tk, tk + Δk)

e−αp(t−tk−Δk )V (tk + Δk)

− ∫ t
tk+Δk

e−αp(t−s)Υ (s)ds, t ∈ [tk + Δk, tk+1).

(26)

For ∀t ∈ [tk, tk+1), it follows from (18) and (26) that

V (t) ≤ μσ(tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)V (tk)

−
∫ t

tk
eβσ (tk )T�(s,t)−ασ(tk )T�(s,t)Υ (s)ds

≤ μσ(tk )μ̂σ (tk )μ̃σ (tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)V (t−k )

−
∫ t

tk
eβσ(tk )T�(s,t)−ασ(tk )T�(s,t)Υ (s)ds

≤ μσ(tk−1)μσ(tk )μ̂σ (tk )μ̃σ (tk )e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)

× e
βσ(tk−1)T�(tk−1,tk )−ασ(tk−1 )T�(tk−1,tk )V (tk−1)

−μσ(tk )μ̂σ (tk )μ̃σ (tk )

∫ t

tk−1

e
βσ(tk−1)T�(s,tk )−ασ(tk−1 )T�(s,tk )

× eβσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)Υ (s)ds

−
∫ t

tk
eβσ(tk )T�(s,t)−ασ(tk )T�(s,t)Υ (s)ds

≤
k∏

i=k−1

(μσ(ti )μ̂σ (ti )μ̃σ (ti ))e
βσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)

× e
βσ(tk−1)T�(tk−1,tk )−ασ(tk−1 )T�(tk−1,tk )V (t−k−1)

−μσ(tk )μ̂σ (tk )μ̃σ (tk )

∫ t

tk−1

e
βσ(tk−1)T�(s,tk )−ασ(tk−1 )T�(s,tk )

× eβσ(tk )T�(tk ,t)−ασ(tk )T�(tk ,t)Υ (s)ds

−
∫ t

tk
eβσ(tk )T�(s,t)−ασ(tk )T�(s,t)Υ (s)ds

≤ · · ·

≤ exp

⎧
⎨

⎩

M∑

p=1

[
βpT�p(0, t) − αpT�p(0, t)

]

⎫
⎬

⎭

M∏

p=1

(μpμ̂pμ̃p)
Nσ p(0,t)V (t0)

−
∫ t

t0
exp

⎧
⎨

⎩

M∑

p=1

[
βpT�p(s, t) − αpT�p(s, t)

]

⎫
⎬

⎭

×
M∏

p=1

(μpμ̂pμ̃p)
Nσ p(s,t)Υ (s)ds.
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Therefore, under the zero initial condition, we have

∫ t

t0
exp

⎧
⎨

⎩

M∑

p=1

[
βpT �p(s, t) − αpT�p(s, t)

]

⎫
⎬

⎭

M∏

p=1

(μpμ̂pμ̃p)
Nσ p(s,t)Υ (s)ds ≤ 0.

(27)

That is

∫ t

t0
exp

⎧
⎨

⎩

l∑

p=1

[−αpTp(s, t) + f (s, t)
]

+
M∑

p=l+1

[−αpTp(s, t) + f (s, t)
]

⎫
⎬

⎭
Υ (s)ds ≤ 0, (28)

where f (s, t) = (αp + βp)T�p(s, t) + Nσ p(s, t) ln(μpμ̂pμ̃p).

Multiplying exp
{
−∑M

p=1 f (t0, t)
}
on both sides of (28) yields

∫ t

t0
exp{Φ1 + Φ2}zT(s)z(s)ds ≤ γ 2

∫ t

t0
exp{Φ1 + Φ2}wT(s)w(s)ds, (29)

whereΦ1 = ∑l
p=1[−αpTp(s, t)− f (t0, s)],Φ2 = ∑M

p=l+1[−αpTp(s, t)− f (t0, s)].
For Φ1, from Definition 1 and (11), and noticing that −(αp + βp) ≥ 0, we get

Φ1 ≥ l
Σ
p=1

[−αpTp(s, t) − Nσ p(t0, s) ln(μpμ̂pμ̃p)
]

≥ l
Σ
p=1

[

−αpTp(s, t) − N0p ln(μpμ̂pμ̃p) − ln(μpμ̂pμ̃p)Tp(t0, s)

τp

]

≥ l
Σ
p=1

[−αpTp(t0, t) − N0p ln(μpμ̂pμ̃p)
]
. (30)

For Φ2, from Definition 1 and (11), and noticing that T�p(t0, s) ≤ ΔpM Nσ p(t0, s),
we have

Φ2 ≥ M
Σ

p=l+1

[−αpTp(s, t) − ((αp + βp)ΔpM + ln(μpμ̂pμ̃p))Nσ p(t0, s)
]

≥ M
Σ

p=l+1

[

−αpTp(s, t) − ((αp + βp)ΔpM+ln(μpμ̂pμ̃p))

(

N0p + Tp(t0, s)

τp

)]

≥ M
Σ

p=l+1

[−αpTp(t0, t) − ((αp + βp)ΔpM + ln(μpμ̂pμ̃p))N0p
]
. (31)
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Combining (30) and (31), and noticing that − f (to, s) ≤ 0, we obtain

exp

{
M
Σ
p=1

[−αpTp(t0, t)] − l
Σ
p=1

[N0p ln(μpμ̂pμ̃p)]

− M
Σ

p=l+1
[((αp + βp)ΔpM + ln(μpμ̂pμ̃p))N0p]

}

≤ exp {Φ1 + Φ2} ≤ exp

{
M
Σ
p=1

[−αpTp(s, t)]
}

. (32)

From (29) and (32), it follows that

∫ t

to
exp

⎧
⎨

⎩

M∑

p=1

[−αpTp(t0, t)
]

⎫
⎬

⎭
zT(s)z(s)ds

≤ γ 2ρ

∫ t

to
exp

⎧
⎨

⎩

M∑

p=1

[−αpTp(s, t)
]

⎫
⎬

⎭
wT(s)w(s)ds. (33)

where ρ = exp{Σ l
p=1[N0p ln(μpμ̂pμ̃p)] + ΣM

p=l+1[((αp + βp)ΔpM + ln
(μpμ̂pμ̃p))N0p]}.

Integrating both sides of (33) from t = t0 to ∞ yields

∫ ∞

t0
exp

⎧
⎨

⎩
−

M∑

p=1

[
αpTp(t0, s)

]

⎫
⎬

⎭
zT(s)z(s)ds ≤ γ̃ 2

∫ ∞

t0
wT(s)w(s)ds, (34)

where γ̃ = γ
√

ρ.
This means that system (3) achieves a weighted H∞ performance level γ̃ .
The proof is completed. 
�

3.2 Controller Design

In this section, based on the proposed weighted H∞ performance condition, we will
give the design method of the DOF controller for the system (1).

Theorem 3 For the switched system (1), let γ > 0, αp > 0, βp, εp > 0, μp ≥ 1
and μ̂p ≥ 1, p ∈ M be given constants, if there exist matrices Ac,p, Bc,p, Cc,p,
P1p > 0, X1p > 0, Lp > 0, Qp > 0, Ip > 0, Ppq > 0, Q pq > 0 and Spq > 0,
such that ∀(p, q) ∈ M × M, p �= q,
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[
X1p I
I P1p

]

> 0, (35)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ
p
11 Ξ

p
12 Ξ

p
13 0 Ep X1pLT

p Ξ
p
17 εpX1p

∗ Ξ
p
22 Ξ

p
23 0 Ξ

p
25 LT

p hAT
p 0

∗ ∗ Ξ
p
33 0 0 UT

p hDT
p 0

∗ ∗ ∗ Ξ
p
44 0 0 0 0

∗ ∗ ∗ ∗ −γ 2 I HT
p hET

p 0
∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hIp 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εp I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (36)

⎡

⎢
⎢
⎢
⎢
⎣

Γ
pq
11 Γ

pq
12 Ppq Ē pq L̄T

p h ĀT
pq K

T

∗ Γ
pq
22 0 ŪT

p h D̄T
pq K

T

∗ ∗ −γ 2 I H̄T
p h ĒT

pq K
T

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −hS−1

pq

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (37)

YpJ
−1
p ≤ μp Ppq , diag{εp I,Qp} ≤ μpQ pq ,I

−1
p ≤ μpSpq ,

Ppq ≤ μ̂pYqJ
−1
q , Qpq ≤ μ̂pdiag{εq I,Qq}, Spq ≤ μ̂pI

−1
q , (38)

where

Ξ
p
11 = ApX1p + X1p A

T
p + BpCc,p + C T

c,p B
T
p + αpX1p + Lp,

Ξ
p
12 = Ap + A T

c,p + αp I + εpX1p, Ξ
p
13 = Dp + e−αphX1p,

Ξ
p
17 = hX1p A

T
p + hC T

cp B
T
p , Ξ

p
25 = P1pEp + BcpG p,

Ξ
p
22 = P1p Ap + AT

pP1p + Bc,pCp + CT
pB

T
c,p + αpP1pεp I,

Ξ
p
23 = P1pDp + Bc,pFp + e−αph I, Ξ

p
44 = −(1 − hd)e

−αphQp,

Ξ
p
33 = −(1 − hd)e

−αphεp I − 2e−αph I + he−αphIp.

Then, the closed-loop system (3) is GUES with a weighted H∞ performance level
γ̃ for any switching signal σ(t) with MDADT satisfying (11), where γ̃ = γ

√
ρ and

ρ = exp{Σ l
p=1[N0p In(μpμ̂pμ̃p)]+ΣM

p=l+1[((αp+βp)ΔpM+ In(μpμ̂pμ̃p))N0p]}.
Moreover, the controller gains are given by

Ac,p = P−1
2p [Ac,p − P1p ApX1p − Bc,pCpX1p − P1pBpCc,p]X −T

2p ,

Bc,p = P−1
2p Bc,p,

Cc,p = Cc,pX
−T
2p .

(39)
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Proof Partition Pp and its inverse as

Pp =
[
P1p P2p

PT
2p P3p

]

, P−1
p =

[
X1p X2p

X T
2p X3p

]

, (40)

where P3p > 0,X3p > 0, and P2p,X2p are invertible matrices.
Define the following matrices

Jp =
[
X1p I
X T

2p 0

]

, Yp =
[
I P1p

0 PT
2p,

]

, Qp =
[

εp I 0
0 Qp

]

. (41)

By computation, we can get

P1pX1p + P2pX
T
2p = I, PpJp = Yp. (42)

Multiplying diag {J T
p , I, I, I, I } by pre- and post-(23), we can obtain

⎡

⎢
⎢
⎢
⎢
⎣

Γ̃
p
11 Γ̃

p
12 J T

p Pp Ē p J T
p L̄

T
p hJ T

p ĀT
pK

T

∗ Γ
p
22 0 UT

p h D̄T
pK

T

∗ ∗ −γ 2 I H̄T
p h ĒT

p K
T

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −hS−1

p

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (43)

where

Γ̃
p
11 = J T

p ( ĀT
p Pp + Pp Āp + αp Pp + Qp)Jp,

Γ̃
p
12 = J T

p (Pp D̄p + e−αph KTK ).

Define the following matrices:

Ac,p = P1p ApX1p + P2pBc,pCpX1p + P1pBpCc,pX
T
2p + P2p Ac,pX

T
2p,

Bc,p = P2p Bc,p,Cc,p = Cc,pX
T
2p,Lp = X2pQpX

T
2p,Lp = S−1

p . (44)

From (40), we get

J T
p Pp ĀpJp =

[
ApX1p + BpCc,p Ap

Ac,p P1p Ap + Bc,pCp

]

,

J T
p Q pJp =

[
εpX1pX1p + Lp εpX1p

εpX1p εp I

]

,

J T
p PpJp =

[
X1p I
I P1p

]

, J T
p Pp D̄p =

[
Dp 0

P1pDp + Bc,pFp 0

]

,
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J T
p K

TK =
[
X1p 0
I 0

]

, J T
p Pp Ē p =

[
Ep

P1pEp + Bc,pG p

]

,

J T
p L̄

T
p =

[
X1pLT

p
LT
p

]

, J T
p ĀT

pK
T =

[
X1p AT

p + C T
c,p B

T
p

AT
p

]

. (45)

Substituting (45) into (43) and applying Schur complement Lemma, we can obtain
(36).

Thus, (36) is equivalent to (23). Notice that (37) is equivalent to (24), and (38) is
equivalent to (10). The proof is completed. 
�

Remark 5 The asynchronous DOF control problemwas also studied in [20] for a class
of switched delay systems based on the ADT approach. However, the state delay is
time invariant, and the switching delay only involves in partial controller gainmatrices.
The advantages of the result in this paper are that the state delay considered is time
varying, and the switching delay appears in all the controller gain matrices. On the
other hand, not only the stability but also the H∞ performance for the switched system
is studied, especially based on the MDADT approach, which brings more flexibility
to find the feasible controller.

Notice that the inequality conditions in Theorem 3 are mutually dependent, and we
present the following computational algorithm to obtain the DOF controller and the
MDADT.

Algorithm 1

Step 1 ∀p ∈ M, given constants αp and εp, solve (35) and (36) to obtain
Ac,p,Bc,p,Cc,p,P1p,X1p,Lp,Qp and Ip.
Step 2 Compute the invertible matrices X2p satisfying Lp = X2pQpX

T
2p by the

function fsolve (· · · ) in MATLAB. Then P2p can be obtained from P1pX1p +
P2pX

T
2p = I .

Step 3 Compute the matrices Yp and Jp by (41).
Step 4According to (39), the controller matrices Ac,p, Bc,p andCc,p can be obtained.
Step 5 Upon substituting the matrices obtained from Step 1–Step 4 to (37) and (38),
they can be transformed into LMIs with respect to Ppq , Qpq and Spq .
Step 6 Solve (37) and (38) for the given constants βp, μp and μ̂p.
Step 7 Use μ̃p = max

q∈M,q �=p
{μqp} with μqp = eαq+βp to obtain μ̃p.

Step 8 Substitute αp, βp, μ̂p, and μ̃p to (11) to obtain τ ∗
p .

Remark 6 It can be seen that a smaller αp will be favorable to the feasibility of (36)
and a larger βp will be favorable to the feasibility of (37). In view of this, for the
choice of αp in Algorithm 1, for the first time, we can choose a larger αp, if (36) is
unfeasible, we can decrease αp appropriately. Repeat this until (36) is feasible. For
the choice of βp in Algorithm 1, for the first time, we can choose a βp < −αp, if (37)
is unfeasible, we can increase βp appropriately. Repeat this until (37) is feasible.
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4 Example

In this section, we present a numerical example to demonstrate the effectiveness of
the proposed method. Consider system (1) consisting of three subsystems,

Subsystem 1:

A1 =
⎡

⎣
−1.9 0 1.1
0 −0.9 0.3

−0.2 0.1 0.3

⎤

⎦ , D1 =
⎡

⎣
0.2 0 0
0.1 0 0.1
0 0.1 0.2

⎤

⎦ , B1 =
⎡

⎣
1.1
0.4
2

⎤

⎦ ,

E1 =
⎡

⎣
0.1
0.2
0.5

⎤

⎦ ,

C1 = [
2.2 3 3

]
, F1 = [

0 0.1 0
]
, G1 = [

0.8
]
,

L1 = [
0 0.5 0.5

]
, U1 = [

0.2 0 0.4
]
, H1 = [

0.3
]
.

Subsystem 2:

A2 =
⎡

⎣
−1.8 0 0.1
0.1 −2.4 0
0 0.1 0.1

⎤

⎦ , D2 =
⎡

⎣
0.2 0 0.1
0.1 0.1 0.1
0 0.1 0.2

⎤

⎦ , B2 =
⎡

⎣
0.2
0.5
2

⎤

⎦ ,

E2 =
⎡

⎣
0.4
0
0.6

⎤

⎦ ,

C2 = [
0.6 1 2

]
, F2 = [

0.1 0.1 1
]
, G2 = [

0.3
]
,

L2 = [
0.2 1.3 0

]
, U2 = [

0.1 0.4 0
]
, H2 = [

0.2
]
.

Subsystem 3:

A3 =
⎡

⎣
−2.2 0 0.3
0 −1.9 0.3
0.2 0 0.4

⎤

⎦ , D3 =
⎡

⎣
0.2 0 0
0.1 0 0.1
0 0.1 0.2

⎤

⎦ , B3 =
⎡

⎣
0.4

−0.4
3

⎤

⎦ ,

E3 =
⎡

⎣
0
0.1
0.6

⎤

⎦ ,

C3 = [
1.2 4 2

]
, F3 = [

0.1 0.1 0
]
, G3 = [

0.6
]
,

L3 = [
0.4 0 0

]
, U3 = [

0.3 0.1 0
]
, H3 = [

0.1
]
,

Considering d(t) = 0.9 + 0.1 sin(t), we can get that h = 1, hd = 0.1. Taking
α1 = 1.3, α2 = 1.2, α3 = 1.4, ε1 = 0.5, ε2 = 1, ε3 = 0.1, and γ = 1. Following
Step 1–Step 4 of Algorithm 1, we can obtain the DOF controller gains
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Fig. 1 Switching signals

Ac,1 =
⎡

⎣
−4.9484 −7.2571 −16.2287
−9.1137 −32.8127 −70.5270
−17.2043 −59.1784 −138.7735

⎤

⎦ , Bc,1 =
⎡

⎣
1.4895
7.2964
14.2323

⎤

⎦ ,

Cc,1 = [
0.3397 −1.5057 −4.0909

]
,

Ac,2 =
⎡

⎣
−1.0910 −0.8166 4.8126
1.5152 −8.2070 8.7754

−4.7626 10.8616 −48.9274

⎤

⎦ , Bc,2 =
⎡

⎣
−0.5375
−1.1477
4.6752

⎤

⎦ ,

Cc,2 = [
0.1740 1.2542 −3.8081

]
,

Ac,3 =
⎡

⎣
−8.5193 −4.9855 −3.7357
−5.0012 −108.5742 −8.8421
−11.8495 −240.5768 −24.4987

⎤

⎦ , Bc,3 =
⎡

⎣
0.3924
6.9366
15.5646

⎤

⎦ ,

Cc,3 = [
0.1387 −1.9609 −2.4129

]
.

Then, choosing β1 = −1.33, μ1 = 2, μ̂1 = 6.5, β2 = −0.7, μ2 = 8.7, μ̂2 = 8.5,
β3 = −1.44, μ3 = 7.5 and μ̂3 = 7, and following Step 5 and Step 6 of Algorithm 1,
we can seek the feasible solutions Ppq , Qpq and Spq of (37) and (38). Following Step
7 of Algorithm 1, we can get μ̃1 = 1.0725, μ̃2 = 2.0138 and μ̃3 = 0.8694. Assume
that Δ1M = 0.8, Δ2M = 0.3 and Δ3M = 0.2, following Step 8 of Algorithm 1, we
can obtain τ ∗

1 = 2.0268, τ ∗
2 = 4.2945 and τ ∗

3 = 2.7292.

Remark 7 Although thematrix inequalities (35)–(38) are coupled. According toAlgo-
rithm 1, we can firstly solve (35) and (36) to gain Ac,p Bc,p, Cc,p, P1p, X1p, Lp,
Qp and Ip, and compute the matrices X2p, P2p, Yp and Yp by Step 2 and Step
3. Then, we solve (37) and (38) by substituting the matrices obtained into (37) and
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(38). By adjusting the parameters βp, μp and μ̂p appropriately, we seek the feasible
solutions Ppq , Qpq and Spq such that (37) and (38) hold.

In the simulation, we choose the initial condition being ϕ(t) = [0.2 0.2 0.1]T,
τ1 = 2.1, τ2 = 4.3 and τ3 = 2.8. Figure 1 describes the switching signals of system
and controller. The states of the open-loop system are shown in Fig. 2.

Figure 3 detects the states of the closed-loop system. The states of the DOF con-
troller are given in Fig. 4. It can be seen that the open-loop system is unstable, and
the closed-loop system is exponentially stable, which indicates that the designed con-
troller in (39) under the admissible switching signals is effective despite asynchronous
switching. Let N0p = 0, p = 1, 2, 3, according to Theorem 3, the resulting closed-
loop system is exponentially stable with a weighted H∞ performance γ̃ = 1.0779.

Remark 8 The parameters αp, βp, εp, μp and μ̂p in this paper are mode dependent.
When we solve (35)–(38), we can adjust any of them to ensure the feasibility. Thus, it
will be more feasible in practice to design aMDADT switching than a ADT switching
[12,18–20].

5 Conclusion

In this paper, the asynchronous H∞ control problem for switched time-varying delay
systems with MDADT has been studied. By adopting MDADT approach and the
piecewise Lyapunov function technique, the exponential stability and weighted H∞
performance results for switched systems are proposed. Based on the value of αp+βp,
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p ∈ M, two types of MDADT are obtained. Moreover, the corresponding solvability
conditions for desiredDOFcontroller are established, and the computational algorithm
for the design of the DOF controller and MDADT is presented. Finally, an example is
given to illustrate the effectiveness of the proposed design method. In fact, the main
approaches utilized in this work can be used to deal with the problem of asynchronous
finite-time DOF control of switched systems, which could be our future work.
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