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Abstract To improve the speech intelligibility in noisy environments for persons
with hearing impairments, a new method for reducing noise, based on improved sub-
band signal-to-noise ratio (SNR) estimation, is proposed. First, the input signal is
decomposed into several sub-band signals with an analysis filter bank. Then, under
the assumption of a Gaussian model, maximum a posterior probability is applied to
estimate the information embedded in adjacent frames in each sub-band, which is
in the form of a joint probability density function, and the minimum of the noise
spectrum is tracked to estimate the noise. Subsequently, the gain of each sub-band,
which changes with the noise in the corresponding sub-band, is calculatedwith a linear
proportional gain function. The obtained gains of the sub-bands are multiplied by the
sub-band noisy signals to obtain the enhanced sub-band speech signals. Finally, all the
sub-band signals are spliced to obtain the estimated speech signals. In this algorithm,
the gains are calculated in the time domain, which avoids the process of the inverse
Fourier transform and leads to a decrease in computational complexity. Compared
with the traditional spectral subtraction and basic Wiener filtering method, the delay
in this algorithm is reduced by 40.4 and 60.6%, respectively. It is also compared with
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the modulation depth integrated into hearing aids under an experimental simulation
and a real scenario. The results indicate that the output SNR is improved by 1dB
under the software simulation and 3.1dB in the real scenario when the input SNR
is set as 10dB. Compared with the simulation environment, the proposed algorithm
only fell by 1.5% in the real scenario. Furthermore, the distance of the logarithmic
spectrum and quality of speech perception are improved by 20.6 and 9.3%, respec-
tively.

Keywords Multi-channel hearing aids · Sub-band noise reduction · Sub-band SNR
estimation · Time complexity

1 Introduction

Hearing loss is a common chronic disease affecting human life. Long-term hearing
impairment not only influences daily communication but also leads to psychological
problems and brings a heavy burden to family and society [1,5,13,15,22,24]. The
wearing of a digital hearing aid is an effectiveway of improving hearing for the patients
with light–severe hearing loss [5,13]. However, the improvement by such hearing aids
will fall sharply if they operate in a complex noise environment. Research shows that
hearing aids need to improve the SNR by 10–25dB to achieve the same intelligibility
as ordinary persons [9,21,32].

Currently, there are two classical methods for improving the SNR in a real scenario,
directional microphones and noise reduction algorithms [6]. The former, based on the
differences between speech and noise, enhances the speech signals in a specific direc-
tion with directional microphones or beam-forming technology [19,34,35]. However,
this method is not applied to deep ear hearing aids because of the restrictions on the
number and size ofmicrophones. The latter separates the speech from the noisy signals
using the differences between speech and noise in the time and frequency domains.
However, the speech and noise may overlap in these two domains. To solve this prob-
lem, many scholars have done intensive research and have proposed some effective
methods.

In the algorithms for reducing noise, spectrum subtraction [3] is one of the earliest
algorithms. The principle of this method, based on the stability of noise, is to estimate
and update the noise spectrum that will be subtracted from the noisy speech spectrum.
Finally, the enhanced signals are obtained by calculating the inverse discrete Fourier
transform of the signal spectrum, and its phase is still that of the noisy signal. The time
delay of this process is concentrated in the Fourier transform and inverse transform.
Recently, some scholars have suggested spectral subtraction to enhance the real and
imaginary parts of noisy speech at the same time. For the method based on the phase
information [36], its PESQ achieved the improvement of 0.04 and 0.07 for input SNR
10 and 5dB. However, this slight improvement was achieved by sacrificing double
computation complexity. For hearing aids, the adopted algorithms request high real-
time performance.
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Spectral subtraction could be replaced with Wiener filtering [11] based on a statis-
tical model and its improved algorithm [10], which is based on the minimum mean
square of the output signal and pure signal to improve the SNR. The optimal filter
(transfer function) is calculated in the frequency domain, and the enhanced signal is
obtained through the Fourier inverse transform. Therefore, the delay of this method is
similar to that of the traditional algorithms. Furthermore, deep learning [17,30] and
the wavelet transform [2,16,26,27,29] also demonstrates good performance in noise
reduction.However, these algorithmsmainly concentrate on the balance between noise
suppression and speech distortion, while the hearing aids with low power consumption
should take the speech quality and computational complexity into consideration. In
the noise reduction algorithms with low computational complexity, one of the earliest
noise reduction algorithms uses a linear proportion function [8] instead of a noise
reduction function and a loudness compensation function, which is realized on thedB
domain and avoids calculating the FFT and IFFT. According to the above-mentioned
analysis, noise reduction with multi-channels, based on modulation depth [12], was
proposed and has been widely used in hearing aids. This model contains two parts:
tracking the energies of speech and noise and calculating the noise attenuation func-
tion, whereas the SNR of the sub-band is calculated through the envelope of the
noise and speech signal that is simply smoothed only once. Thus, there is a great
deviation in the SNR estimation, which will affect the background noise suppres-
sion.

To solve the above problems, a new algorithm for estimating the sub-band SNR in
the frequency domain is proposed, which is combinedwith the linear proportional gain
function in the time domain to design the sub-band noisemodel. First, a decomposition
filter bank is applied to separate the noisy signal into several sub-band signals. Then,
on the assumption that speech and noise signals are subject to a Gaussian distribution
with zero mean, the pure speech signal hidden in the noisy signal is estimated with a
maximum posterior probability that contains the relevant information between frames
in the form of a joint probability density function. Subsequently, the SNRs of the
sub-bands are estimated with the covariance of adjacent frames in the corresponding
sub-band. Finally, each sub-band signal is spliced to obtain the enhanced speech sig-
nal, which is suppressed by a linear proportional gain function. As shown in the real
auditory scene and software simulation experiments, the performance of the proposed
algorithm is relative optimum in consideration of the computational complexity and
noise reduction performance. This system has some inherent advantages, such as most
notably reduced computational complexity and the good performance for some lowest
power dedicated processor. So, it can be real-time-implemented and achieve automatic
noise reduction for different SNRs. Compared with the noise reduction based on mod-
ulation depth [12], the SNR is improved by 1dB in the software simulation and 3.1dB
in the real scenario. When the input SNR is set as 10dB, and noise type is set white
noise, the LSD and PESQ are improved by 20.6 and 9.3%, respectively. Although the
computing time is slightly increased, it is still reduced by 40.4% compared to sub-
band spectral subtraction [18] and by 60.6% compared to the Winner filtering bank
[10].
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2 Algorithm

2.1 Over-Sampling Filter Banks

In the multi-channel noise reduction algorithm, noisy speech is divided into a number
of frequency bands according to certain rules, and then, the noise reduction processing
is performed in each frequency band. Bands can be divided evenly [33] or not evenly
[4]. Because the human ear perception of different frequency bands is nonlinear,
nonlinear division is more common. Figure 1 shows the structure of nonlinear over-
sampling filter banks. And Table 1 shows the results of band division.

Here, M in the figure is the number of sub-bands, generally taken to be 12, 16 or 20,
which is used in the Danish Adcon Safari series of hearing aids. As we know, the more
sub-bands the algorithm has, the more complexity and power the system consumes. In
most digital hearing aids platforms, because 16 sub-bands is a compromising choice
between the performance and the complexity, the number of sub-bands selected in this
paper is 16, which means that noisy speech is decomposed into 16 sub-band signals.
For the same performance, FIR would consume more time than IIR in embedded
systems. So, the filter banks use sixth-order IIR filters, with a pass-band ripple of
0.5dB.

From the figure, the original speech signal is firstly passed through an anti-aliasing
filter bank hm(n), and the decomposed sub-band signals um(n) (m = 0, 1, . . . , M−1)
are obtained. cm is the lifting sampling coefficient of the mth sub-band, and cm ≤ M ;
because frequency band division was not evenly, cm should meet Eq. (1) according to
band-pass sampling theory to avoid frequency aliasing

cm <
1

bm
fh, m = 0, . . . , M − 1 (1)

where bm represents the width of mth sub-band and fh represents the maximum
frequency. As shown in Table 1 and Eq. (1), specific values are shown in Table 2.
xm(n) is the signal after down-sampling. gm(n) represents the gain of each sub-band,
which is defined according to the SNR and the compensation function; ym(n) is the
over-sampling signal of vm(n). The final output signal y(n) can be obtained by adding
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Fig. 1 Structure of the over-sampling filter
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Table 2 Down- and up-sampling coefficients

Channel/m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cm (n) 10 10 8 8 6 6 6 6 6 6 4 3 3 3 2 2

those signals that are generated when ym(n) is passed through the comprehensive
filtering.

2.2 Sub-band SNR Estimation Algorithm

For the noise reduction algorithm based on the adaptive gain, a reasonable estimation
of the SNR is very important for the performance of noise reduction. Therefore, an
improved SNR estimation algorithm for sub-bands is proposed. First, based on the
maximum a posteriori probability theory, an algorithm derives the representation of
pure speech, so the problem is transformed into the power estimation problem of
each frequency point signal. Then, the covariance matrix of adjacent speech frames is
constructed, and the power of the speech signal is obtained. Finally, a noise spectrum
tracking method is used to estimate the noise power, and the sub-band SNR estimation
is realized.

The signal of each sub-band can be expressed as:

xm(n) = sm(n) + dm(n)(m = 0, . . . , M − 1) (2)

Within this signal, sm(n) is the desired pure speech, dm(n) is the noise signal, and
xm(n) represents the original noisy signal. Each sub-band signal is framed, and the
FFT of each frame signal is calculated.

Xm(k, i) = Sm(k, i) + Dm(k, i)(i = 0, . . . , J − 1) (3)

In the formula, k represents frequency points, i represents the frame number, J
represents the total number of frames, and Xm(k, i), Sm(k, i) and Dm(k, i) represent
the FFT of xm(n), sm(n) and dm(n), respectively. They can be expressed as expo-
nential forms: Xm(k, i) = Xm(k, i)e jθX , Sm(k, i) = Sm(k, i)e jθS and Dm(k, i) =
Dm(k, i)e jθD , respectively. Because the ear is not sensitive to the phase, the amplitude
estimation of the speech signal is the key to the algorithm.

Assuming that speech signal Sm(k, i) and noise signal Dm(k, i) both obeyGaussian
distributions with zero mean, then

Sm(k, i) = 1√
2πσSm (k,i)

exp

⎡
⎣−S2m(k, i)

2σ 2
Sm(k,i)

⎤
⎦ (4)

Dm(k, i) = 1√
2πσDm (k,i)

exp

⎡
⎣−D2

m(k, i)

2σ 2
Dm(k,i)

⎤
⎦ (5)
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In the formula, σ 2
Sm (k,i) and σ 2

Dm (k,i) represent the variance of speech signal Sm(k, i)

and noisy signal Dm(k, i). The enhanced speech signal is represented by Ŝm(k, i); then,
the error estimation function is defined as [11]

d(ε) = ε2 =
[
Sm(k, i) − Ŝm(k, i)

]2
(6)

Obviously, the model is the minimum mean square error model of the Wiener
filtering method [11]. However, the method involves a large number of integral and
exponential operations and is not suitable for low-power devices such as hearing aids.
Therefore, the improved algorithm is proposed to reduce the computational complexity
[20]. Here, d(ε) is defined as

d(ε) =
{
0 |ε| < δ

1 |ε| > δ
(7)

The risk function of the error function � is defined as

� = E[d(ε)]=
∫ {∫

d(ε)P[Sm(k, i)|Wm(k, i)]dXm(k, i)

}
P[Wm(k, i)]dWm(k, i)

(8)
where Wm(k, i) = [Xm(k, i), Sm(k, i − 1)].

By substituting Eq. (7) into Eq. (8) andminimizing�, Ŝm(k, i) can then be deduced
as [28]:

Ŝm(k, i) = arg min
Sm (k,i)

� = arg max
Sm (k,i)

P[Sm(k, i)|Xm(k, i), Sm(k, i − 1)] (9)

According to Bias theory, P[Sm(k, i)|Xm(k, i), Sm(k, i − 1)] can be rewritten as:

P[Sm(k, i)|Xm(k, i), Sm(k, i − 1)]
= P[Xm(k, i), Sm(k, i − 1)|Sm(k, i)]P[Sm(k, i)]

P[Xm(k, i), Sm(k, i − 1)]
= P[Xm(k, i)|Sm(k, i)]P[Sm(k, i), Sm(k, i − 1)]

P[Xm(k, i), Sm(k, i − 1)] (10)

In Eq. (10), the denominator P[Xm(k, i), Sm(k, i − 1)] and Sm(k, i) are indepen-
dent. Thus, Ŝm(k, i) can be rewritten as:

Ŝm(k, i) = arg max
Sm (k,i)

{P[Xm(k, i)|Sm(k, i)]P[Sm(k, i), Sm(k, i − 1)]} (11)

Assuming the speech signal Sm(k, i) and noise Dm(k, i) are independent, and noise
is stationary, then

P[Xm(k, i)|Sm(k, i)] = 2√
2πσDm (k,i)

exp

{
−[Xm(k, i) − Sm(k, i)]2

2σ 2
Dm (k,i)

}
(12)
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From Eq. (12), the estimation of P[Sm(k, i), Sm(k, i − 1)] is the key to obtain
an effective estimation of Ŝm(k, i). Firstly, define the adjacent two speech vectors
Sa
m(k, i) as

Sa
m(k, i) = {Sm(k, i), Sm(k, i − 1)}T (13)

where T represents a transposition. Then, the autocorrelation matrix can be expressed
as:

Rm(k, i) = E[Sa
m(k, i)Sa

m(k, i)H ]
=
(
E[S2m(k, i)] E[Sm(k, i)Sm(k, i − 1)]
E[Sm(k, i)Sm(k, i − 1)] E[S2m(k, i − 1)]

)

=
(

σ 2
Sm (k,i) λ̄m(i)σ 2

Sm (k,i−1)
λ̄m(i)σ 2

Sm (k,i−1) σ 2
Sm (k,i−1)

)
(14)

where H represents the conjugate. The derivation of E[Sm(k, i)Sm(k, i − 1)] is:

E[Sm(k, i)Sm(k, i − 1)] = E

[
Sm(k, i)

Sm(k, i − 1)
S2m(k, i − 1)

]

= E[λm(k, i)S2m(k, i − 1)] ≈ λ̄m(i)σ 2
Sm (k,i−1) (15)

Thus, P[Sm(k, i), Sm(k, i − 1)] can be rewritten as:

P[Sm(k, i), Sm(k, i − 1)]
= 1

2π |Rm(k, i)|1/2 exp

[
−1

2
Sa
m(k, i)TRm(k, i)−1Sm(k, i)

]

= 1

2π Sm(k, i − 1)
√

σ 2
Sm (k,i) − λ̄2m(i)σ 2

Sm (k,i−1)

exp

⎧⎨
⎩− S2m(k, i)σ 2

Sm (k,i−1) − 2λ̄m(i)Sm(k, i − 1)Sm(k, i)σ 2
Sm (k,i−1) + S2m(k, i − 1)σ 2

Sm (k,i)

2
[
σ 2
Sm (k,i)σ

2
Sm (k,i−1) − λ̄2m(i)σ 2

Sm (k,i−1)

]

(16)

Combining Eqs. (12) and (16), P[Xm(k, i)|Sm(k, i)]P[Sm(k, i), Sm(k, i − 1)] can
be written as:

P[Xm(k, i)|Sm(k, i)]P[Sm(k, i), Sm(k, i − 1)]
= 2√

2πσDm (k,i)
· 1

2π Sm(k, i − 1)
√

σ 2
Sm (k,i) − λ̄2m(i)σ 2

Sm (k,i−1)

exp

⎧⎨
⎩− S2m(k, i)σ 2

Sm (k,i−1) − 2λ̄m(i)Sm(k, i − 1)Sm(k, i)σ 2
Sm (k,i−1) + S2m(k, i − 1)σ 2

Sm (k,i)

2
[
σ 2
Sm (k,i)σ

2
Sm (k,i−1) − λ̄2m(i)σ 2

Sm (k,i−1)

]

−[Xm(k, i) − Sm(k, i)]2
2σ 2

Dm (k,i)

}
(17)
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Defining the exponent part as Z and calculating the partial derivative of Sm(k, i),
then

∂Z

∂Sm(k, i)
= ∂

∂Sm(k, i)⎧⎨
⎩−

S2m(k, i)σ 2
Sm (k,i−1) − 2λ̄m(i)Sm(k, i − 1)Sm(k, i)σ 2

Sm(k,i−1) + S2m(k, i − 1)σ 2
Sm (k,i)

2
[
σ 2
Sm (k,i)σ

2
Sm (k,i−1) − λ̄2m(i)σ 4

Sm(k,i−1)

]

−[Xm(k, i) − Sm(k, i)]2
2σ 2

Dm (k,i)

}

= −
Sm(k, i)σ 2

Sm (k,i−1) − λ̄m(i)Sm(k, i − 1)σ 2
Sm (k,i−1)[

σ 2
Sm (k,i)σ

2
Sm (k,i−1) − λ̄2m(i)σ 4

Sm(k,i−1)

] + Xm(k, i) − Sm(k, i)

σ 2
Dm (k,i)

(18)

Letting ∂Z
∂Sm (k,i) = 0, the estimated enhanced speech signal Ŝm(k, i)is expressed as

Ŝm(k, i) = σ 2
Sm (k,i) − λ̄2m(i)σ 2

Sm (k,i−1)

σ 2
Dm (k,i) + [1 − λ̄2m(i)]σ 2

Sm (k,i)

Xm(k, i)

+ λ̄m(i)σ 2
Dm (k,i)

σ 2
Dm (k,i) + [1 − λ̄2m(i)]σ 2

Sm(k,i)

Sm(k, i − 1) (19)

Letting γm(k, i) = σ 2
Sm (k,i)−λ̄2m (i)σ 2

Sm (k,i−1)

σ 2
Dm (k,i)+[1−λ̄2m (i)]σ 2

Sm (k,i)
and ηm(k, i) = λ̄m (i)σ 2

Dm (k,i)

σ 2
Dm (k,i)+[1−λ̄2m (i)]σ 2

Sm (k,i)
,

Ŝm(k, i) can then be written as:

Ŝm(k, i) = ηm(k, i)Sm(k, i − 1) + γm(k, i)Xm(k, i) (20)

If γm(k, i) and ηm(k, i) is set as constant, such as ts and 1 − ts, then the algo-
rithm becomes the smooth method in finding [12], which use the envelope of speech
information, but it will still obtain residual background noise. In Eq. (19), if Sm(k, i)
and Sm(k, i − 1) are independent, then λ̄2m(i) equals 0, and the model is equiva-
lent to the Wiener filtering model [11]. And if σ 2

Sm (k,i−1) and σ 2
Sm (k,i) change slowly

(σ 2
Sm (k,i) ≈ σ 2

Sm (k,i−1)), then the pure speech estimation is the same as in the literature
[28], which is shown below:

Ŝm(k, i) = (1 − ts) · Sm(k, i − 1) + ts · Xm(k, i)

= [1 − λ̄2m(i)]σ 2
Sm (k,i)

σ 2
Dm (k,i) + [1 − λ̄2m(i)]σ 2

Sm (k,i)

Xm(k, i)

+ λ̄m(i)σ 2
Dm (k,i)

σ 2
Dm (k,i) + [1 − λ̄2m(i)]σ 2

Sm(k,i)

Sm(k, i − 1) (21)
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In fact, as seen from Eq. (19), once the signal Ŝm(k, i) in the frequency domain was
estimated, the time-domain signal ŝm(n, i) could be obtained by Fourier inversion.
However, the Fourier inversion requires a large amount of calculation, which will
increase the computational complexity. Moreover, for the power of each frequency
point, it is difficult to accurately estimateσ 2

Dm (k,i),σ
2
Sm (k,i−1) andσ 2

Sm (k,i). Additionally,
it needs large time-consuming to estimate the variance of each frequency point.

For above reasons, two improved strategies are proposed:

1. With the consistency of the SNR, it is calculated in the frequency domain and
signal gain in the time domain. Because the SNR of the signal is consistent, both
in the time domain and frequency domain

SN Rm(n, i) = 10 log

[ |ŝm(n, i)|2
|d̂m(n, i)|2

]
= 10 log

[
|Ŝm(k, i)|2
|D̂m(k, i)|2

]
. (22)

2. The information of L frequency points are used to estimate the variance of a signal
σ 2
Dm (k,i), σ

2
Sm (k,i−1) and σ 2

Sm (k,i). These three variances are used to approximately

replace σ 2
Sm (k,i), σ

2
Sm (k,i−1) and σ 2

Dm (k,i). So, γm(k, i) and ηm(k, i) can be written
as

γm(k, i) ≈ γm(i) = σ 2
Sm (i) − λ̄2m(i)σ 2

Sm (i−1)

σ 2
Dm (i) + [1 − λ̄2m(i)]σ 2

Sm(i)

(23)

ηm(k, i) ≈ ηm(i) = λ̄m(i)σ 2
Dm (i)

σ 2
Dm (i) + [1 − λ̄2m(i)]σ 2

Sm(i)

(24)

It can now be seen that the estimation of σ 2
Sm (i), σ

2
Sm (i−1) and λ̄2m(i) are the key to

the algorithm. After a signal matrix Xa
m(k, i) = {Xm(k, i),Xm(k, i − 1)}T of two

adjacent frames is defined, the autocorrelation matrix Rx
m(k, i) is expressed as:

Rx
m(k, i) = E

[
Xa
m(k, i)Xa

m(k, i)H
]

=
(
R1 R2
R3 R4

)

=
(
E[X2

m(k, i)] E[Xm(k, i)Xm(k, i − 1)]
E[Xm(k, i)Xm(k, i − 1)] E[X2

m(k, i − 1)]
)

=
(

σ 2
Sm (k,i) + σ 2

Dm (k,i) λ̄m(i)σ 2
Sm (k,i−1)

λ̄m(i)σ 2
Sm (k,i−1) σ 2

Sm (k,i−1) + σ 2
Dm (k,i−1)

)
(25)

The Rx
m(i) of L frequency points are used to replace the Rx

m(k, i) of the single
frequency point, and Eq. (25) becomes:

Rx
m(i) =

(
Q1 Q2
Q3 Q4

)
=
(
E[X2

m(i)] E[Xm(i)Xm(i − 1)]
E[Xm(i)Xm(i − 1)] E[X2

m(i − 1)]
)

=
(

σ 2
Sm (i) + σ 2

Dm (i) λ̄m(i)σ 2
Sm (i−1)

λ̄m(i)σ 2
Sm (i−1) σ 2

Sm (k,i−1) + σ 2
Dm (i−1)

)
(26)
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Q1, Q2, Q3 and Q4 can be calculated by the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = E[X2
m(i)] = 1

L

L−1∑
k=0

X2
m(k, i)

Q4 = E[X2
m(i − 1)] = 1

L

L−1∑
k=0

X2
m(k, i − 1)

Q2 = Q3 = E[Xm(i)Xm(i − 1)] = 1
L

L−1∑
k=0

Xm(k, i)Xm(k, i − 1)

(27)

Equation (26) is joined with Eq. (27), so

⎧⎪⎨
⎪⎩

σ 2
Sm (i) = Q1 − σ 2

Dm (i)
σ 2
Sm (i−1) = Q4 − σ 2

Dm (i−1)

λ̄m(i) = Q2

/[
Q4 − σ 2

Dm (i−1)

]
= Q3

/[
Q4 − σ 2

Dm (i−1)

] (28)

It is clear that the solution of the problem becomes the estimation of the variance
σ 2
Dm (i) and σ 2

Dm (i−1) of the noise. In the literature, the power spectrum estimation
of the noise usually uses the minimum value tracking method [7,14,25,31]. To
reduce the computational complexity and storage resources, the search window
length is set to a finite length. The specific steps are as follows:

Step 1 Calculate the signal power and smooth it.

σ 2
X̄m (i)

= ασ 2
X̄m (i−1)

+ (1 − α)σ 2
X̄m (i)

(29)

Here, α is the smoothing factor and α = 0.7. σ 2
X̄m (i)

represents the noise
variance, and its calculation method is the same as that for Q1.
Step 2 Search for the minimum value in the previous u frames. If the power of
the current frame signal σ 2

X̄m (i)
is less than the power σ 2

Dmin
m (i−1)

of the previous

frame noise, then the power of the current frame signal is the same as the power
of this frame noise σ 2

Dmin
m (i)

. Otherwise, search the minimum value from the

previous u − 1 frames to obtain σ 2
Dmin
m (i)

. That is,

σ 2
Dmin
m (i) = min

{
σ 2
X̄m (i−1)

, σ 2
X̄m (i−2)

, . . . , σ 2
X̄m (i−u)

}
(30)

Here, the value of u is limited, which indicates that searching is performed in
the adjacent frames, rather than looking through a number of previous frames.
Step 3 Calculate the probability of the existence of the voice psm(i)

psm(i) = βpsm(i − 1) + (1 − β)I sm(i) (31)
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Here, β is the probability update coefficient, and the value is 0.2. I sm(i) is the
state function that represents the presence of a voice, which is defined as

I sm(i) =
{
1 σ 2

X̄m (i)
/σ 2

Dmin
m (i)

> δ

0 σ 2
X̄m (i)

/σ 2
Dmin
m (i)

≤ δ
(32)

where δ is the threshold value, and it takes to be 2.
Step 4 Smooth to obtain the final noise spectrum

σ 2
Dm (i) = αm(i)σ 2

Dm (i−1) + [1 − αm(i)]σ 2
X̄m (i)

. (33)

In the formula, αm(i) is the smoothing factor, which is defined as

αm(i) = α + (1 − α)psm(i) (34)

Finally, the SNR is estimated as

SN Rm(i) = 20 lg

[ |sm(i)|
|dm(i)|

]
= 20 lg

[ |Sm(i)|
|Dm(i)|

]
≈ 20 lg

[
|Ŝm(i)|

|X (i) − Ŝm(i)|

]

(35)

2.3 The Construction of the Gain Function

In digital hearing aids, the noise reduction usually precedes the loudness compensa-
tion in signal processing, which is designed to suppress background noise and avoid
amplifying the background noise in the subsequent loudness compensation algorithm.
The basic function of loudness compensation is to calculate the signal gain of each
frequency band according to the audiometric curve of the patient and the sound pres-
sure level (SPL) of the input signal, to thus compensate for the patient’s hearing loss in
each frequency band, and to enhance the audibility of speech, thereby improving the
speech intelligibility of the patient. The function can be expressed by the gain function
gldB(i,m), which calculates the gain in the dB domain, and it is then transformed to
the amplitude domain through the following formula.

gl(i,m) = 102g
l
dB(i,m) (36)

The modulation depth method of noise reduction commonly used in a hearing aid
and it is the same as the loudness compensation in principle, namely calculating the
gain function based on the SNR, thus reducing the noise in the signal. The gain function
is defined as

gdB(i,m) = λim(SN R) f (σ 2
Dm (i)) (37)

g(i,m) = 102·gdB(i,m) (38)
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Fig. 2 Modified linear
proportional gain function
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In Eqs. (37) and (38), gdb(i,m) represents the gain of the i th frame in the mth
sub-band in thedB domain, g(i,m) represents the gain in the amplitude domain, and
λim(SN R) is an attenuation function with the change of the SNR, the value of which
is limited to [−1, 0]. When λim(SN R) is 0, the corresponding gain in the amplitude
domain is 1, whichmeans that there is no attenuation. If the value ofλim(SN R) is close
to −1, the signal will obtain the maximum attenuation in the amplitude domain. Early
methods were based on the relationship between the linear proportional gain function
and the SNR in the sub-band to suppress noise, but some intermittent background noise
is still retained, which leads to the user’s auditory fatigue. Therefore, an improved
strategy is proposed, namely adding a section of attenuation polylines in the parts
with low SNR. As shown in Fig. 2, where K0, K1, K2 and K3 represent different
attenuation slopes in different SNR range.More specifically, in the range of [0, B0], the
attenuation curve is relatively steep, which can better restrain residual noise. However,
this strategy is not suitable for a weak signal environment. Therefore, the current
environmental noise level is added into the algorithm design. For example, when the
patient is in a relatively quiet environment, and if the gain function relies solely on the
current SNR, the voice signal will be attenuated. Instead, the maximum attenuation
function f (σ 2

Dm (i)) is used to control the magnitude of the attenuation. Therefore, the

maximum attenuation function is set to the current noise energy σ 2
Dm (i), so even if the

current SNR is low, the speech signal will not decay too much.

2.4 A De-noising Algorithm Based on the Improved Estimation of the
Sub-bands’ SNR

As the figure shows, the noisy speech signal x(n) will be divided into several sub-
bands through some band-pass filters with various widths, and then, each sub-band
will be down-sampled and subjected to the Fourier transformation. The real-time SNR
of each sub-band will be calculated based on the estimation of the speech signal and
sub-band noise in frequency domain. And according to Eq. (35), SNRm(i) can be
obtained. Hence, the gain in the time domain can be calculated from the SNRm(i) of
the sub-bands and thenbemultipliedwith thedown-sampled signal.Next, the enhanced
version of each sub-band signal by up-sampling the original signal can be obtained,
and the enhanced digital signal can be generated by processing the enhanced sub-band
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Fig. 3 The flow chart of the de-noising algorithm based on the improved estimation of the sub-bands’ SNR

signals with synthetic filters. Finally, the digital signal passes the D/A converter, and
the enhanced speech signal is generated. The flow chart of de-noising algorithm based
on the improved sub-band SNR estimation is shown in Fig. 3. The specific steps in
the calculation are as follows:

1. Divide the input signal into various sub-bands using the band-pass filters with
different widths as described in Sect. 2.1.

2. Down-sample each sub-band signal, frame the signal and perform the short-time
Fourier transformation.

3. Use the minimum value tracking method to estimate the spectrum of noise in each
sub-band with Eq. (33);

4. Estimate the pure speech signal with the algorithm for the pure speech signal of
each sub-band through Eq. (19). The parameters are estimated Eq. (28). Due to
the previous frame of speech not being available, the estimated frame of speech
Ŝm(k, i − 1) is used to replace the Sm(k, i − 1) in Eq. (19).

5. Calculate the SNR of each sub-band with Eq. (35).
6. For overall consideration of the sub-band SNR and the noise level of the environ-

ment, the gain of each sub-band signal with Eq. (38) is calculated.
7. Then, the sub-band signal is multiplied with its respective gain.
8. The final enhanced speech signal can be obtained by up-sampling the result of the

last step and then filtering it with the synthetic filters.

3 Simulation Experiments

In order to compare the performance and the calculation of algorithms, some experi-
ments are tested on the traditional spectrum subtractionmethod [3], sub-band spectrum
subtraction method [18], modulation depth method [12], basic Wiener method [11]
and improved Wiener method [10]. The performance indexes include the SNR, log
spectral distortion (LSD), perceptual evaluation of speech quality (PESQ) and system
delay. All the experiments were arranged in a mute room, and the broadcast facility
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was a loudspeaker array (including 4 loudspeakers and one woofer). The test scene can
be simulated by SurroundRouter, a simulation software. The experiment noise is from
the NoiseX-92 dataset, which mainly includes white noise, tank noise, babble speech
noise and pink noise. The input SNRs were set 0, 5, and 10dB. Speech files come
from the TIMIT speech dataset and some self-recorded speech files with a 16 kHz
sample rate. The hearing aid for testing was placed in the center of the loud speaker
array. TES-52A is used to calibrate the sound pressure level of the hearing aid. To
compare the time delay performance of various algorithms, the length of noisy speech
was 0.55, 1.1, and 2.2 s.

Of the targets above, LSD reflects the speech distortion and PESQ can indicate
the overall speech quality. There is a high correlation between those two indices and
subjective assessment. Usually, the more the LSD decreases, the less the log spectrum
distortion is and the less damage done to speech is. Meanwhile, the more the PESQ
increases, the better quality of speech. The calculating methods of LSD and PESQ are
as follows:

LSD = 1

J

J−1∑
l=0

⎧⎨
⎩

1

N/2 + 1

N/2∑
k=0

[
10 log10 X (k, l) − 10 log10

∧
X(k, l)

]2⎫⎬
⎭

1
2

(39)

PESQ = 4.5 − 0.1 · dSYM − 0.0309 · dASYM (40)

In Eq. (39), X (k, l) and X̂(k, l) are the short-time Fourier transformation of pure
speech and enhanced speech, respectively. N is the frame length, and J is the frame
number. The calculations of the dSYM and dASYM can be found in literature [23].

3.1 Sub-band SNR Estimation Experiments

Under the same experimental conditions as the sub-band speech estimation exper-
iments, this experiment has verified the performance of sub-band SNR estimation,
and the results are shown in Fig. 4. When the SNR is above 0dB, the average bias
of the SNR estimation is small, 2.76dB under white noise and 2.48dB under pink
noise. However, when the SNR is below 0dB, the estimation will have a large bias,
which reaches 5.1dB under white noise and 4.5dB under pink noise. The reason for
this circumstance is that estimation of the speech signal in silent periods of frames
is large. However, it is meaningless for digital hearing aid customers to perform the
estimation below 0dB. That is why signals below 0dB will be extremely suppressed
in the attenuation module.

3.2 Speech Noise Reduction Performance Comparison Experiment

3.2.1 Improvement in the Speech Spectrum

Figure 5 shows the spectrogram comparison of different noise reduction algorithms.
The spectrogram describes the relative energy distribution of the speech signal in
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the frequency domain with time. It can not only reflect the time-variant character-
istics of speech but also directly show the residual of music noise. Figure 5c is the
speech spectrum of traditional spectral subtraction, and the speech spectrum shows
that there is residual music noise. Because the spectral subtraction algorithm is aimed
at all frequency points, the SNR varies greatly. This is why the single channel spectral
subtraction will produce musical noise. However, for multi-channel spectral subtrac-
tion (Fig. 5d), the time-domain signal is decomposed into several sub-bands, and the
spectral subtraction algorithm is carried out in each sub-band so that the music noise
is better suppressed. In Fig. 5e, the basic Wiener filtering algorithm shows that the
performance of this algorithm is deteriorated. This is because the algorithm is lim-
ited to a speech endpoint detection algorithm, and the error in the speech endpoint
detection algorithm will lead to the speech frames being wrongly judged as the noise
frame is being processed. Comparatively, the improved Wiener filtering algorithm,
which uses the robust speech endpoint detection algorithm, is better. In addition, the
patent algorithm (Fig. 5g) only works on the effect of multi-channel spectral sub-
traction. In contrast, the proposed algorithm (Fig. 5h) shows a better noise reduction
performance.
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Fig. 5 Spectrograms of a the clean speech, b the noisy speech, and the c traditional spectral subtraction
[3], d multi-channel spectral subtraction [18], e Wiener filtering [11], f improved Wiener filtering [23] g
modulation frequency-based [12], and h proposed methods

3.2.2 Objective Performance Comparison

1. Evaluation of the log spectral measure and speech perception quality
Because the basic spectral subtraction will produce music noise and the basic
Wiener filtering method is limited to voice activity detection, the proposed algo-
rithm will no longer be compared to the basic spectral subtraction and the Wiener
filtering method in the subsequent objective index test. The experiment compared
the log spectral distance (LSD) and speech perception quality (PESQ) of the
improvedWiener filteringmethod (IWF), the sub-band spectral subtraction (MSS),
modulation frequency-based (MFB), and the proposed algorithm proposed in this
paper (PROP) for four types of noise when the input signal-to-noise ratio (SNR)
was 0, 5 and 10dB. The experimental results are shown in Table 3. In the white
noise environment, the PESQ improvement in the algorithm proposed in this paper
increasedwith the input signal-to-noise ratio; in the 10dBwhite noise environment,
its distance improved performance is similar to that of the logarithmic spectrum.
The perceptual evaluation of speech quality (PESQ) improvement exhibited the
following order: improved Wiener filtering method > sub-band spectral subtrac-
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tion > algorithm proposed in this paper > system depth method. Particularly
for the algorithm proposed in this paper, the PESQ decreased by 40% compared
with the improved spectral subtraction, fell by 7.8% compared with the sub-band
spectral subtraction, and improved by 9.3% compared with system depth method.
Under the speech babble and tank noise environments, the performances of the
algorithm proposed in this paper and the system depth methods are poor, with an
average PESQ improvement of no more than 0.2. The sub-band SNR estimation
experiments show that the algorithm proposed in this paper has better performance
under the four noise types; thus, the linear proportional attenuation model used in
this paper needs to be further improved.

2. SNR performance comparison
The output signal-to-noise ratio is an important index to evaluate the noise reduc-
tion algorithm inhearing aids. TheChinesePure voice datawere recorded in a silent
room and overlaid with NoiseX-92 Library’s white noise, pink noise, tank noise,
and babble speech noise in the software simulation platform, which was then used
as the noisy speech signal. Figure 6 gives the enhancement of the signal-to-noise
ratio when 10dB noisy speech was subjected to sub-band spectral subtraction, the
improved Wiener filtering method, the system depth method and the algorithm
proposed in this paper. It can be seen from the test results of Fig. 6 that in the four
types of noise, the improvement in performance of the output signal-to-noise ratio
exhibited the following order: improvedWiener filteringmethod> sub-band spec-
tral subtraction > the algorithm proposed in this paper > system depth method.
In the 10dB white noise environment, the output SNR of the algorithm proposed
in this paper decreased by 1.4dB compared with the improved Wiener filtering
method, decreased by 1.1dB compared with the sub-band spectral subtraction
method, and improved by 1dB compared with the system depth method.

3. The real scenario experiment
The purpose of real scenario experiment was to investigate whether the proposed
method can get the good performance without AEC (acoustic echo cancelation)
technology. In the previous simulation experiment, the test object is generated by
the software, the noise is treated as additive noise, and the pure speech is simply
overlaid with the noise to test. In practice, the existence of echo and reverberation
should be considered. Therefore, the establishment of a real sense of hearing is
needed in the quiet laboratory scene, and thus, real voice data were recorded using
auditory scene settings as shown in Fig. 7. The left anterior and right front speakers
playback noise signals to simulate the background noise, and the rear speakers play
the pure speech signal to substitute for the speaker. The three speakers are placed
symmetrically, and a microphone is placed in the center to gather the signal. The
sound pressure level is calibrated using a TES-52A sound pressure meter. Figure 8
shows the improvement in the SNR after the noisy speech signal recorded in this
real-world environment was treated by the four algorithms. It can be seen from
Fig. 8 that for the four types of noise, the improved performance of the output
SNR exhibited the following order: improved Wiener filtering method > sub-
band spectral subtraction > algorithm proposed in this paper > system depth
method. In the 10dB white noise environment, the output SNR of the proposed
algorithm is decreased by 1.9dB compared with the improved Wiener filtering
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method, decreased by 1.6dB compared with the sub-band spectral subtraction
method, and improved by 3.1dB compared with the system depth method. In
addition, due to the existence of echo and reverberation, this experiment also
shows that the improvement in the SNR with each of the 4 algorithms decreased.
Compared with the simulation environment, the improvedWiener filteringmethod
fell by 7.9%, the sub-band spectral subtraction decreased by 12.5%, and the system
depth method decreased by 12.8%, while the proposed algorithm only fell by
1.5%.

3.2.3 Subjective Performance Comparison

Sentence-pair listening test [36]was used in this subjective evaluation. The experiment
included four types of noises (white, pink, tank, and babble) which were from the
NoiseX-92 dataset. And the input SNR was set 10dB. Six speech files (three male and
three female) came from the TIMIT speech dataset. Comparison methods included
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MFB, IWF, MSS, and PROP, so 24 groups enhanced speech (4∗1∗6) was obtained.
And twelve normal hearing listeners evaluated each group enhanced speech in random
order. For each group enhanced speech, listeners need to order these sentences. The
scoring criterion was: +1.5 was awarded to 1st method, +1 was awarded to 2nd
method, +0.5 was awarded to 3rd method, and +0 was awarded to the last. If 1st and
2nd were hard to distinguish, each method of two was awarded to +1. Also if 2nd and
3rd were hard to distinguish, each method of two was awarded to+0.5, and so on. The
mean score in this subjective evaluation experiment is shown in Fig. 9. In general, the
IWF enhanced speech had less residual noise and distortion. MSS and PROP methods
had equivalent performance on residual noise and distortion. The MFB method exits
much residual noise.
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3.2.4 Real-Time Performance Comparison

Figure 10 shows the average processing delay of the proposed algorithm (PROP),
modulation depth method [12], improved Wiener filtering method [10], and sub-band
spectrum subtraction [18]. The times of processed noisy speech are 0.55, 1.1, 2.26 s,
the frame size is 256, and the frame shift is 50%. Although an analysis filter is needed
for the multi-band algorithm to divide the signal into a number of sub-bands, filter
decomposition is the basic operation of hearing aid algorithms, and its delay is not
included in the experiment’s performance comparison. Thus, the statistical processing
delay is measured from the signal passing through the decomposition filter to reaching
the synthesis filter. In Fig. 10, the delays of the sub-band spectrum subtraction method
and improved Wiener filtering method are significantly larger than those of the pro-
posedmethod andmodulation depthmethod. The processing delay performance of the
proposed algorithm is decreased by 51% compared with the modulation depth method
but improved by 60.6% compared with the sub-band spectrum subtraction method and
by 40.7% compared with the improved Wiener filtering method. This is because the
two models must use the fast Fourier transform to analyze the signal in the frequency
domain and ultimately restore to signal to the time domain by the inverse fast Fourier
transform; thus, the amount of calculation will be increased significantly. And based
on the above analysis, this method can be implemented at about 25% calculation cost
of real and imaginary modulation spectral subtraction method. However, in the mod-
ulation depth method proposed in [2], the amount of gain is determined by the signal
envelope, the processing delay is reduced greatly and the delay reaches a minimum
by avoiding the FFT and IFFT computation. The processing delay of the proposed
algorithm is longer than that of the modulation depth method but much lower than
those of the spectral subtraction method and Wiener filtering method. This is because
the estimate of the sub-band SNR in the proposed algorithm is also performed in the
frequency domain, the FFT calculations are only used to estimate the sub-band SNR,
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and the cross-correlation function andmean square value calculations involved are not
highly time-consuming. Additionally, the core advantages of the method is retaining
the algorithm features of the literature [25] and using the time-domain gain function
instead of the inverse fast Fourier transform (IFFT) to restore the time-domain signal.
This is the fundamental reason for the decrease by half processing time compared with
the spectral subtraction method and Wiener filtering method.

4 Conclusions

A multi-channel digital noise reduction algorithm based on sub-band SNR estima-
tion is proposed. The algorithm has satisfied performance in noise suppression and
maintains a low time complexity. The algorithm estimates the speech signal based on
maximum a posteriori probability theory, and the adjacent frame information in the
form of the joint probability density function is introduced to themaximuma posteriori
probability model. The estimated value of the speech signal is derived by calculating
the autocorrelation matrix of two adjacent frames, wherein the noise estimate uses
the minimum noise spectrum to track the noise. To verify the performance of the
algorithm, many experiments are designed, and various algorithms are compared by
using LSD, PESQ, SNR, and processing delay indicators. Under the environment of
10dB white noise, the improvement in the spectrum distance exhibits the following
order: modulation depth method > improved Wiener filtering method > sub-band
spectral subtraction method > proposed method. The improvement in speech per-
ceptual quality exhibits the following order: improved Wiener filtering > sub-band
spectral subtraction method > proposed method > modulation depth method. The
order of improvement in the output SNR in the simulation environment is as follows:
improvedWiener filteringmethod> sub-band spectral subtractionmethod> proposed
method > modulation depth method. The order of improvement in the output SNR in
the real scenario is as follows: improved Wiener filtering method > sub-band spectral
subtraction method> proposed method>modulation depth method. The order of the
delay size of the four algorithms is as follows: modulation depth method < proposed
method< sub-band spectral subtraction method< improvedWiener filtering method.
Therefore, considering the speech distortion, perceptual quality and processing delay
performance, the proposed method is an optional program for low-power devices such
as digital hearing aids.

Of course, there are some limitations for the proposed algorithm. This model is
under the assumption of a Gaussian model, so it is not suit for nonstationary noise
scene, such as babble noise. The babble noise is one of themost important conditions to
improve. The gain functions are set the same in the four noisy environments, resulting
in the noise reduction of the algorithm not being suited to the tank and speech babble
backgroundnoises. Thus, auditory scene classifierwill be the direction of the follow-up
research on the algorithm. And the parameters of gain function are adjusted according
to the different noise scenes.
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