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Abstract This paper investigates exponential stability of nonlinear delayed impulsive
systems. The effects of impulses with sufficiently small input delays and arbitrary
sizes of input delays are thoroughly examined according to whether the continuous
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dynamics of the systems is stable. Several exponential stability criteria are obtained
and are then applied to study constant time-delay systems with linear input impulses.
Numerical examples are provided to illustrate the usefulness of the main study results.

Keywords Exponential stability · Time-delays · Average impulsive interval

1 Introduction

Stability of nonlinear dynamical systems has been extensively investigated for the past
decades because of its importance in mathematical modeling and applications in non-
linear sciences [7,18,20,30–32]. Impulsive systems, which describe abrupt changes
in the state at certain discrete moments, have been widely applied to model practical
problems in various fields, such as mechanical systems, control systems, and complex
networks [3,8,9,11,27,35]. Existence of impulses creates a huge challenge to inves-
tigate the stability of impulsive systems. Therefore, the study of stability of impulsive
systems has received considerable attention during the last decade in the dynamical
system research community [1,2,4,5,14–17,19,21,22,33,34].

Time-delays are inevitable in the process of information transmission and impul-
sive sampling. The dynamics of time-delay systems depends on the current moments
and is closely related to certain time periods in the past. This scenario has resulted
in theoretical difficulties in investigating the stability of time-delay systems. Practi-
cal significance and theoretical value of the time-delay impulsive systems have led
to a research surge in recent years, and many important results have been obtained
[1–5,19,21,29,33]. However, there are only a few results on the study of effects of
delayed impulses. Recently, Khadra et al. [13] investigated delay-free autonomous
systems with delayed impulses. Using exponential estimation for delay-free systems,
the authors obtained the state estimation at impulsive moments and derived a suffi-
cient condition for asymptotic stability. Nonetheless, this method cannot deal with
time-delay systems. Subsequently, Ho et al. [12] investigated time-delay neural net-
works with destabilizing delayed impulses. By imposing certain conditions on delays
and impulsive intervals, Ho et al. [12] applied the differential inequality method to
attain exponential stability. Chen and Zheng [6] examined nonlinear time-delay sys-
tems with destabilizing delayed impulses and stabilizing delayed impulses, and then
obtained some interesting exponential stability criteria.

In most existing results concerning stability of impulsive systems [6,10,13,16,28],
themagnitude of impulsive intervals is usually assumed to satisfyα ≤ tk−tk−1 ≤ β for
all k ∈ N and some positive numbersα, β, α ≤ β. This assumption on the randomness
of impulsive sampling significantly limits the scope of the obtained results. It is the
purpose of this research to remove such a restriction and thereby to obtain more robust
results.

Two notablemethods are employed to investigate the stability of impulsive systems,
namely, the Lyapunov–Razumikhin function method [6,23,26] and the Lyapunov–
Krasovskii function method [25]. The current study examines the exponential stability
of time-delay impulsive systems with delayed impulses based on the Lyapunov–
Razumikhin method. Our contributions can be summarized as follows. (1) A new
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description concerning impulsive sequences is introduced, which can be used to char-
acterize a wide range of impulses, including those whose interval length tk − tk−1
may be extremely small or very large for some k ∈ N . The obtained results can be
applied to extensive classes of problems. (2) Several modified conditions on the Lya-
punov function are proposed, by which substantial understanding of how this function
varies with the system state can be attained. Moreover, the obtained results under
these conditions are considerably convenient to apply in real problems as shown by
the examples in Sect. 6. (3) The study results can be applied to deal with the exponen-
tial stability of time-delay systems with synchronizing impulses, inactive impulses, or
desynchronizing impulses.

The rest of this paper is organized as follows. Section 2 introduces our model
descriptions, notation, and definitions. Section 3 derives the exponential stability cri-
teria of stable time-delay systems with delayed impulses based on our analysis on
impulsive differential equations. Section 4 examines the unstable time-delay systems.
Section 5 investigates a constant time-delay systemwith linear input delayed impulses
by applying the results obtained in Sects. 3 and 4. Finally, Sect. 6 furnishes several
numerical examples to illustrate the effectiveness and usefulness of the obtained cri-
teria.

2 Model Description and Preliminaries

For ρ ≥ 0, r > 0, let B(ρ) = {x ∈ Rn||x | ≤ ρ}, and P RC([−r, 0],Rn) =
{ϕ: [−r, 0] → Rn|ϕ is piecewise right continuous}, endowed with norm ‖·‖r :
‖ϕ‖r = sup−r≤θ≤0 |ϕ(θ)|. For x ∈ P RC([t0 − r,+∞),Rn) and t ≥ t0, define
xt ∈ P RC([−r, 0],Rn) by xt (s) = x(t + s). Let D ⊂ Rn be an open set satisfying
B(ρ) ⊂ D for some ρ ≥ 0. Let f :R+×P RC([−r, 0], D) → Rn satisfy f (t, 0) = 0.
gk : D × D → Rn, k ∈ N .

We consider the following nonlinear time-delay system with delayed impulses

⎧
⎨

⎩

ẋ(t) = f (t, xt ); t > t0, t 	= tk (a)

x(t) = gk(x(t−), x(t − dk)
−), t = tk, k ∈ N (b)

x(t0 + θ) = φ(θ), θ ∈ [−τ, 0], (c)
(1)

where x ∈ Rn is the system state, x(t+) and x(t−) are the right-hand limit and left-
hand limit of x at t , respectively, {dk ≥ 0, k ∈ N } are impulsive delays satisfying
maxk{dk} = d < ∞, the nonegative t0 is the initial time, {tk} is a nonnegative
increasing sequence with tk → +∞, φ ∈ P RC([−τ, 0],Rn) is the initial state, and
τ = max{r, d}.

Throughout the rest of the paper, we suppose that for any φ ∈ P RC([−τ, 0],
Rn), (1) has a unique solution x(t) = x(t, t0, φ), which is right-hand continuous, i.e.,
x(t+) = x(t).

Definition 1 For a given impulsive sequence {tk}, the trivial solution of (1) is said to
be exponentially stable if there exist positive numbers ρ0, M and λ such that for φ

with ‖φ‖τ < ρ0, the solution x(t, t0, φ) of (1) satisfies
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|x(t, t0, φ)| ≤ M‖φ‖τ e−λ(t−t0), t ≥ t0.

Moreover, if the trivial solution of (1) is exponentially stable, and ρ0 can be arbitrarily
large, then the trivial solution is said to be globally exponentially stable.

Definition 2 The average impulsive interval of ζ = {t1, t2, . . .} is greater than Ta1 if
there exists N1 ∈ Z+ such that

Nζ (T, t) ≤ T − t

Ta1
+ N1, ∀ T ≥ t ≥ 0.

The average impulsive interval of ζ is less than Ta2 if there exists N2 ∈ Z+ such that

T − t

Ta2
− N2 ≤ Nζ (T, t), ∀ T ≥ t ≥ 0.

The average impulsive interval of ζ is Ta if there exists N0 ∈ Z+ such that

T − t

Ta
− N0 ≤ Nζ (T, t) ≤ T − t

Ta
+ N0, ∀ T ≥ t ≥ 0,

where N0, Ni , Tai , i = 1, 2, are positive scalars, and Nζ (T, t) is the number of impul-
sive moments of ζ on (t, T ).

Remark 1 The concept of “average impulsive interval” was first introduced in [24] to
investigate impulsive systems with nonunited distributive impulses.

Definition 3 A function V : [−τ,∞) × B(ρ) → R+ is said to belong to the class ν0
if

(1) V is continuous in each of the sets [tk−1, tk) × B(ρ). For each k ∈ N ,
lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists;

(2) V (t, x) is local Lipschitz with respect to x ∈ B(ρ), and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 4 Suppose V ∈ ν0. For the solution x(t) = x(t, t0, φ), let V (t) =
V (t, x(t)). Define the upper right-hand derivative of V at t∗ ∈ [t0,+∞) with respect
to (1) as

D+V (t∗) = lim sup
s→0

1

s
[V (t∗ + s, x(t∗) + s f (t∗, xt∗)) − V (t∗, x(t∗))].

3 Stable Time-Delay Systems with Delayed Impulses

This section focuses on exponential stability of (1), where the continuous dynamics
(a) in (1) is stable. We make the following assumptions.

(A1) There exists L1 > 0 such that for each ϕ ∈ P RC([−r, 0],B(ρ)), | f (t, ϕ)| ≤
L1‖ϕ‖r .
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(A2) There exist L2, L3 > 0 such that for all k ∈ N and x, y1, y2 ∈ B(ρ), |gk(x, 0)−
x | ≤ L2|x |, |gk(x, y1) − gk(x, y2)| ≤ L3|y1 − y2|.

(A3) The average impulsive interval of ζ = {tk} is greater than Ta > 0, that is, there
exists N0 ∈ N such that for all T ≥ t > t0, Nζ (T, t) ≤ T −t

Ta
+ N0. Thus, there

exist at most l = 
 d
Ta

� + N0 impulses on (t0, t0 + d], where 
 d
Ta

� means the

upper integer of d
Ta
. Let ∇ = 1 + L2 + L3, � = ∇l eL1d .

Let the impulsive moments on (t0, t0 + d] be {ti }, i = 1, 2, · · · , m0, m0 ≤ l. We
first estimate the solution of (1) on [t0 − τ, t0 + d].
Lemma 1 Suppose (A1)–(A3) hold. Then for any φ ∈ P RC([−τ, 0],B(ρ/�)), the
solution x(t, t0, φ) of (1) satisfies |x(t, t0, φ)| ≤ �‖φ‖τ , t ∈ [t0 − τ, t0 + d].
Proof The proof is standard. We include it for reader’s convenience.

Obviously, |x(t0+θ)| = |φ(θ)| ≤ ‖φ‖τ < ρ(θ ∈ [−τ, 0]). Then for t ∈ [t0−τ, t0],
|x(t)| < ρ. We claim |x(t)| < ρ for t ∈ [t0 − τ, t1). If not, there exists t∗ ∈ (t0, t1)
such that for t ∈ [t0 − τ, t∗), |x(t)| < ρ and |x(t∗)| = ρ.

For t ∈ [t0, t∗], θ ∈ [−r, 0], without loss of generality, we assume t + θ > t0.
Integrating (a) in (1) from t0 to t + θ and using (A1), we have

|x(t + θ)| = |x(t0) +
∫ t+θ

t0
f (s, xs)ds| ≤ |φ(0)| +

∫ t

t0
| f (s, xs)|ds

≤ ‖φ‖τ + L1

∫ t

t0
‖xs‖r ds.

Then,

‖xt‖r ≤ ‖φ‖τ + L1

∫ t

t0
‖xs‖r ds, t ∈ [t0, t∗].

By the Gronwall’s inequality, we get

‖xt‖r ≤ ‖φ‖τ eL1(t−t0), t ∈ [t0, t∗].

Therefore,

|x(t∗)| ≤ ρ

�
eL1d < ρ,

which is a contradiction.
From the above argument, we also obtain

|x(t)| ≤ ‖xt‖r ≤ ‖φ‖τ eL1(t−t0), t ∈ [t0 − τ, t1).

By (A2), for k ∈ N and x, y ∈ B(ρ),

|gk(x, y)| = |gk(x, y) − gk(x, 0)| + |gk(x, 0) − x | + |x | ≤ (1 + L2)|x | + L3|y|.
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Hence,

|x(t1)| = |gk(x(t−1 ), x((t1 − d1)
−))|

≤ (1 + L2)|x(t−1 )| + L3|x((t1 − d1)
−)|

≤ (1 + L2 + L3)‖φ‖τ eL1(t1−t0)

= ∇‖φ‖τ eL1(t1−t0).

Thus, we have proved that

|x(t)| ≤ ∇‖φ‖τ eL1(t−t0), t ∈ [t0, t1].

Repeatedly, we obtain

|x(t)| ≤ ∇m0‖φ‖τ eL1(t−t0) ≤ ∇l‖φ‖τ eL1(t−t0), t ∈ [t0, tm0 ].

Since there are no impulses on (tm0 , t0 + d], we have

|x(t)| ≤ ∇l‖φ‖τ eL1(t−t0) ≤ ∇l‖φ‖τ eL1d = �‖φ‖τ , t ∈ [t0 − τ, t0 + d].

��
Theorem 1 Suppose (1) satisfies (A1)–(A3). There exist V ∈ ν0, positive scalars
a, b, c, ν, k1, k2, and p ≥ 1, satisfying

(S1) For all (t, x) ∈ [−τ,∞) × B(ρ), a|x |p ≤ V (t, x) ≤ b|x |p.
(S2) For all t = tk and x, y1, y2 ∈ B(ρ) with y1 + y2 ∈ B(ρ), V (t, gk(x, x)) ≤

νV (t−, x) and V (t, gk(x, y1 + y2)) ≤ k1V (t, gk(x, y1)) + k2V (t, gk(0, y2)).
(S3) For t ∈ [t0,∞), t 	= tk and x(·) ∈ P RC([−τ, 0],B(ρ)), D+V (t, x(t)) ≤

−cV (t, x(t)) whenever ecτ V (t, x(t)) ≥ V (t + s, x(t + s)), s ∈ [−τ, 0).

If there exists d ≥ 0 such that

k1ν + b

a
k2L p

3 [d L1 + l(L2 + L3)]p < 1, (2)

then (1) is exponentially stable for input delays {dk} satisfying dk ≤ d, k ∈ N .

Proof Let λ, 0 < λ < c be such that

k1ν + b

a
k2L p

3

[
d L1eλ(r+d)/p + l(L2 + L3)e

2λd/p
]p

< 1. (3)

For any fixed scalar δ ∈ (0, ( p
√

b
a (2L3 + 1) � �)−1ρ), suppose that the solution of (1)

subject to (t0, φ) ∈ R+ × P RC ([−τ, 0],B(δ)) is x(t) = x(t, t0, φ), with maximal
existence interval [t0 − τ, T̄ ). Obviously, Lemma 1 implies T̄ > t0. We will show that
T̄ = ∞ and

V (t) ≤ b�p‖φ‖p
τ e−λ(t−t0−d), t ∈ [t0 + d, T̄ ). (4)
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For simplicity, we still denote the sequence in (t0 +d,∞)∩ (t0 − τ, T̄ ) by {ti }, i =
1, 2, . . . For t ∈ [tn, t∗n+1), n ∈ N , define

W (s) = eλ(s−t0−d)V (s), s ∈ [t0 − τ, t]. (5)

For any fixed k ∈ N , we first show by mathematical induction that,

W (s) ≤ b�p‖φ‖p
τ s ∈ [t0 − τ, tk). (6)

By Lemma 1,

|x(s)| ≤ �‖φ‖τ , s ∈ [t0 − τ, t0 + d]. (7)

(7) and (S1) implies that (6) holds on [t0 − τ, t0 + d].
We claim that for t ∈ [t0 −τ, t1), (6) is also true. If not, there exists t∗ ∈ [t0 +d, t1)

and 0 < ε < b[(� + L3)
p − 1] such that

W (t∗) = (b + ε)�p‖φ‖p
τ , D+W (t∗) ≥ 0, (8)

and for s ∈ [t0 − τ, t∗),

W (s) < W (t∗). (9)

Combing (8), (9) and (S1), for s ∈ (t0 + d, t∗), we have

|x(s)| ≤ p

√
b + ε

a
�‖φ‖τ < ρ.

For s ∈ [t∗ − τ, t∗), (9) implies

V (t∗) > e−λ(t∗−s)V (s) ≥ e−λτ V (s) ≥ e−cτ V (s).

Thus from (S2), we obtain D+V (t∗) ≤ −cV (t∗). It follows that

D+W (t∗) ≤ −(c − λ)eλ(t∗−t0−d)V (t∗) < 0,

which is a contradiction to (8). Hence (6) holds on [t0 − τ, t1).
Now we assume that for s ∈ [t0 − τ, tm), m = 1, 2, . . . , k − 1, (6) is true. So

W
(
t−m

) ≤ b�p‖φ‖p
τ , (10)

we will show W (tm) ≤ b�p‖φ‖p
τ .

Since Nζ (tm, tm − dm) ≤ dm
Ta

+ N0 ≤ d
Ta

+ N0, there exist at most l = 
 d
Ta

� + N0
impulses on (tm − dm, tm), which are assumed to be tm1, tm2 , . . . , tml0

, l0 ≤ l.
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From (10) and (S1),

|x(s)| ≤ p

√
b

a
�‖φ‖τ e−λ(s−t0−d)/p < ρ, s ∈ [t0 − τ, tm). (11)

By (11), (A1) and (A2),

�m = ∣
∣x

(
t−m

) − x (tm − dm)−
∣
∣ =

∣
∣
∣
∣
∣

∫ tm

tm−dm

ẋ(s)ds +
l0∑

i=1

(
x

(
tmi

) − x
(
t−mi

))
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ tm

tm−dm

| f (s, xs)| ds

∣
∣
∣
∣ +

l0∑

i=1

∣
∣
∣gmi

(
x

(
t−mi

)
, x

((
tmi − dmi

)−))
− x

(
t−mi

)∣∣
∣

≤ L1

∣
∣
∣
∣

∫ tm

tm−dm

‖xs‖r ds

∣
∣
∣
∣ +

l0∑

i=1

[
L2

∣
∣x

(
t−mi

)∣
∣ + L3

∣
∣
∣x

(
tmi − dmi

)−∣
∣
∣

]

≤
[

L1deλ(r+d)/p + l(L2 + L3)e
2λd/p

] (
b

a

)1/p

�‖φ‖τ e−λ(tm−t0−d)/p.

(12)

It is easy to check by virtue of (11) and (A2) that

|gm
(
x

(
t−m

)
, x

(
t−m

)) | < ρ,

|gm
(
x

(
t−m

)
, x((tm − dm)−)

) | < ρ,

|gm(0,�m)| < ρ. (13)

Combing (3), (10), (12), (S1) and (S2), we obtain

V (tm) = V (tm, x(tm)) = V
(
tm, gm

(
x

(
t−m

)
, x((tm − dm)−)

))

= V
(
tm, gm

(
x

(
t−m

)
, x

(
t−m

) + �m
))

≤ k1V
(
tm, gm

(
x

(
t−m

)
, x

(
t−m

))) + k2V (tm, gm(0,�m))

≤ k1νV
(
t−m

) + k2b|gm(0,�m)|p

≤
{

k1ν + b

a
k2L p

3

[
d L1eλ(r+d)/p

+ l(L2 + L3)e
2λd/p

]p}
b�p‖φ‖p

τ e−λ(tm−t0−d).

≤ b�p‖φ‖p
τ e−λ(tm−t0−d). (14)

Therefore,

W (tm) ≤ b�p‖φ‖p
τ . (15)

In summary, we have proved, for s ∈ [t0 − τ, tm],

W (s) ≤ b�p‖φ‖p
τ . (16)
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As we did for proving (16) on [t0 − τ, t1), we can prove (16) holds on [tm, tm+1)

by contradiction. By the mathematical induction method, for any k ∈ N , (16) holds
on [t0 − τ, tk). Similar to the argument of (15), we can establish W (tk) ≤ b�p‖φ‖p

τ .
Again using the contradiction method, (16) holds on [tk, t∗k+1). By the continuation
theorem in [1], we know T̄ = +∞, and (1) is exponentially stable for delays dk with
dk ≤ d, k ∈ N . ��
Remark 2 (S3) means the continuous dynamics (a) in (1) is stable. In order to realize
exponential stability of (1), one should remove unfavorable influences from impul-
sive delays. In the existing results, impulsive intervals were generally assumed to be
bounded from below, which implies the interval of any two adjacent impulses can-
not be too small. Then the impulsive strategy of continuous sampling is not applied
to realize stability. In this paper, the bounded assumption from below on impulsive
intervals is replaced by (A3), which allows the lengths of impulsive intervals to be
arbitrary small. See the numerical examples for details.

Remark 3 (S3) implies that, if the function V (t, x(t)) exponentially increases at rate
c in [−τ, 0] before the time t , it should exponentially decrease in some neighborhood
of t at the same rate c so that the system realizes exponential stability.

Remark 4 Theorem 1 is suitable to investigate robustly exponential stability for time-
delay systems with delayed impulses. Namely, for sufficiently small impulse input
delays, under the conditions of Theorem 1, the system (1) is still exponentially stable.

Remark 5 For applications of Theorem 1, one should first determine the delay d by
the inequality (2), and then chooses appropriate impulses with upper bound d.

In the next theorem, we will remove the limits to the sizes of the impulse input
delays, and investigate exponential stability of (1) with any bounded impulse input
delays.

Theorem 2 Suppose (1) satisfies (A1)–(A3). There exist V ∈ ν0, positive scalars
a, b, c, and p ≥ 1, such that (S1) and (S3) hold. Moreover,

(S
′
2) There exist positive scalars M1, M2, M1 + M2 < 1 such that for all t =

tk, x, y ∈ B(ρ),

V (t, gk(x, y)) ≤ M1V (t−, x) + M2V ((t − dk)
−, y),

then (1) is exponentially stable for any bounded input delays {dk, k ∈ N }.
Proof The method is similar to the proof of Theorem 1.

For any bounded impulse input delays {dk, k ∈ N }, let d = sup{dk, k ∈ N }. By
(S

′
2), we can take 0 < λ < c satisfying M1 + M2eλd < 1. Under the assumptions

of Theorem 2, it is easy to check (16) holds on [t0 − τ, t1). Assuming that for s ∈
[t0 − τ, tm), m = 1, 2, . . . , k − 1, (16) is true, we only need show

W (tm) ≤ b�p‖φ‖p
τ .
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This can be derived by virtue of (S
′
2) as follows.

W (tm) = eλ(tm−t0−d)V (tm) = eλ(tm−t0−d)V
(
tm, gm

(
x

(
t−m

)
, x((tm − dm)−)

)

≤ eλ(tm−t0−d)
[
M1V

(
t−m

) + M2V ((tm − dm)−)
]

≤ M1W
(
t−m

) + M2eλd W ((tm − dm)−)

≤
(

M1 + M2eλd
)

b�p‖φ‖p
τ

≤ b�p‖φ‖p
τ .

��
Remark 6 Since Theorem 2 concerns arbitrary bounded impulsive delays, it is very
difficult to realize exponentially stability of the whole system only by virtue of the
stable continuous system. So (S′

2) is adopted to eliminate the negative effects from
these impulse delays.

4 Unstable Time-Delay Systems with Delayed Impulses

In (S3) of Theorems 1 and 2, condition c > 0 implies the continuous system (a) in
(1) is stable. If c ≤ 0, (a) is unstable, and then stability of the whole system greatly
depends on effects from the input impulses.

Theorem 3 Suppose that (1) satisfies (A1), (A2), and that there exist V ∈ ν0, positive
scalars a, b, ν, k1, k2 and p ≥ 1 such that (S1) and (S2) hold. In addition, the following
conditions are satisfied.

(A
′
3) The average impulsive interval of ζ = {tk} is Ta > 0, that is, there exists

N0 ∈ N such that for all T ≥ t > t0,
T −t
Ta

− N0 ≤ Nζ (T, t) ≤ T −t
Ta

+ N0. l,∇ and �

are defined as (A3).
(S

′
3) Let � = N0Ta. There exist c ≤ 0, d > 0, such that for all t ∈ [t0,∞), t 	= tk

and s ∈ [−τ, 0), D+V (t) ≤ −cV (t) whenever

η0e−cτ V (t) ≥ V (t + s)

and

e−c� < η0, (17)

where η0 = [k1ν + b
a k2L p

3 (d L1 + l(L2 + L3))
p]−1, then (1) is exponentially stable

for input delays {dk} with dk ≤ d, k ∈ N .

Proof It is easy to see that, if (17) is true, then there exist 0 < λ < −c, σ > 0 such
that

e(−c+λ)� < σ <

[

k1ν + b

a
k2L p

3

(
d L1eλ(r+d)/p + l(L2 + L3)e

2λd/p
)p

]−1

.

(18)
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Let η = [k1ν + b
a k2L p

3 (d L1eλ(r+d)/p + l(L2 + L3)e2λd/p)p]−1. Take δ ∈
(0, ( p

√
b
a (2L3 + 1) � �)−1ρ). Suppose x(t) = x(t, t0, φ) is the solution of (1) subject

to (t0, φ) ∈ R+ × P RC ([−τ, 0],B(δ)), with maximal existence interval [t0 − τ, T̄ ),
where T̄ > t0 is a positive number. We will show T̄ = ∞ and

V (t) = V (t, x(t)) ≤ bσ�p‖φ‖p
τ e−λ(t−t0−d), t ∈ [t0 + d, T̄ ). (19)

We still denote the impulsive sequence on (t0 + d,∞) ∩ (t0 − τ, T̄ ) by {ti }, i =
1, 2, . . . For t ∈ [tk, tk+1), define

W (s) = eλ(s−t0−d)V (s), s ∈ [t0 − τ, t]. (20)

Similar to the proof of Theorem 1, we will use the mathematical induction method to
establish that for any fixed k ≥ 1,

W (s) ≤ bσ�p‖φ‖p
τ , s ∈ [t0 − τ, tk). (21)

By (S1) and Lemma 1, we have

W (s) ≤ b�p‖φ‖p
τ , s ∈ [t0 − τ, t0 + d].

Then (21) holds on [t0 − τ, t0 + d].
We claim that (21) is also true for t ∈ [t0 − τ, t1). Otherwise, there exists s ∈

[t0 + d, t1) such that

W (s) > bσ�p‖φ‖p
τ .

Let t∗ = inf{t |t ∈ (t0 + d, t1); W (t) > bσ�p‖φ‖p
τ }. Then t∗ ∈ (t0 + d, t1) and

W (t∗) = bσ�p‖φ‖p
τ . (*)

Let t̄ = sup{t |t ∈ (t0 − τ, t∗); W (t) ≤ b�p‖φ‖p
τ }. Then t̄ ∈ [t0 + d, t∗) and W (t̄) =

b�p‖φ‖p
τ .

For s ∈ [t̄, t∗),

W (s) ≥ b�p‖φ‖p
τ = 1

σ
· bσ�p‖φ‖p

τ ≥ 1

σ
W (s + θ), θ ∈ [−r, 0],
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by which and (18), for θ ∈ [−r, 0],

V (s) ≥ 1

σ
eλθ V (s + θ) ≥ 1

σ
e−λτ V (s + θ)

≥ 1

σ
ecτ V (s + θ) ≥ 1

η
ecτ V (s + θ)

≥ 1

η0
ecτ V (s + θ).

That is, η0e−cτ V (t) ≥ V (t + s). For s ∈ [t̄, t∗), using W (s) ≤ bσ�p‖φ‖p
τ and (S1),

we obtain

|x(s)| ≤ p

√
bσ

a
�‖φ‖τ < ρ.

Then by (S
′
3),

D+V (s) ≤ −cV (s), s ∈ [t̄, t∗).

Integrating the above formula from t̄ to t∗, we have

V (t∗) ≤ e−c(t∗−t̄)V (t̄) = e−c(t∗−t̄)e−λ(t̄−t0−d)b�p‖φ‖p
τ

= e(−c+λ)(t∗−t̄)e−λ(t∗−t0−d)b�p‖φ‖p
τ . (22)

Since there are no impulses in (t̄, t∗), Nζ (t∗, t̄) = 0. By the definition of average
impulsive interval, t∗ − t̄ ≤ N0Ta = �.

By (22), we have

V (t∗) ≤ e(−c+λ)�e−λ(t∗−t0−d)b�p‖φ‖p
τ < σe−λ(t∗−t0−d)b�p‖φ‖p

τ , (23)

which implies that W (t∗) < bσ�p‖φ‖p
τ , a contradiction to (∗).

Now, assuming for m ∈ N , 1 ≤ m ≤ k − 1,

W (s) ≤ bσ�p‖φ‖p
τ , s ∈ [t0 − τ, tm), (24)

we will show that

W (s) ≤ bσ�p‖φ‖p
τ , s ∈ [tm, tm+1). (25)

By (24) and (S1),

|x(s)| ≤ p

√
bσ

a
�‖φ‖τ e−λ(s−t0−d)/p < ρ, s ∈ [t0 − τ, tm). (26)
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Since Nζ (tm, tm − dm) ≤ dm
Ta

+ N0 ≤ d
Ta

+ N0, there are at most l = [ d
Ta

] + N0
impulses on (tm − dm, tm). As in the proof of Theorem 1, we can establish

|�m | = |x (
t−m

) − x(tm − dm)−|

≤
[

L1deλ(r+d)/p + l(L2 + L3)e
2λd/p

]
p

√
bσ

a
�‖φ‖τ e−λ(tm−t0−d)/p.

By (26) and (A2), and by the choice of δ, we can easily check that

|gm
(
x

(
t−m

)
, x

(
t−m

)) | < ρ,

|gm
(
x

(
t−m

)
, x((tm − dm)−)

) | < ρ,

|gm(0,�m)| < ρ. (27)

Then using the same argument as (14), we obtain

V (tm) ≤
{

k1ν + b

a
k2L p

3

[
L1deλ(r+d)/p

+ l(L2 + L3)e
2λd/p

]p}
bσ�p‖φ‖p

τ e−λ(tm−t0−d)

≤ b�p‖φ‖p
τ e−λ(tm−t0−d).

That is

W (tm) ≤ b�p‖φ‖p
τ .

We can prove that (21) holds on [tm, tm+1) by the proof we used for [t0 − τ, t1).
Usingmathematical inductionmethod again, we can show that (21) holds on [t0−τ, tk)
for any k ∈ N . We omit the details. Similar to the above argument, we obtain W (tk) ≤
b�p‖φ‖p

τ . Again using the contradictionmethod, we can show (21) holds on [tk, tk+1).
By the Continuation Theorem in [1], we obtain T̄ = +∞, and (1) is exponentially
stable for delays {dk} satisfying dk ≤ d, k ∈ N . ��
Remark 7 By comparing with the existing results [6], we remark that our conditions
are simpler and more convenient to apply since there are fewer parameters need to be
checked.

Similar to Theorem 2, we will also investigate stability for unstable time-delay
systems with any bounded delayed input impulses.

Theorem 4 Suppose that (1) satisfies (A1), (A2) and (A
′
3), that there exist V ∈ ν0,

positive scalars a, b and p ≥ 1, such that (S1) holds, and that
(S′′

2 ) There exist positive scalars M1, M2 such that

V (t, gk(x, y)) ≤ M1V (t−, x) + M2V ((t − dk)
−, y) f or all t = tk, x, y ∈ B(ρ).
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(S′′
3 ) There exist γ > 0 and c ≤ 0 such that, for all t ∈ [t0,+∞), t 	= tk and

s ∈ [−τ, 0),

D+V (t) ≤ −cV (t) whenever γ e−cτ V (t) ≥ V (t + s) (28)

and

e−cN0Ta < γ < (M1 + M2)
−1.

Then (1) is exponentially stable for any bounded impulse input delays {dk, k ∈ N }.
Proof For any bounded impulse input delays {dk, k ∈ N }, let d = sup{dk, k ∈ N }.
Take 0 < λ < −c and σ > 0 such that

M1 + M2eλd ≤ γ −1, e(−c+λ)N0Ta < σ < γ.

Under the assumptions of Theorem 4, it is easy to check (21) holds on [t0 − τ, t1).
Assuming that (21) is true for [t0 − τ, tm), m = 1, 2, . . . , k − 1, we only need show

W (tm) ≤ b�p‖φ‖p
τ .

This can be obtained by (S′′
2 ) as follows.

W (tm) = eλ(tm−t0−d)V (tm)

≤ eλ(tm−t0−d)
[
M1V

(
t−m

) + M2V ((tm − dm)−)
]

≤ M1W
(
t−m

) + M2eλd W ((tm − dm)−)

≤
(

M1 + M2eλd
)

bσ�p‖φ‖p
τ

≤ σ

γ
b�p‖φ‖p

τ < b�p‖φ‖p
τ .

��

5 Applications of Theorems

In this section, we apply the above results to investigate the following time-delay
impulsive system

⎧
⎨

⎩

ẋ(t) = Ax(t) + Φ(t, x(t − r)), t > t0, t 	= ti
x(t) = μx(t−) + Bi x((t − di )

−), t = ti , i ∈ N
x(t) = φ(t − t0), t0 − τ ≤ t ≤ t0,

(29)

where A is an n × n constant matrix, r ≥ 0, impulsive sequence {ti } satisfies t0 <

t1 < t2 < · · · < tn < · · · ,→ +∞, di is the input delay, φ(t) ∈ C1([t0 − τ, 0]),
τ = max{r, d}, and Bi , i = 1, 2, . . . , are n × n matrices.
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For a matrix B, let ‖B‖ = √
λmax(BT B), where λmax(BT B) is the most maximum

eigenvalue of BT B.
In [1], the authors investigated equi-attraction of (29) without considering time-

delays [i.e., r = 0 in (29)]. Here we consider exponential stability of (29). We make
the following assumptions.

(C0) There exist M0, M1, L0 such that ‖Bi + μI‖ ≤ M0, ‖Bi‖ ≤ M1, i = 1, 2, . . .
|Φ(t, x)| ≤ L0|x | for (t, x) ∈ R+ × Rn .

(C1) The average impulsive interval of the impulsive sequence {ti } is Ta . That is there
exist N0 ∈ N , Ta > 0 such that T −t

Ta
− N0 ≤ N (T, t) ≤ T −t

Ta
+ N0.

(C2) λ̄ = λmax(A) < −L0.

By [1], (C0) guarantees that (29) has a solution for any (t0, φ) ∈ R+ ×
C([−τ, 0],Rn), which is denoted by x(t) = x(t, t0, φ). Suppose x(t) to be right-
hand continuous on its existence interval.

Corollary 1 Suppose that (29) satisfies (C0), (C1), (C2). Then the following state-
ments hold.

(a) If there exists d ≥ 0 such that

M0 + M1

[

d(‖A‖ + L0) +
(⌈

d

Ta

⌉

+ N0

)

(|μ − 1| + M1)

]

< 1, (30)

then for any input delays dk ≤ d, (29) is exponentially stable.
(b) If

|μ| + M1 < 1, (31)

then for any bounded input delays dk, (29) is exponentially stable.

Proof We use Theorems 1 and 2 to establish statements (a) and (b).
Let f (t, xt ) = Ax + Φ(t, x(t − r)), gi (x, y) = μx + Bi y. Then for L1 = ‖A‖ +

L0, L2 = |μ − 1| and L3 = M1, (A1), (A2) are satisfied. (C1) is as same as (A3).
Take V (t, x) = V (x) = |x |. Obviously, V (x) ∈ ν0 and satisfies (S1) for a = b =

p = 1.
It is easy to see (S2) holds for ν = M0, k1 = k2 = 1.
Calculating yields

D+V (t) = (xT , Ax(t)) + (xT (t),Φ(t, x(t − r)))

|x |
≤ λ̄|x | + L0|x(t − r)|.

Take c satisfying L0eτ t + t + λ̄ = 0, then if ecτ V (t) ≥ V (t − r), i.e., |x(t − r)| ≤
ecτ |x(t)|, we have

D+V (t) ≤ λ̄|x(t)| + L0|x(t − r)| ≤ (
λ̄ + L0ecτ ) |x(t)| = −cV (t).
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Moreover, according to the choice of c, we see c > 0 if λ̄ < −L0. Hence (S3)
holds. Equation (30) implies (2), and (31) implies (S

′
2). Therefore, all conditions in

Theorem 1 and 2 are satisfied and statements (a) and (b) are established. ��
Corollary 2 Suppose (29) satisfies (C0) and (C1). Then the following statements hold.

(a) η0 = {M0+ M1[d(‖A‖+L0)+(
 d
Ta

�+ N0)(|μ−1|+ M1)]}−1 and λ̄ = λmax(A)

satisfy

− L0η0 ≤ λ̄ ≤ −1 + ln(τ L0η0)

τ
. (32)

Let c be a solution of L0η0e−τ t + t + λ̄ = 0. If there exists d ≥ 0 such that

e−cN0Ta < η0, (33)

then for any input delays dk ≤ d, (29) is exponentially stable.
(b) If there exist γ > 0 and c ≤ 0 satisfying

L0γ e−cτ + c + λ̄ = 0 (34)

and

e−cN0Ta < γ < (|μ| + M1)
−1, (35)

then for any bounded input delays {dk}, (29) is exponentially stable.

Proof (32) ensures equation L0η0e−τ t + t + λ̄ = 0 has a nonnegative solution c. For
the functional V (t, x) = V (x) = |x |, if η0e−cτ V (t) ≥ V (t − r), we have

D+V (t) ≤ λ̄|x(t)| + L0|x(t − r)| ≤ (
λ̄ + L0η0e−cτ ) |x(t)| = −cV (t).

Therefore, (S
′
3) holds. Theorem 3 establishes statement (a).

The statement (b) follows since (S′′
2 ) and (S′′

3 ) in Theorem 4 are satisfied by (34)
and (35), respectively. ��

6 Numerical Examples

Example 1 We consider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = ax1(t) + 1
4 x1(t − r) sin(x2(t − r)) t 	= tk

ẋ2(t) = ax2(t) + 1
4 x2(t − r) cos(x1(t − r)) t 	= tk

x1(t+) = μx1(t−) + bx1(t − dk)
−) t = tk

x2(t+) = μx2(t−) + bx2(t − dk)
−) t = tk

(36)
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where a, b, μ are constants. r, dk ≥ 0, k ∈ N .
Suppose that the impulsive sequence ζ = {ε, 2ε, . . . , (N0 − 1)ε, N0Ta, N0Ta +

ε, N0Ta + 2ε, . . . , N0Ta + (N0 − 1)ε, 2N0Ta, . . .}, where N0 ∈ Z+ and Ta > 0.
Obviously, infk∈N+{tk − tk−1} = ε, supk∈N+{tk − tk−1} = N0(Ta − ε) + ε.

Therefore, if ε is arbitrarily small, so is the minimum interval length of ζ . While if N0
is very large, so is the maximum interval length of ζ .

We take Ta = 0.5, N0 = 2, r = 1, dk = d = 1
4 , k ∈ N .

Let A =
[

a 0
0 a

]

, Bi = B =
[

b 0
0 b

]

, Φ(t, x) =
[ 1

4 x1 sin x2
1
4 x2 cos x1

]

. Then ‖A‖ =
|a|, M0 = |b + μ|, M1 = |b|, λ̄ = a. Take a = − 1

2 , L0 = 1
4 .

1. For b = − 1
16 , μ = 1, or b = − 2

16 , μ = 33
32 , (30) holds. Therefore, for any dk

satisfying 0 ≤ dk ≤ 1
4 , (36) is exponentially stable by(a) of Corollary 1.

2. Let b = 1
16 , μ = 13

16 , then |μ| + M1 < 1, i.e., (31) holds. Then, for any bounded
input delays dk, k ∈ N , (36) is exponentially stable by (b) of Corollary 1.

Example 2 For (36), we take a = − 1
4 . Suppose that the values of Ta, N0, L0, dk, r

are the same as Example 1. Then τ = max{r, d} = 1.

1. Let b = − 1
16 , μ = 15

16 . Then η0 = 128
115 by a simple computation. It follows that

(32) holds. So equation L0η0e−τ t + t + λ = 0, i.e., 32
115e−t + t − 1

4 = 0 has a
negative value c ∈ (−0.04,−0.03) satisfying (33).

2. Take γ = η0 = 128
115 , μ = b = 1

4 . It is easy to check that (34) and (35) are satisfied.

Corollary 2 establishes the exponential stability of (36).

7 Conclusions

In this paper, we investigated exponential stability of nonlinear time-delay impulsive
systems and obtained some sufficient conditions to realize exponential stability of
the systems. The main results are divided into two parts according to whether the
continuous dynamics is stable. Someapplications andnumerical examples are supplied
to illustrate the validity of the main results. Some open problems are worth to explore.
For example, the condition M1 + M2 < 1 in Theorem 2 seems to be somewhat strong.
If this condition can be removed or weakened, the results will be more meaningful.
We plan to study this issue for our future research.
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